Странные приветствия в разных странах. Как люди приветствуют друг друга в разных странах. Разные виды рукопожатия

Что надо для изобретения? Многие ответят, что для этого потребуются месяцы и годы исследований и опытов. В классических случаях именно так и происходит. Однако история знает немало случаев, когда важные изобретения совершались абсолютно случайно. Причем речь идет не только о научных, но и вполне бытовых вещах. Расскажем о самых известных из них.

Пенициллин. Открытие пенициллина состоялось в 1928 году. Автором случайного изобретения стал Александр Флеминг, который в это время занимался исследование гриппа. Согласно легенде ученый не был достаточно аккуратным и не утруждал себя частым мытьем лабораторной посуды сразу же после исследований. Так, культуры гриппа могли у него храниться по 2-3 недели в 30-40 чашках одновременно. И вот однажды в одной из чашек Петри ученый обнаружил плесень, которая к его изумлению смогла уничтожить высеянную культуру бактерии стафилококка. Это вызвало интерес Флеминга, оказалось, что плесень, которой была заражена культура, относится к весьма редкому виду. В лабораторию она попала скорее всего из помещения этажом ниже, именно там выращивались образцы плесени, взятые у больных бронхиальной астмой. Флеминг оставил на столе чашку, которой предстояло стать знаменитой, и уехал на отдых. Тогда в Лондоне наступило похолодание, что и создало благоприятные условия для роста плесени. Наступившее затем потепление благоприятствовало росту бактерий. Позже выяснилось. Что именно такое стечение обстоятельств и послужило рождению столь важного открытия. Причем его значимость далеко перешагнула за рамки лишь 20-го века. Ведь пенициллин помог и помогает до сих пор спасать жизни миллионов человек. Люди отдали дань памяти ученому, после смерти Флеминга его похоронили в соборе Святого Павла в Лондоне, поместив в один ряд с самыми известными англичанами. В Греции же в день смерти Флеминга был даже объявлен национальный траур.

Рентгеновские лучи или X-Rays. Автором открытия стал в 1895 году физик Вильгельм Конрад Рентген. Ученый проводил в затемненной комнате опыты, пытаясь понять, смогут ли катодные лучи, открытые лишь недавно, пройти сквозь вакуумную трубку или нет. Изменив форму катода, Рентген случайно увидел, что на химически очищенном экране на расстоянии в несколько фунтов появилось расплывчатое зеленоватое облачко. Создалось впечатление, что слабая вспышка от индукционной катушки смогла отразиться в зеркале. Этот эффект так заинтересовал ученого, что ему он посвятил целых семь недель, практически не выходя из лаборатории. В результате оказалось, что свечение возникает из-за прямых лучей, исходящих от катодно-лучевой трубки. Само же излучение дает тень, и оно не может отклоняться магнитом. Применив эффект на человеке, стало ясно, что кости отбрасывают более плотную тень, нежели мягкие ткани. Это до сих пор используется в рентгеноскопии. В том же году появился и первый рентгеновский снимок. Им стал снимок руки жены ученого, на пальце которой четко выделялось золотое кольцо. Так что первой подопытной стала именно женщина, которую мужчины смогли увидеть насквозь. Тогда об опасности излучения еще ничего не знали - существовали даже фотоателье, где делали одиночные и семейные снимки.

Вулканизированная резина. В 1496 году Колумб привез из Вест-Индии чудную вещь - резиновые шарики. Тогда это казалось волшебной, но малополезной забавой. К тому же каучук имел и свои минусы - он вонял и быстро гнил, а при тепле становился уж слишком липким, сильно затвердевая к тому же на холоде. Неудивительно, что люди долгое время не могли найти применения резине. Лишь спустя 300 лет, в 1839 году эта проблема была решена Чарльзом Гудиром. В своей химической лаборатории ученый пытался смешать каучук с магнезией, азотной кислотой, известью, но все было без толку. Закончилось неудачей и попытка смешать каучук с серой. Но тут совершенно случайно эту смесь уронили на горячую печь. Так и получилась эластичная резина, которая сегодня окружает нас повсюду. Это и автомобильные покрышки, мячи и калоши.

Целлофан. В 1908 году швейцарский химик Жак Бранденбергер, работающий на текстильную промышленность, искал возможности создать такое покрытие кухонных скатертей, чтобы оно было максимально защищено от пятен. Разработанное покрытие в виде жесткой вискозы было слишком жестким для намеченных целей, однако Жак поверил в этот материал, предложив использовать его для упаковки продуктов. Однако первая машина для производства целлофана появилась спустя лишь 10 лет - именно столько времени потребовалось швейцарскому ученому, чтобы воплотить свою идею.

Небьющееся стекло. Сегодня такое сочетание слов не вызывает удивления, а вот в 1903 году все было совсем иначе. Тогда французский ученый Эдуард Бенедиктус уронил себе на ногу пустую стеклянную колбу. Посуда не разбилась и это очень его удивило. Конечно же, стенки покрылись сеткой трещинок, однако форма осталась целой. Ученый постарался выяснить, что же стало причиной такого явления. Оказалось, что до этого в колбе находился раствор коллодия, который представляет собой раствор нитратов целлюлозы в смеси этанола с этиловым эфиром. Хотя жидкость и испарилась, тонкий ее слой остался на стенках сосуда. В это время во Франции получило развитие автомобилестроение. Тогда ветровое стекло делали из обычного стекла, что влекло за собой множество травм водителей. Бенедиктус понял, как его изобретение можно будет использовать в этой области и спасти тем самым множество жизней. Однако стоимость внедрения была столь велика, что его попросту отложили на десятилетия. Лишь спустя десятилетия после I мировой войны, в ходе которой в качестве стекла для противогазов и использовался триплекс, небьющееся стекло получило применение и в автомобилестроении. Пионером стала компания Volvo в 1944 году.

Защитный материал Scotchgard. В 1953 год Патси Шерман, сотрудница корпорации 3М разрабатывала резиновый материал, который должен был успешно выдерживать взаимодействие с авиационным топливом. Но вдруг один неаккуратный лаборант пролил один из экспериментальных составов прямо на ее новые теннисные туфли. Вполне очевидно, что Патси расстроилась, так как она не могла очистить туфли ни спиртом, ни мылом. Однако это неудача лишь подтолкнула женщину к новым исследованиям. И вот, спустя всего год после происшествия, на свет появился препарат Scotchgard, который защищает от загрязнений разные поверхности - от тканей, до автомобилей.

Клейкие листки - мемостикеры. Это случайное изобретение также известно под названием post-it notes. В 1970 году работавший на все ту же корпорацию 3M Спенсер Сильвер пытался разработать суперсильный клей. Однако его результаты удручали - полученная смесь постоянно размазывалась по поверхности бумаги, если же ее пытались приклеить к чему-либо, то спустя некоторое время листик отваливался, не оставляя следов на поверхности. Спустя 4 года другой сотрудник этой же компании, Артур Фрай, певший в церковном хоре, придумал, как улучшить поиск псалмов в книгу. Для этого он вклеивал туда закладки, намазанные именно разработанным ранее составом. Это помогло стикерам долгое время оставаться внутри книги. С 1980 года началась история выпуска post-it notes - одного из наиболее популярных офисных продуктов.

Суперклей. Также это вещество еще именуют Krazy Glue, на самом же деле его правильное название "cyanoacrylate (цианоакрилат)". И его изобретение также стало случайностью. Автором открытия стал доктор Гарри Кувер, который во Время Второй мировой войны в 1942 году искал в своей лаборатории способ сделать пластик для орудийных прицелов прозрачным. На выходе опытов получился цианоакриллат, который никак не решал требуемой задачи. Это вещество быстро твердело и клеилось ко всему подряд, портя при этом ценное лабораторное оборудование. Лишь спустя много лет, в 1958 году ученый понял, что его изобретение можно использовать на благо человечеству. Самой полезной оказалась способность состава моментально заклеивать... человеческие раны! Это спасло жизни многим солдатам во Вьетнаме. С заклеенными чудо-клеем ранами раненых уже можно было транспортировать в госпиталь. В 1959 году состоялась необыкновенная демонстрация клея в Америке. Там ведущего программы подняли в воздухе на склеенных всего каплей состава двух стальных пластинах. Позже в ходе демонстраций в воздух поднимали как телевизоры, так и автомобили.

Застежка-липучка или велкро (velcro). Все началось в 1941 году, когда швейцарский изобретатель Джорж де Местраль выгуливал, как обычно, свою собаку. По возвращении домой оказалось, что и пальто хозяина, и вся шерсть пса были покрыты репейником. Любопытный швейцарец решил рассмотреть под микроскопом, как же удается растению так прочно цепляться. Оказалось, что всему виной - крошечные крючочки, которыми репейник прикреплялся к шерсти практически намертво. Руководствуясь подсмотренным принципом, Джордж создал две ленты с такими же мелкими крючочками, которые цеплялись бы друг за друга. Так и появилась альтернативная застежка! Однако массовое производство полезного изделия наступили лишь спустя 14 лет. Одними из первых такими липучками стали пользоваться космонавты, которые так застегивают скафандры.

Фруктовое мороженное на палочке (popsicle). Автору этого изобретения было всего лишь одиннадцать лет, и звали молодого человека Фрэнк Эпперсон. То, что он открыл, многие назовут одним из самых значимых изобретений XX столетия. Удача улыбнулась мальчишке тогда, когда он растворил содовый порошок в воде - такой напиток был популярен у детей в то время. Почему-то выпить жидкость сразу Фрэнку не удалось, он оставил в стакане палочку для размешивания и оставил его на некоторое время на улице. Погода тогда стояла морозная и смесь быстро застыла. Смешная замороженная штуковина на палочке понравилась мальчику, ведь ее можно было лизать языком, а не пить. Со смехом Фрэнк принялся показывать свое открытие всем. Когда мальчик вырос, он вспомнил об изобретении своего детства. И вот, спустя 18 лет, стартовали продажи фруктового мороженного "Epsicles", имевшего целых 7 вариантов вкуса. Сегодня такой вид лакомства настолько популярен, что только в Америке ежегодно продается более трех миллионов фруктовых мороженных на палочке, типа popsicle.

Мешок для мусора. Человечество получило мешок для отходов только в 1950. Однажды к Гарри Василюку, инженеру и изобретателю, обратился муниципалитет его города с просьбой решить проблему высыпания отходов при загрузке мусоросборочных машин. Василюк долгое время проектировал прибор, работающий по принципу пылесоса. Но тут внезапно его озарила иная идея. Согласно легенде кто-то из его знакомых случайно воскликнул: "Мне нужна сумка для мусора!". Тогда-то Василюк и понял, что для операций с мусором следует использовать всего-навсего одноразовые мешки, которые он предложил делать из полиэтилена. Сначала такие пакеты стали использоваться в госпитали канадского Виннипега. Первые же мешки для мусора для частных лиц появились лишь в 1960-е годы. Надо сказать, что изобретение Василика оказалось очень полезным, ведь ныне одной из глобальных задач человечества является как раз и утилизация мусора. А данное изобретение, хотя и не способствует прямому решению задачи, косвенно все же помогает.

Тележка для супермаркета. Сильван Голдман был владельцем большого продуктового магазина в Оклахома-Сити. И вот он заметил, что покупатели не всегда берут некоторые товары, потому что их просто тяжело нести! Тогда Голдман в 1936 году изобрел первую тележку для покупок. Сам бизнесмен к идее своего изобретения пришел случайно - он увидел, как одна из покупательниц поставила тяжелую сумку на игрушечную машинку, которую сын катил на веревочке. Торговец сначала приделал колеса к обычной корзине, а затем, призвав на помощь механиков, создал и прототип современной тележки. С 1947 года начался массовый выпуск этого устройства. Именно это изобретение позволил появиться на свет такому явлению, как супермаркеты.

Кардиостимулятор. Среди случайных изобретений человечества значатся и приборы. В этом ряду выделяется кардиостимулятор, который помогает сохранять жизни миллионам людей, страдающих от заболеваний сердца. В 1941 году инженер Джон Хопкинс занимался исследованиями гипотермии, по заказу военного флота. Ему была поставлена задача - найти способ для максимального обогрева человека, который долго побывал на морозе или в ледяной воде. Для решения данного вопроса Джон пытался использовать высокочастотное радиоизлучение, которое разогревало бы тело. Однако он обнаружил, что при остановке сердца в результате переохлаждения его можно перезапустить помощью стимуляции электрическими импульсами. Это открытие привело к появлению в 1950 году первого кардиостимулятора. В то время он был громоздким и тяжелым, а его использование иногда даже приводило к образованию у больных еще и ожогов. Второе случайное открытие в данной области принадлежит медику Уилсону Грейтбатчу. Он пытался создать устройство для записи сердечных ритмов. Однажды он случайно вставил в свое устройство не тот резистор и увидел в электрической сети колебания, схожие с ритмом сердца человека. Уже через два года на свет с помощью Грейтбатча появился первый вживляемый кардиостимулятор, подающий искусственные импульсы, стимулирующие сердечную деятельность.

Картофельные чипсы. В 1853 году в городке Саратога, что в штате Нью-Йорк, постоянный, но особо капризный клиент буквально извел персонал одного кафе. Этим человек являлся железнодорожный магнат Корнелиус Вандербильт, он то и постоянно отказывался от предложенного картофеля фри, считая его толстым и влажным. В конце концов повару Джорджу Краму надоело нарезать клубни все тоньше и тоньше, и он решил отомстить или просто подшутить над надоедливым посетителем. В масле было обжарено несколько тонких как вафля ломтиков картофеля и поданы Корнелиусу. Первая реакция брюзги была довольно предсказуемой - теперь ломтики ему показались излишне тонкими, чтобы наколоть их вилкой. Однако попробовав несколько штук, посетитель наконец-то остался доволен. В результате и другие посетители пожелали отведать нового блюда. Вскоре в меню появилось новое блюдо под названием "Саратогские чипсы", а сами чипсы начали свое победоносное шествие по миру.

ЛСД. Случайное открытие диэтиламида d-лизергиновой кислоты привело к целой культурной революции. Мало кто сегодня может оспорить этот факт, ведь галлюциноген, открытый швейцарским ученым Альбертом Хоффманом в 1938 году, во многом способствовал формированию движения хиппи в 60-х. Интерес к данному веществу был довольно велик, оно оказало к тому же огромное влияние на исследования и лечение неврологических заболеваний. Фактически открыл ЛСД в качестве галлюциногена доктор Хоффман, участвуя в фармацевтических исследованиях в швейцарском Базеле. Врачи пытались создать препарат, который облегчал бы боли при родах. При синтезе того, что позже было названо ЛСД, Хоффман первоначально не обнаружил у вещества каких-либо интересных свойств и спрятал его в хранилище. Настоящие же свойства ЛСД были выявлены лишь в апреле 1943 года. Хоффман работал с веществом без перчаток, и некоторое количество его попало в организм через кожу. Когда Альберт ехал домой на велосипеде, он к своему удивлению наблюдал "непрекращающийся поток фантастических картин, необычных форм с насыщенной и калейдоскопической игрой цвета". В 1966 году ЛСД было объявлено на территории США вне закона, вскоре запрет перекинулся и на другие страны, что сильно осложнило изучение галлюциногена. Одним из первых исследователей стал доктор Ричард Альперт, который заявил, что к 1961 году сумел испытать ЛСД на 200 объектах, 85% из которых заявили, что получили самый полезный опыт в своей жизни.

Микроволновая печь. И в данном случае изобретали совсем другой прибор. Так, в 1945 году американский инженер Перси Спенсер создавал магнетроны. Эти приборы должны были генерировать микроволновые радиосигналы для первых радаров. Ведь те сыграли важную роль во Второй Мировой войне. А вот тот факт, что микроволны могут помогать готовить пищу открылся совершенно случайно. Однажды, стоя около работающего магнетрона, Спенсер увидел, что в его кармане растаяла плитка шоколада. Ум изобретателя быстро понял, что виной всему те самые микроволны. Спенсер решил провести эксперименты, пытаясь воздействовать на попкорн и яйцо. Последнее, ожидаемо для нас, современных, взорвалось. Выгода микроволн оказалась налицо, со временем была изготовлена и первая микроволновая печь. На тот момент она весила около 340 килограмма и была размером с большой современный холодильник.

В один из дней 1903-го года французский химик Эдуард Бенедикт готовился к очередному эксперименту в лаборатории – он не глядя протянул руку за чистой колбой, стоявшей на полке в шкафу, и уронил ее.

Взяв метлу и совок чтобы убрать осколки, Эдуард подошел к шкафу и обнаружил с удивлением, что колба хоть и разбилась, но все ее фрагменты остались на месте, их соединяла друг с другом какая-то пленка.

Химик позвал лаборанта – тот был обязан мыть стеклянную посуду после опытов и попытался выяснить, что было в колбе. Оказалось, что эта емкость использовалась несколько дней назад в ходе экспериментов с нитратом целлюлозы (нитроцеллюлозой) – спиртовым раствором жидкого пластика, небольшое количество которого после испарения спирта осталось на стенках колбы и застыло пленкой. А поскольку слой пластика был тонок и достаточно прозрачен, лаборант решил, что емкость пуста.

Спустя пару-тройку недель после истории с не разлетевшейся на осколки колбой, Эдуарду Бенедикту попалась на глаза заметка в утренней газете, в которой описывались последствия лобовых столкновений нового в те годы вида транспорта – автомобилей. Ветровое стекло разлеталось осколками, нанося водителям множественные порезы, лишая зрения и нормальной внешности. Фотографии пострадавших произвели на Бенедикта тягостное впечатление и тут он вспомнил о «небьющейся» колбе. Бросившись в лабораторию, следующие 24 часа своей жизни французский химик посвятил созданию небьющегося стекла. Он наносил нитроцеллюлозу на стекло, сушил слой пластика и бросал композит на каменный пол – снова, снова и снова. Так Эдуард Бенедикт изобрел первое стекло-триплекс.

Многослойное стекло

Стекло, образованное несколькими слоями из силикатного или органического стекла, соединенными особой полимерной пленкой, называется триплексом. В качестве полимера, соединяющего стекла, обычно используется поливинилбутираль (PVB). Существует два основных способа производства многослойного стекла триплекс – заливной и ламинационный (автоклавный или вакуумный).

Технология заливного триплекса. Листы флоат-стекла нарезаются по размерам, при необходимости им придается изогнутая форма (выполняется моллирование). После тщательно очистки поверхностей стекла укладываются друг на друга с тем, чтобы между ними оставался просвет (полость) высотой не более 2 мм – дистанция фиксируется с помощью особой резиновой полосы. Совмещенные листы стекла выставляются под углом к горизонтальной поверхности, в полость между ними заливается поливинилбутираль, резиновая вставка по периметру препятствует его вытеканию. Чтобы достичь равномерности полимерного слоя, стекла помещают под пресс. Окончательное соединение листов стекла за счет отверждения поливинилбутираля происходит под ультрафиолетовым излучением в специальной камере, внутри которой поддерживается температура в диапазоне от 25 до 30 о С. После формирования триплекса, из него извлекается резиновая лента и производится обточка кромки.

Автоклавная ламинация триплекса. После резки листов стекла,
обработки кромок и моллирования, они очищаются от загрязнений. По окончании подготовки листов флоат-стекла, между ними укладывается PVB пленка, сформированный «сэндвич» помещается в пластиковую оболочку – в вакуумной установке из пакета полностью выводится воздух. Окончательное соединение слоев «сэндвича» происходит в автоклаве, под давлением 12,5 бар и температурой 150 о С.

Вакуумная ламинация триплекса. По сравнению с автоклавной технологией, вакуумная триплексация выполняется при меньших давлении и температуре. Последовательность рабочих операций у них схожа: нарезка стекла, придание изогнутой формы в моллирующей печи, обточка кромок, тщательная чистка и обезжиривание поверхностей. При формировании «сэндвича» между стеклами помещается этиленвинилацетатная (EVA) или PVB пленка, затем их помещают в вакуумную машину, предварительно уложив в пластиковый мешок. Спаивание стеклянных листов происходит именно в этой установке: откачивается воздух; «сэндвич» нагревается до максимальных 130 о С, происходит полимеризация пленки; триплекс охлаждается до 55 о С. Полимеризация выполняется в разреженной атмосфере (- 0,95 бар), при снижении температуры до 55 о С давление в камере выравнивается до атмосферного и, как только температура многослойного стекла составит 45 о С, формирование триплекса завершается.

Многослойное стекло, созданное по заливной технологии, более прочное, но менее прозрачное, чем ламинированный триплекс.

Из стеклянных сэндвичей, выполненных по одной из триплекс-технологий, создаются лобовые стекла автомашин, они необходимы для остекления высотных зданий, в построении перегородок внутри офисов и жилых домов. Триплекс популярен у дизайнеров – изделия из него являются неотъемлемым элементом стиля модерн.

Но, несмотря на отсутствие осколков при ударе по многослойному «сэндвичу» из силикатного стекла и полимера, пулю он не остановит. А вот рассмотренные ниже триплекс-стекла сделают это вполне успешно.

Бронированное стекло – история создания

В 1928 году немецкие химики создают новый материал, немедленно заинтересовавший авиаконструкторов – плексиглас. В 1935 году руководителю НИИ «Пластмасс» Сергею Ушакову удалось достать в Германии образец «гибкого стекла», советские ученые занялись его исследованием и разработкой технологии серийного производства. Спустя год производство органического стекла из полиметилметакрилата было начало на заводе «К-4» в Ленинграде. Одновременно были начаты эксперименты, направленные на создание бронированного стекла.

Закаленное стекло, созданное в 1929 году французской компанией SSG, в середине 30-х годов под названием «сталинит» выпускалось в СССР. Технология закалки заключалась в следующем – листы самого обычного силикатного стекла нагревались до температур в диапазоне от 600 до 720 о С, т.е. выше температуры размягчения стекла. Затем лист стекла подвергался быстрому охлаждению – потоки холодного воздуха за несколько минут понижали его температуру до 350-450 о С. Благодаря закалке стекло получало высокие прочностные свойства: сопротивляемость удару возрастала в 5-10 раз; прочность на изгиб – не менее чем в два раза; термостойкость – в три-четыре раза.

Однако, несмотря на высокую прочность, «сталинит» не годился для моллирования с целью формиров
ания фонаря кабины самолета – закалка не позволяла его гнуть. Кроме того закаленное стекло содержит в себе значительное количество зон внутреннего напряжения, легкий удар по ним приводил к полному разрушению всего листа. «Сталинит» нельзя резать, обрабатывать и сверлить. Тогда советские конструкторы решили комбинировать пластичное оргстекло и «сталинит», превратив их недостатки в достоинство.

Предварительно формованный фонарь самолета покрывался небольшими плитками из закаленного стекла, клеем служил поливинилбутираль.

Прозрачная броня

Современное бронестекло, также называемое прозрачной броней, представляет собой многослойный композит, образованный листами силикатного стекла, оргстекла, полиуретана и поликарбоната. Также в состав бронированного триплекса могут входить кварцевое и керамическое стекло, синтетический сапфир.

Европейские производители бронестекол выпускают в основном триплекс, состоящий из нескольких «сырых» флоат-стекол и поликарбоната. К слову, незакаленное стекло в среде компаний, выпускающих прозрачную броню, называется «сырым» - в триплексе с поликарбонатом применяется именно «сырое» стекло.

Лист поликарбоната в таком многослойном стекле устанавливается на сторону, обращенную внутрь защищаемого помещения. Задача пластика заключается в гашении колебаний, вызванных ударной волной при столкновении пули с бронестеклом, чтобы избежать образования новых осколков в листах «сырого» стекла. Если поликарбонат в составе триплекса отсутствует, то ударная волна, движущаяся перед пулей, разобьет стекла еще до фактического ее соприкосновения с ними и пуля беспрепятственно пройдет через такой «сэндвич». Недостатки бронестекол с поликарбонатной вставкой (равно, как и с любым полимером в составе триплекса): значительный вес композита, особенно по классам 5-6а (достигает 210 кг за м 2); низкая стойкость пластика к абразивному износу; отслоение поликарбоната со временем из-за температурных перепадов.

Другое, перспективное направление в создании прозрачной бронибазируется на ином пр
инципе. Лист прозрачного пластика устанавливается в триплекс все также последним, а первыми монтируются вставки из лейкосапфира, керамического или кварцевого стекла – именно они должны встретить пулю. Лицевой слой триплекса, образованный перечисленными сверхтвердыми материалами, ломает либо плющит пулю, средний слой из термически или химически упрочненного стекла удержит поврежденную внутри стеклянного «сэндвича», а последний, пластиковый слой – погасит ударную волну и импульс от первичных осколков, не позволяя образовываться вторичным осколкам. Для защиты поликарбоната от абразивного износа, на него наносится пленка типа stop shield. Преимущества такого бронированного многослойного стекла – в 3-4 раза меньший вес и толщина, чем у триплекса из «сырого» стекла. Недостаток – высокая стоимость.

Кварцевое стекло. Производится из оксида кремния (кремнезема) природного происхождения (кварцевого песка, горного хрусталя, жильного кварца) или искусственно синтезированной двуокиси кремния. Обладает высокой термостойкостью и светопропусканием, его прочность выше, чем у силикатного стекла (50 H/мм 2 против 9,81 H/мм 2).

Керамическое стекло. Выполняется из оксинитрида алюминия, разработано в США для нужд армии, запатентованное название – ALON. Плотность этого прозрачного материала выше, чем у кварцевого стекла (3,69 г/см 3 против 2,21 г/см 3), прочностные характеристики также высоки (модуль Юнга – 334 ГПа, средний предел напряжения при изгибе – 380 МПа, что практически в 7-9 раз превышает аналогичные показатели стекол из оксида кремния).

Искусственный сапфир (лейкосапфир). Представляет собой монокристалл из оксида алюминия, в составе бронестекла придает триплексу максимальные прочностные свойства из возможных. Некоторые его характеристики: плотность – 3,97 г/см 3 ; средний предел напряжения при изгибе – 742 МПа; модуль Юнга – 344 ГПа. Недостаток лейкосапфира заключается в его значительной стоимости из-за высоких производственных энергозатрат, потребностей в сложной механической обработке и полировке.

Химически упрочненное стекло. «Сырое» силикатное стекло погружают в ванну с водным раствором фтороводородной (плавиковой) кислоты. После химической закалки стекло становится в 3-6 прочнее, его ударная вязкость возрастает шестикратно. Недостаток – прочностные характеристики упрочненного стекла ниже, чем у термически закаленного.

В настоящее время для защиты жилых домов в основном используются многослойные стекла типа "триплекс".

Наша фирма также производит установку многослойных небьющихся стекол в жилые и другие помещения.

Ученица 9 класса Егорова Александра.

Материал для радиопередачи, проведенной в рамках "Дня химии" в школе.

Скачать:

Предварительный просмотр:

Радиопередача в рамках мероприятия «День химии в школе»

Химия – это наука, умеющая творить чудеса. В этом чудесном определении химии, которое лишь по случайности не вошло в учебники, нужно твердо усвоить, что химия – это наука. И как всякая наука требует к себе самого серьезного, самого ответственного отношения. Химия – это наука о веществах и превращениях настолько необыкновенных, что для непосвященных они кажутся чудом

К концу 19 века как наука сформировалась органическая химия. Интересные факты помогут лучше понять окружающий мир и узнать, как делались новые научные открытия.

Случайное открытие

Интересные факты о химии часто касаются открытий, произведенных случайно. Так, в 1903 году Эдуард Бенедиктус, известный французский химик, изобрел небьющееся стекло. Ученый случайно уронил колбу, которая была заполнена нитроцеллюлозой. Он обратил внимание, что колба разбилась, но стекло не разлетелось на куски. Проведя необходимые исследования, химик установил, что подобным образом можно создать противоударное стекло. Так появились первые небьющиеся стекла для автомобилей, которые значительно снизили количество травм при автоавариях.

Живой датчик.

Интересные факты про химию повествуют об использовании чувствительности животных для пользы человека. Вплоть до 1986 года шахтеры брали с собой под землю канареек. Дело в том, что эти птицы чрезвычайно чувствительны к рудничным газам, особенно метану и угарному газу. Даже при небольшой концентрации этих веществ в воздухе птица может погибнуть. Шахтеры прислушивались к пению птицы и следили за её самочувствием. Даже сегодня не изобретен прибор, чувствующий рудные газы так же тонко, как канарейка.

Резина.

Ещё одно случайное изобретение - резина. Чарльз Гудьир, американский ученый, открыл рецепт приготовления резины, которая не плавится в жару и не ломается на морозе. Он случайно разогрел смесь серы и каучука, оставив его на плите. Процесс получения резины был назван вулканизацией.

Пенициллин.

Пенициллин был изобретен случайно. Александр Флеминг забыл о пробирке с бактериями стафилококка на несколько дней. А когда вспомнил о ней, то обнаружил, что колония погибает. Все дело оказалось в плесени, которая начала разрушать бактерии. Именно из плесневых грибов ученый получил первый в мире антибиотик.

Серые кардиналы среди растений.

Интересные факты о белках. Химия может объяснять поведение животных и растений. В ходе эволюции многие растения выработали механизмы защиты от травоядных. Чаще всего растения выделяют яд, но ученые обнаружили и более тонкий метод защиты. Некоторые растения выделяют вещества, привлекающие… хищников! Хищники регулируют численность травоядных и отпугивают их от места произрастания "умных" растений. Такой механизм есть даже у привычных нам растений, таких как томаты и огурцы. Например, гусеница подточила огуречный листок, а запах выделившегося сока привлек птиц.

Защитники - белки: химия и медицина тесно связаны. Во время опытов над мышами вирусологи обнаружили интерферон. Этот белок продуцируется у всех позвоночных животных. Из зараженной вирусом клетки выделяется особый белок – интерферон. Он не обладает противовирусным действием, но контактирует со здоровыми клетками и делает их невосприимчивыми к вирусу.

Запах металла

Мы обычно думаем, что монетки, поручни в общественном транспорте, перила и т. д. пахнут металлом. Вот только этот запах выделяет не металл, а соединения, которые образуются в результате соприкосновения с металлической поверхностью органических веществ.

Строительный материал

Интересные факты о белках. Химия изучает белки сравнительно недавно. Они возникли более 4 миллиардов лет назад непостижимым образом. Белки являются строительным материалом для всех живых организмов, иные формы жизни науке неизвестны. Половину сухой массы у большинства живых организмов составляют белки.

Интересные факты. Химия и газировка

В 1767 году Джозефа Пристли заинтересовала природа пузырьков, которые выходят из пива во время брожения. Он собрал газ в чашу с водой, которую попробовал на вкус. Вода оказалась приятной и освежающей. Таким образом, ученый открыл углекислый газ, который сегодня используют для производства газированной воды. Через пять лет он описал более эффективный метод получения этого газа.

Кот и йод

Интересный факт о химии – в открытии йода принимал непосредственное участие самый обычный кот. Фармацевт и химик Бернар Куртуа обычно обедал в лаборатории, и к нему часто присоединялся кот, любивший сидеть на плече хозяина. После очередной трапезы кот спрыгнул на пол, при этом опрокинув емкости с серной кислотой и суспензией золы водорослей в этаноле, стоявшие у рабочего стола. Жидкости смешались, и в воздух начал подниматься фиолетовый пар, оседавший на предметах мелкими черно-фиолетовыми кристаллами. Так был открыт новый химический элемент.

Удивительный мир находится вокруг нас, много интересного окружает человека, о многом он и не догадывается, достаточно просто вспомнить интересные факты о химии и понять в каком чудесном мире живет человек.

1. Для обеспечения стандартного полета современного самолета необходимо около 80 тонн кислорода. Столько же кислорода производит 40 тысяч гектар леса во время фотосинтеза.

2. Около двадцати граммов соли содержится в одном литре морской воды.

3. Длина 100 миллионов атомов водорода в одной цепи составляет один сантиметр.

4. Около 7 мг золота можно извлечь из одной тонны воды Мирового океана.

5. Около 75% воды содержится в человеческом организме.

6. Масса нашей планеты увеличилась на один миллиард тонн за последние пять столетий.

7. К тончайшей материи, которую может увидеть человек, относятся стенки мыльного пузыря.

8. При температуре пяти тысяч градусов Цельсия железо превращается в газообразное состояние.

9. Солнце за одну минуту производит больше энергии, чем нужно нашей планете на целый год.

10. Гранит считается лучшим проводником звука по сравнению с воздухом.

12. Джозеф Блэк открыл углекислый газ в 1754 году.

13. Кроме ртути при комнатной температуре в жидкое вещество переходит франций и галлий. 14. Вода с содержанием метана может замерзнуть при температуре выше 20 градусов Цельсия.

15. К самому распространенному веществу в мире относится водород.

16. В честь стран было названо большое количество химических элементов.

17. Вещество сера содержится в луке, которое вызывает слезы у человека.

18. Ушная сера защищает человека от вредных бактерий и микроорганизмов. 32. Французский исследователь Б. Куртуа в 1811 году открыл йод.

19. Более 100 тысяч химических реакции ежеминутно происходит в головном мозге человека.

20. Серебро известно своими бактерицидными свойствами, поэтому способно очищать воду от вирусов и микроорганизмов.

21. Геосмин - это вещество, которое вырабатывается на поверхности земли после дождя, вызывая характерный запах

22. Александр Флеминг впервые открыл антибиотики.

23. Из горячей воды легче получить лед.

24. В изумрудах содержится бериллий.

25. В океане содержится большое количество натрия.

26. В компьютерных микросхемах используют кремний.

27. Для изготовления спичек используют фосфор

28. Для изготовления бейсбольной биты используют скандий, что улучшает их ударопрочность.

29. Титан используют для создания украшений.

30. Ложки, содержащие галлий могут расплавиться в горячей воде.

31. В мобильных телефонах используют германий.

32. К токсичному веществу относится мышьяк, из которого изготавливают яд для крыс.

33. Бром может расплавиться при комнатной температуре.

34. В рентгене используют технеций.

35. Для производства ядерного оружия используют уран.

36. Самым редким элементом атмосферы считается радон.

37. Вольфрам имеет самую высокую температуру кипения.

38. Ртуть имеет самую низкую температуру плавления.

39. Небольшое количество метанола может привести к слепоте.

40. Около тридцати химических элементов входят в состав человеческого организма.

41. В повседневной жизни человек часто сталкивается с гидролизом солей, например, во время стирки белья.

42. Из-за реакции окисления на стенах ущелий и карьеров появляются цветные рисунки.

43. Сухой лед является твердой форме углекислого газа.

44. Семен Вольфкович занимался опытами, связанными с фосфором. Когда он с ним работал, одежда тоже пропитывалась фосфором, а поэтому, возвращаясь поздно ночью домой, профессор излучал голубоватое свечение.

46.Знаменитый химик Дмитрий Менделеев был 17-ым ребенком в семье.

47.Первый русский учебник «Органическая химия» был создан Дмитрием Менделеевым в 1861 году.

Благодаря какой случайности фактически появился Linux?

Линус Торвальдс использовал операционную систему Minix, однако был недоволен многими ограничениями в ней и решил написать свою систему. В определённый момент была выпущена более-менее стабильная версия, интерес Торвальдса к проекту угас, и он был готов его забросить. Но в тот же период он случайно запортил раздел на жёстком диске, где стояла Minix, и вместо её переустановки Торвальдс решил всё-таки закончить начатое. Так благодаря случайности появилось ядро Linux и впоследствии ОС GNU/Linux.

Какая деталь автомобиля была изобретена случайно?

Небьющееся стекло было изобретено случайно. В 1903 году французский химик Эдуард Бенедиктус нечаянно уронил колбу, заполненную нитроцеллюлозой. Стекло треснуло, но не разлетелось на мелкие кусочки. Поняв, в чём дело, Бенедиктус изготовил первые лобовые стёкла современного типа, чтобы уменьшить количество жертв автомобильных аварий.

Какая оплошность помогла Луи Пастеру открыть современный метод вакцинации?

Однажды Луи Пастер, проводивший опыты по заражению птиц куриной холерой, решил съездить в отпуск и оставил в лаборатории своего помощника. Тот забыл выполнить очередную прививку курицам и ушёл в отпуск сам. Вернувшись, помощник заразил куриц, которые сначала ослабли, но потом неожиданно выздоровели. Благодаря этой оплошности Пастер понял, что ослабленные бактерии - ключ к избавлению от болезни, так как дают иммунитет от неё, и стал основоположником современной вакцинации. Впоследствии он также создал прививки от сибирской язвы и бешенства.

Какая случайность помогла открыть способ лечения болезни бери-бери?

В конце 19 века голландского физиолога Кристиана Эйкмана отправили в Индонезию для изучения болезни бери-бери, от которой в большом количестве умирали местные жители. Однажды он заметил, что у лабораторных куриц появились симптомы болезни. Анализируя причины, Эйкман выяснил, что новый повар стал закупать для армейского рациона не бурый, а белый рис, который также шёл на корм курам. Учёный снова стал давать им бурый неочищенный рис, и вскоре куры вылечились. Уже другие биологи продолжили исследования Эйкмана и нашли лечебный компонент в необработанном рисе - тиамин, или витамин B1.

Что изобрели раньше - спички или зажигалку?

Первая зажигалка, похожая на привычные нам, была изобретена в 1823 году немецким химиком Иоганном Вольфгангом Дёберейнером - на 3 года раньше, чем современные спички, воспламеняющиеся от трения о черкаш. Их случайно получил в 1826 году английский химик Джон Уолкер.

Кто сыграл ключевую роль в популяризации шампанского?

Изобретателем шампанского многие считают французского монаха Пьера Дом Периньона, однако это далеко от истины. Он разработал много техник, которые и сейчас применяются производителями шампанского в процессе изготовления начального вина, однако пузырьки в вине считал признаком брака. А ключевую роль в популяризации пузырящегося вина сыграли англичане. Они импортировали вина из провинции Шампань, а затем переливали их из бочек в бутылки с пробкой из пробкового дерева (чего французы тогда не знали). После возобновления процесса ферментации в бутылках начинал образовываться углекислый газ, и вино в открытых бутылках пузырилось, что очень понравилось англичанам.

Как был изобретён чайный пакетик?

Чайный пакетик был изобретён американцем Томасом Салливаном в 1904 году случайно. Он решил отправить заказчикам чай в шёлковых мешочках вместо традиционных жестяных банок. Однако покупатели подумали, что им предложили новый способ - заваривать чай прямо в этих мешочках, и нашли такой способ очень удобным.

Как Менделеев открыл периодический закон?

Широко распространена легенда, что мысль о периодической таблице химических элементов пришла к Менделееву во сне. Однажды его спросили, так ли это, на что учёный ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Кто решил сложную математическую проблему, приняв её за домашнее задание?

Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

Как были изобретены чипсы?

Фирменным рецептом одного американского ресторана, где в 1853 году работал Джордж Крам, был картофель фри. Однажды посетитель вернул жареный картофель на кухню, пожаловавшись на то, что он «слишком толстый». Крам, решив подшутить над ним, нарезал картофель буквально бумажной толщины и обжарил. Таким образом он изобрёл чипсы, которые стали самым популярным блюдом ресторана.

Как открыли антибиотики?

Антибиотики были открыты случайно. Александр Флеминг оставил пробирку с бактериями стафилококка без внимания на несколько дней. В ней выросла колония плесневых грибов и стала разрушать бактерии, а затем Флеминг выделил активное вещество - пенициллин.

Как была открыта вулканизация?

Американец Чарльз Гудьир случайно открыл рецепт изготовления резины, которая не размягчается в жару и не становится хрупкой на морозе. Он по ошибке нагрел смесь каучука и серы на кухонной плите (по другой версии, оставил образец резины у печи). Этот процесс получил название вулканизация.

Как несовершенное знание английского языка помогло открыть один из заменителей сахара?

Один из самых эффективных заменителей сахара - сукралоза - был открыт случайно. Профессор Лесли Хью из Королевского колледжа в Лондоне дал указание работавшему с ним студенту Шашиканту Пхаднису испытать (по-английски «test») полученное в лаборатории вещество трихлорсахароза. Студент знал английский на далёком от совершенства уровне и вместо «test» услышал «taste», немедленно попробовав вещество на вкус и найдя его очень сладким.

Какая деталь автомобиля была изобретена случайно?

Небьющееся стекло было изобретено случайно. В 1903 году французский химик Эдуард Бенедиктус нечаянно уронил колбу, заполненную нитроцеллюлозой. Стекло треснуло, но не разлетелось на мелкие кусочки. Поняв, в чём дело, Бенедиктус изготовил первые лобовые стёкла современного типа, чтобы уменьшить количество жертв автомобильных аварий.

Кем по профессии был человек, названный москвичами в легендах светящимся монахом?

Академик Семён Вольфкович был в числе первых советских химиков, проводивших опыты с фосфором. Тогда необходимые меры предосторожности ещё не принимались, и газообразный фосфор в ходе работы пропитывал одежду. Когда Вольфкович возвращался домой по тёмным улицам, его одежда излучала голубоватое свечение, а из-под ботинок высекались искры. Каждый раз за ним собиралась толпа и принимала учёного за потустороннее существо, что привело к распространению по Москве слухов о «светящемся монахе».

Как Менделеев открыл периодический закон?

Широко распространена легенда, что мысль о периодической таблице химических элементов пришла к Менделееву во сне. Однажды его спросили, так ли это, на что учёный ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Какому знаменитому физику вручили Нобелевскую премию в области химии?

Эрнест Резерфорд занимался исследованиями в основном в области физики и однажды заявил, что «все науки можно разделить на две группы - на физику и коллекционирование марок». Однако Нобелевскую премию ему вручили по химии, что стало неожиданностью как для него, так и для других учёных. Впоследствии он замечал, что из всех превращений, которые ему удалось наблюдать, «самым неожиданным стало собственное превращение из физика в химика».

Какие птицы помогали шахтёрам?

Канарейки очень чувствительны к содержанию в воздухе метана. Эту особенность использовали в своё время шахтёры, которые, спускаясь под землю, брали с собой клетку с канарейкой. Если пения давно не было слышно, значит следовало подниматься наверх как можно быстрее.

Как была открыта вулканизация?

Американец Чарльз Гудьир случайно открыл рецепт изготовления резины, которая не размягчается в жару и не становится хрупкой на морозе. Он по ошибке нагрел смесь каучука и серы на кухонной плите (по другой версии, оставил образец резины у печи). Этот процесс получил название вулканизация.

Какие существа виновны в цвете Кровавого водопада в Антарктиде?

В Антарктиде из ледника Тейлора временами выходит Кровавый водопад. Вода в нём содержит двухвалентное железо, которое, соединяясь с атмосферным воздухом, окисляется и образует ржавчину. Это и придаёт водопаду кроваво-рыжий цвет. Однако двухвалентное железо в воде возникает не просто так - его производят бактерии, живущие в изолированном от внешнего мира водоёме глубоко подо льдом. Эти бактерии сумели организовать жизненный цикл при полном отсутствии солнечного света и кислорода. Они перерабатывают остатки органики, а «дышат» трёхвалентным железом из окружающих пород.