Закономерности изменения химических свойств элементов. Характеристика элементов. Свойства элементов находятся в периодической зависимости от заряда их атомных ядер

Периодический закон – основа современной химии. На знании периодического закона базируются все научные направления и исследования в химии: изучение взаимопревращений веществ, получение новых материалов, теоретическое изучение строение веществ, типов химических связей и так далее.

Заряд ядра определяет число электронов в атоме, каждый последующий элемент имеет на один электрон больше, чем предыдущий. Заряд ядра определяет строение электронной оболочки атома в основном состоянии. Элементы располагаются в периодической системе элементов в порядке возрастания заряда ядер их атомов. У элементов периодически повторяются электронные конфигурации атомов и, как следствие этого, периодически повторяются химические свойства, которые определяются электронной конфигурацией атомов . Периодичность электронного строения проявляется в том, что через определенное число элементов снова повторяются s-, p- и d-элементы с одинаковым конфигурациями электронных подуровней.Периодичность присуща всей электронной оболочке атомов, а не только ее внешним слоям. Периодичность электронных структур приводит к периодическому изменению ряда химических и физических свойств элементов: атомных радиусов, энергий ионизации, сродства к электрону, электроотрицательности. Обсудим это более конкретно.

Атомные радиусы химических элементов изменяются периодически в зависимости от заряда ядра атома (или порядкового номера элемента). В периодах радиусы атомов уменьшаются от щелочного металла до галогена. Так атомный радиус атома натрия 0.186 нм, магния – 0.16 нм, хлора – 0.099 нм. Атомный радиус следующего щелочного металла, открывающего последующий период, резко увеличивается, радиус у него гораздо больше радиуса щелочного металла, стоящего над ним. Например: радиус атома натрия 0.186 нм, а атома калия 0.231 нм.

Уменьшение радиусов атомов в периодах слева направо, то есть с увеличением заряда ядра атома объясняется тем, что увеличение заряда ядра атома способствует более сильному притяжению электронов данного электронного уровня к ядру (оно действует сильнее отталкивания электронов друг от друга).

В группах с ростом заряда ядра атома (сверху вниз) радиусы атомов увеличиваются. Это объясняется тем, что каждый элемент, стоящий ниже, имеет на один электронный уровень больше, поэтому у него больше и радиус атома. Эта закономерность ярче проявляется у элементов главных подгрупп (у s- и p-элементов), чем у элементов побочных подгрупп (d-элементы).

В этих рассмотренных закономерностях есть исключения, но обсуждать их мы не будем, так как это не входит в рамки нашей программы.

Укажем еще на то, что необходимо различать радиусы свободного атома и следующие радиусы:

а) ковалентный радиус – это половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ (т.е. веществ с ковалентным типом связи);

б) металлический радиус – это половина расстояния между центрами двух соседних атомов в кристаллической решетке металла;

в) ионные радиусы атомов рассматриваются как половина расстояния суммы радиусов катиона и аниона (следует помнить, что радиусы катионов всегда меньше атомных радиусов соответствующих элементов, а радиусы анионов – больше радиусов атомов соответствующих элементов).

Энергия ионизации и сродство к электрону это параметры, которые позволяют оценить способность атомов терять и принимать электроны.

Билеты по химии 9 класс с ответами

Билет № 1

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Закономерности изменения свойств элементов малых периодов и главных подгрупп в зависимости от их порядкового (атомного) номера.

Периодическая система стала одним из важнейших источников информации о химических элементах, образуемых ими простых веществах и соединениях.

Дмитрий Иванович Менделеев создал Периодическую систему в процессе работы над своим учебником «Основы химии», добиваясь максимальной логичности в изложении материала. Закономерность изменения свойств элементов, образующих систему, получила название Периодического закона.

Согласно периодическому закону, сформулированному Менделеевым в 1869 году, свойства химических элементов находятся в периодической зависимости от их атомных масс. То есть с увеличением относительной атомной массы, свойства элементов периодически повторяются.*

Сравните: периодичность смены времен года с течением времени.

Данная закономерность иногда нарушается, например, аргон (инертный газ) превышает по массе следующий за ним калий (щелочной металл). Это противоречие было объяснено в 1914 году при изучении строения атома. Порядковый номер элемента в Периодической системе – это не просто очередность, он имеет физический смысл – равен заряду ядра атома. Поэтому

современная формулировка Периодического закона звучит так:

Свойства химических элементов, а также образованных ими веществ находятся в периодической зависимости от заряда ядра атома.

Период – это последовательность элементов, расположенных в порядке возрастания заряда ядра атома, начинающаяся щелочным металлом и заканчивающаяся инертным газом.

В периоде, с увеличением заряда ядра, растет электроотрицательность элемента, ослабевают металлические (восстановительные) свойства и растут неметаллические (окислительные) свойства простых веществ. Так, второй период начинается щелочным металлом литием, за ним следует бериллий, проявляющий амфотерные свойства, бор – неметалл, и т.д. В конце фтор – галоген и неон – инертный газ.

(Третий период снова начинается щелочным металлом – это и есть периодичность)

1-3 периоды являются малыми (содержат один ряд: 2 или 8 элементов), 4-7 – большие периоды, состоят из 18 и более элементов.

Составляя периодическую систему, Менделеев объединил известные на тот момент элементы, обладающие сходством, в вертикальные столбцы. Группы – это вертикальные столбцы элементов, имеющих, как правило, валентность в высшем оксиде равную номеру группы. Группу делят на две подгруппы:

Главные подгруппы содержат элементы малых и больших периодов, образуют семейства со сходными свойствами (щелочные металлы – I А, галогены – VII A, инертные газы – VIII A).

(химические знаки элементов главных подгрупп в периодической системе располагаются под буквой «А» или, в очень старых таблицах, где нет букв А и Б – под элементом второго периода)

Побочные подгруппы содержат элементы только больших периодов, их называют переходные металлы.

(под буквой «Б» или «B»)

В главных подгруппах с увеличением заряда ядра (атомного номера) растут металлические (восстановительные) свойства.

* точнее, веществ, образованных элементами, но это часто опускают, говоря «свойства элементов»

Периодический закон Д.И Менделеева.

Свойства химических элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости, от величины атомного веса.

Физический смысл периодического закона.

Физический смысл периодического закона заключается в периодичном изменении свойств элементов, в результате периодически повторяющихся e-ых оболочек атомов, при последовательном возрастании n.

Современная формулировка ПЗ Д.И Менделеева.

Свойство химических элементов, а также свойство образованных ими простых или сложных веществ находится в периодичной зависимости от величины заряда ядер их атомов.

Периодическая система элементов.

Периодическая система – система классификаций химических элементов, созданная на основе периодического закона. Периодическая система – устанавливает связи между химическими элементами отражающие их сходства и различия.

Периодическая таблица(существует два вида: короткая и длинная) элементов.

Периодическая таблица элементов – графическое отображение периодической системы элементов, состоит из 7 периодов и 8 групп.

Вопрос 10

Периодическая система и строение электронных оболочек атомов элементов.

В дальнейшем было установлено, что не только порядковый номер элемента имеет глубокий физический смысл, но и другие понятия, ранее рассмотренные ранее также постепенно приобретали физический смысл. Например, номер группы, указывая на высшую валентность элемента, выявляет тем самым максимальное число электронов атома того или иного элемента, которое может участвовать в образовании химической связи.

Номер периода, в свою очередь, оказался связанным с числом энергетических уровней, имеющихся в электронной оболочке атома элемента данного периода.

Таким образом, например, „координаты" олова Sn (порядковый номер 50, 5 период, главная подгруппа IV группы), означают, что электронов в атоме олова 50, распределены они на 5 энергетических уровнях, валентными являются лишь 4 электрона.

Физический смысл нахождения элементов в подгруппах различных категорий чрезвычайно важен. Оказывается, что у элементов, расположенных в подгруппах I категории, очередной (последний) электрон располагается на s-подуровне внешнего уровня. Эти элементы относят к электронному семейству. У атомов элементов, расположенных в подгруппах II категории, очередной электрон располагается на р-подуровне внешнего уровня. Это, элементы электронного семейства „р". Так, очередной 50-й электрон у атомов олова располагается на р-подуровне внешнего, т. е. 5-го энергетического уровня.

У атомов элементов подгрупп III категории очередной электрон располагается на d-подуровне , но уже пред внешнего уровня, это элементы электронного семейства «d». У атомов лантаноидов и актиноидов очередной электрон располагается на f-подуровне, пред пред внешнего уровня. Это элементы электронного семейства «f».

Не случайно, следовательно, отмеченные выше числа подгрупп этих 4-х категорий, то есть 2-6-10-14, совпадают с максимальными числами электронов на подуровнях s-p-d-f.

Но можно, оказывается, решить вопрос о порядке заполнения электронной оболочки и вывести электронную формулу для атома любого элемента и на основе периодической системы, которая с достаточной ясностью указывает уровень и подуровень каждого очередного электрона. Периодическая система указывает и на размещение одного за другим элементов по периодам, группам, подгруппам и на распределение их электронов по уровням и подуровням, потому что каждому элементу соответствует свой собственный, характеризующий его последний электрон. В качестве примера разберем составление электронной формулы для атома элемента циркония (Zr). Периодическая система дает показатели и „координаты" этого элемента: порядковый номер 40, период 5, группа IV, побочная подгруппа. Первые выводы: а) всех электронов 40, б) эти 40 электронов распределены на пяти энергетических уровнях; в) из 40 электронов только 4 являются валентными, г) очередной 40-й электрон поступил на d-подуровень пред внешнего, т. е. четвертого энергетического уровня. Подобные выводы можно сделать о каждом из 39 элементов, предшествующих цирконию, только показатели и координаты будут каждый раз иными.

На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов. В связи с открытием закона Мозле современная формулировка периодического закона следующая: свойство элементов, а так же формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов. Связь периодического закона и периодической системы со строением атомов.

Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства Элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов. Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1-до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов; то и они периодически повторяются. В этом физический смысл периодического закона. В качестве примера рассмотрим изменение свойств у первых и последних элементов периодов. Каждый период в периодической системе начинается элементами атомы, которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер.

Основные принципы заполнения Атомных Орбиталей электронами. Принцип Паули, правило Хунда. Принцип Паули : у атомов, имеющих больше одного электрона, не может быть 2х электронов с одинаковыми значениями всех 4х квантовых чисел. Следствие: на каждой АО максимально может находится только два электрона с антипараллельными спинами.

Подуровни p, d и f состоят из нескольких орбиталей, энергия которых одинакова, поэтому эти подуровни называются «вырожденными»: p подуровень вырожден трехкратно, d пятикратно и f семикратно. Для электронов этих подуровней соблюдается правило Хунда.

Правило Хунда : в основном (невозбужденном) состоянии атома на подуровнях np, nd и nf всегда имеется максимальное количество неспаренных электронов (максимальный неспаренный спин).

Правило Хунда. Минимумом энергии обладает конфигурация с максимальным сумм. спином.

Особенности формирования d- и f-подуровней . Принцип минимума энергии: состояние электрона должно отвечать основному принципу – принципу минимума энергии. Энергия задается: Е= n+l. Минимум энергии соответствует максимуму устойчивости. На внешнем уровне не может быть более 8 электронов.


Правило Кличковского : Энергетические подуровни заполняются в порядке увеличения суммы квантовых чисел (n+l). При равных значениях суммы сначала заполняется подуровень

с меньшим n.

Во всех вариантах Периодической системы она состоит из 7 периодов, причем номер периода соответствует главному квантовому числу внешнего энергетического уровня. Во всех вариантах выделены отдельные столбцы s-, p-, d-, f- элементов, т.е. элементов, у которых идет заполнение

соответствующего энергетического подуровня. Эти блоки элементов имеют и сходные химические свойства. Во всех вариантах (а в полудлинном и длинном особенно явно) действует «диагональное правило» - все элементы ниже условной диагонали являются металлами, а

выше – неметаллами, причем справа налево и сверху вниз усиливаются

металлические свойства.

В соответствии с современными представлениями о структуре атомов все элементы подразделяются на 4 группы, исходя из того, какие их орбитали в основном состоянии имеют наибольшую энергию. Таким образом выделяются s -, p -, d -, f- элементы.

Группа периодической системы химических элементов - последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением.

Номер группы определяется количеством электронов на внешней оболочке атома (валентных электронов) и, как правило, соответствует высшей валентности атома.

В короткопериодном варианте периодической системы группы подразделяются на подгруппы - главные (или подгруппы A), начинающиеся с элементов первого и второго периодов, и побочные (подгруппы В), содержащие d-элементы. Подгруппы также имеют названия по элементу с наименьшим зарядом ядра (как правило, по элементу второго периода для главных подгрупп и элементу четвёртого периода для побочных подгрупп). Элементы одной подгруппы обладают сходными химическими свойствами.

С возрастанием заряда ядра у элементов одной группы из-за увеличения числа электронных оболочек увеличиваются атомные радиусы, вследствие чего происходит снижение электроотрицательности, усиление металлических и ослабление неметаллических свойств элементов, усиление восстановительных и ослабление окислительных свойств образуемых ими веществ.

Объем научной информации, с которой оперирует система Д. И. Менделеева и на которую

опирается развитие ее теории, становится все шире и шире. Сами границы периодической системы расширяются и в переносном, и в буквальном смысле слова . Все это, естественно, позволяет более глубоко и всесторонне исследовать лежащие в остове структуры системы закономерности.

Периодичность изменения свойств атомов химических элементов. Радиусы атомов и ионов. Изменение атомных и ионных радиусов по периодам и группам. Эффекты d- и f- сжатия. Ионизационные потенциалы. Изменение величин ионизационных потенциалов по периодам и группам. Сродство к электрону. Понятие об электроотрицательности атомов химических элементов. Изменение величин электроотрицательности атомов элементов по периодам и группам.

Периодичность свойств атомов химических элементов. Свойства элементов, зависящие от строения электронной оболочки атома, изменяются по периодам и группам периодической системы. Поскольку в ряду элементов-аналогов электронные структуры лишь сходны, но не тождественны, то при переходе от одного элемента в группе к другому для них наблюдается не простое повторение свойств, а их более или менее отчетливо выраженное закономерное изменение. Химическая природа элемента обусловлена способностью его атома терять или приобретать электроны. Эта способность количественно оценивается величинами энергий ионизации и сродства к электрону. Энергией ионизации (Eи) называется минимальное количество энергии, необходимое для отрыва и полного удаления электрона из атома в газовой фазе при T = 0 K без передачи освобожденному электрону кинетической энергии с превращением атома в положительно заряженный ион: Э + Eи = Э+ + e-

Энергия ионизации является положительной величиной и имеет наименьшие значения у атомов щелочных металлов и наибольшие у атомов благородных (инертных) газов.

Сродством к электрону (Ee) называется энергия, выделяемая или поглощаемая при присоединении электрона атому в газовой фазе при T = 0

K с превращением атома в отрицательно заряженный ион без передачи частице кинетической энергии: Э + e- = Э- + Ee.

Максимальным сродством к электрону обладают галогены, особенно фтор (Ee = -328 кДж/моль).

Величины Eи и Ee выражают в килоджоулях на моль (кДж/моль) или в электрон-вольтах на атом (эВ). Способность связанного атома смещать к себе электроны химических связей, повышая около себя электронную плотность называется электроотрицательностью. Это понятие в науку введено Л.Полингом. Электроотрицательность обозначается символом ÷ и характеризует стремление данного атома к присоединению электронов при образовании им химической связи. Для количественной оценки ÷ предложено несколько различных методов.

По Р.Маликену электротрицательность атома оценивается полу-суммой энергий ионизации и сродства к электрону свободных атом ÷ = (Ee + Eи)/2

Наибольшее распространение в учебной литературе получила шкала электроотрицательностей, предложенная Л.Полингом, которую и рекомендуется применять. В этой шкале электроотрицательность выражается в относительных величинах. За единицу шкалы Полинга условно принята электроотрицательность атома лития (÷ = 1.0), а обладающий наибольшей способностью притягивать электроны атом фтора имеет ÷= 4.0. Значения электроотрицательностей атомов химических элементов по Полингу приведены в таблице.

В периодах наблюдается общая тенденция роста энергии ионизации и электроотрицательности с ростом заряда ядра атома, в группах эти величины с увеличением порядкового номера элемента убывают. Следует подчеркнуть, что элементу нельзя приписать постоянное значение электроотрицательности, так как оно зависит от многих факторов, в частности от валентного состояния элемента, типа соединения, в которое он входит, числа и вида атомов-соседей.

Атомные и ионные радиусы . Размеры атомов и ионов определяются размерами электронной оболочки. Согласно квантово-механическим представления электронная оболочка не имеет строго определенных границ. Поэтому за радиус свободного атома или иона можно принять теоретически рассчитанное расстояние от ядра до положения главного максимума плотности внешних электронных облаков. Это расстояние называется орбитальным радиусом. На практике обычно используют значения радиусов атомов и ионов, находящихся в соединениях, вычисленные исходя из экспериментальных данных. При этом различают ковалентные и металлические радиусы атомов. Зависимость атомных и ионных радиусов от заряда ядра атома элемента и носит периодический характер. В периодах по мере увеличения атомного номера радиусы имеют тенденцию к уменьшению. Наибольшее уменьшение характерно для элементов малых периодов, поскольку у них заполняется внешний электронный уровень. В больших периодах в семействах d- и f- элементов это изменение менее резкое, так как у них заполнение электронов происходит в предвнешнем слое. В подгруппах радиусы атомов и однотипных ионов в общем увеличиваются.

Основы термохимии. Понятие об энтальпии. Изохорные, изобарные и изотермические процессы. Изменение энтальпии в процессе химической реакции. Тепловой эффект химической реакции. Экзо- и эндотермические реакции. Стандартная энтальпия образования вещества. Закон Гесса. Изменение энтальпии и направление химической реакции.

Химические реакции протекают с выделением или поглощением энергии (обычно в виде теплоты). Химические реакции, протекающие с выделением теплоты, называются экзотермическими , а реакции, протекающие с поглощением теплоты, – эндотермическими.

Например:

С + О2 CO2 + Q,

СaCO3 CaO + CO2 – Q.

Количество теплоты, которое выделяется или поглощается в результате химической реакции, называется тепловым эффектом реакции (Q).

Тепловой эффект выражается в кДж или ккал

(1 ккал = 4,187 кДж). Для экзотермических реакций Q > 0, для эндотермических Q < 0.

Уравнения химических реакций, в которых записывается тепловой эффект реакции, называют термохимическими уравнениями. Величина Q указывается в правой части уравнения со знаком «+» в случае экзотермической реакции и со знаком «–» в случае эндотермической реакции. В термохимическом уравнении принято указывать агрегатные состояния реагентов и продуктов реакции, т.к. тепловой эффект реакции зависит от агрегатных состояний реагирующих веществ. По термохимическим уравнениям можно проводить различные расчеты, поскольку тепловой эффект реакции относится к мольным количествам исходных веществ и продуктов реакции. Также термохимические уравнения можно записывать с величиной изменения энтальпии (Н).

Энтальпия – термодинамическая функция, определяющая общий запас энергии системы (энергетическое состояние вещества), включая энергию, затрачиваемую на преодоление внешнего давления. Q = –H. Размерность энтальпии – Дж/моль.

Например:

С + О2 CO2 – Н,

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон:

Свойства простых тел... и соединений элементов находятся в периодической зависимости от вели­чины атомных масс элементов.

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в верти­кальные столбцы - группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюда­лась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий.

Причина состоит в том, что Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома.

После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

Свойства химических элементов и соединений на­ходятся в периодической зависимости от зарядов атомных ядер.

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома.

Эта формулировка объяснила "нарушения" Перио­дического закона.

В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для эле­ментов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химиче­ских элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств и свойств оксидов.

Научное значение периодического закона. Периоди­ческий закон позволил систематизировать свойства хи­мических элементов и их соединений. При составлении периодической системы Менделеев предсказал сущест­вование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойст­ва неоткрытых элементов, что облегчило их открытие

Билет №2

Строение атомов химических элементов на примере элементов второго периода и IV-A группы периодической системы химических элементов Д. И. Менделеева. Закономерности в изменении свойств этих химических элементов и образованных ими простых и сложных веществ (оксидов, гидроксидов) в зависимости от строения их атомов.

При перемещении слева направо вдоль периода металлические свойства элементов стано­вятся все менее ярко выраженными. При перемещении сверху вниз в пределах одной группы элементы, наоборот, обнаруживают все более ярко выраженные металлические свойства. Элементы, расположенные в средней части коротких периодов (2-й и 3-й периоды), как правило, имеют каркасную ковалентнуто структуру, а элементы из правой части этих периодов существуют в виде простых ковалентных молекул.

Атомные радиусы изменяются следующим образом: уменьшаются при перемещении слева направо вдоль периода; увеличиваются при перемещении сверху вниз вдоль группы. При перемещении слева направо по периоду возрастает электроотрицательность, энергия ионизации и сродство к электрону, которые достигают максимума у галогенов. У благородных же газов электроотрицательность равна 0. Изменение сродства к электрону элементов при перемещении сверху вниз вдоль группы не столь характерны, но при этом уменьшается электроотрицательность элементов.

В элементах второго периода заполняются 2s, а затем 2р-орбитали.

Главная подгруппа IV группы периодической системы химических элементов Д. М. Менделеева содержит углерод С, кремний Si, германий Ge, олово Sn и свинец Pb. Внешний электронный слой этих элементов содержит 4 электрона (конфигурация s 2 p 2). Поэтому элементы подгруппы углерода должны иметь некото­рые черты сходства. В частности, их высшая степень окисления одинакова и равна +4.

А чем обусловлено различие в свойствах элементов подгруппы? Различием энергии ионизации и радиуса их атомов. С увеличением атомного номера свойства элементов закономерно изменяются. Так, углерод и кремний - типичные неметаллы, олово и свинец - металлы. Это проявляется прежде всего в том, что углерод образует простое вещество-неметалл (алмаз), а свинец типичный металл.

Германий занимает промежуточное положение. Согласно строению электронной оболочки атома p-элементы IV группы имеют четные степени окисления: +4, +2, – 4. Фор­мула простейших водородных соединений - ЭН 4 , причем связи Э-Н ковалентны и равноценны вследствие гибридизации s- и р- орбиталей с образованием направленных под тетраэдрическими углами sp 3 -орбиталей.

Ослабление признаков неметаллического элемента означает, что в подгруппе (С-Si-Ge-Sn-Pb) высшая положительная степень окисления +4 становится все менее характерной, а более типичной становится степень окисления +2. Так, если для углеро­да наиболее устойчивы соединения, в которых он имеет степень окисления +4, то для свинца устойчивы соединения, в которых он проявляет степень окисления +2.

А что можно сказать об устойчивости соединений элементов в отрицательной степени окисления -4? По сравнению с неме­таллическими элементами VII-V групп признаки неметалличе­ского элемента р-элементы IV группы проявляют в меньшей степени. Поэтому для элементов подгруппы углерода отрицатель­ная степень окисления нетипична.