Тепловые электрические станции. структура тэс, основные элементы. парогенератор. паровая турбина. конденсатор. ТЭС - это что такое? ТЭС и ТЭЦ: различия

Основной структурной единицей на большинстве электростан­ций является цех . На тепловых станциях различают цеха основно­го, вспомогательного производства и непромышленных хозяйств.

· Цеха основного производства производят продукцию, для выпуска которой создано предприятие. На тепловых станциях основными являются цеха, в которых протекают производственные процессы по превращению химической энергии топлива в тепловую и элек­трическую энергию.

· Цеха вспомогательного производства промышленных предприя­тий, в том числе и электростанций, непосредственно не связаны с изготовлением основной продукции предприятия: они обслу­живают основное производство, способствуют выпуску продук­ции и обеспечивают основному производству необходимые усло­вия для нормальной работы. Эти цеха осуществляют ремонт обо­рудования, снабжение материалами, инструментом, приспособ­лениями, запасными частями, водой (промышленной), различ­ными видами энергии, транспортом и т. п.

· Непромышленными являются хозяйства, продукция и услуги которых не относятся к основной деятельности предприятия. В их функции входит обеспечение и обслуживание бытовых нужд пер­сонала предприятия (жилищные хозяйства, детские учреждения и т.п.).

Производственные структуры тепловой станции определяются соотношением мощности основных агрегатов (турбоагрегатов, па­ровых котлов, трансформаторов) и технологическими связями между ними. Решающим при определении структуры управления является соотношение мощностей и связи между турбинами и котельными агрегатами. На существующих электростанциях сред­ней и малой мощности однородные агрегаты соединяются между собой трубопроводами для пара и воды (пар из котлов собирается в общих сборных магистралях, из которых он распределяется между отдельными котлами). Такую технологическую схему называют централизованной . Широко применяют также секционную схему, при которой турбина с одним или двумя обеспечивающими ее паром котлами, образует секцию электростанции.

  • При таких схемах оборудование распределяется по цехам, объе­диняющим однородное оборудование: в котельном цехе - котель­ные агрегаты со вспомогательным оборудованием; турбинном - турбоагрегаты со вспомогательным оборудованием и т.д. По этому принципу на крупных тепловых электростанциях организуются сле­дующие цеха и лаборатории: топливно-транспортный, котельный, турбинный, электрический (с электротехнической лабораторией), цех (лаборатория) автоматики и теплового контроля, химический (с химической лабораторией), механический (при выполнении ремонта самой электростанцией этот цех становится ремонтно-механическим), ремонтно-строительный.

В настоящее время из-за особенностей технологического про­цесса производства энергии станций с агрегатами мощностью 200...800 МВт и выше применяют блочную схему связей оборудо­вания. На блочных электростанциях турбина, генератор, котел (или два котла) со вспомогательным оборудованием образуют блок; тру­бопроводов, связывающих агрегаты, для пара и воды между блока­ми, нет, резервные котлоагрегаты на электростанциях не устанав­ливаются. Изменение технологической схемы электростанции при­водит к необходимости реорганизации производственной структу­ры управления, в которой основным первичным производствен­ным подразделением является блок.

· Для станций блочного типа наиболее рациональной структурой управления является бесцехо­вая (функциональная) с организацией службы эксплуатации и служ­бы ремонта, возглавляемых начальниками служб - заместителями главного инженера станции. Функциональные отделы подчиняют­ся непосредственно директору станции, а функциональные служ­бы и лаборатории - главному инженеру станции.

· На крупных станциях блочного типа используется промежу­точная структура управления - блочно-цеховая . Котельный и тур­бинный цеха объединяют в один и организуют следующие цеха: топливно-транспортный, химический, тепловой автоматики и измерений, централизованного ремонта и др. При работе станции на газе топливно-транспортный цех не организуется.

Организационно-производственная структура гидроэлектростанций

На ГЭС имеет место как управление отдельными ГЭС, так и ее объединениями, расположенными на одной реке (кана­ле) или просто в каком-либо административном или хозяйствен­ном районе; такие объединения называются каскадными (рис. 23.2).

Организационная структура управления ГЭС:

а - 1-я и 2-я группы; 1 - директор ГЭС; 2 - зам. директора по административ­но-хозяйственной деятельности; 3 - зам. директора по капитальному строитель­ству; 4 - отдел кадров; 5 - главный инженер; 6 - бухгалтерия; 7 - плановый отдел; 8 - отдел гражданской обороны; 2.1 - транспортный участок; 2.2 - отдел материально-технического обеспечения; 2.3 - административно-хозяй­ственный отдел; 2.4 - жилищно-коммунальный отдел; 2.5 - охрана ГЭС; 5.1 - зам. гл. инженера по оперативной работе; 5.2 - начальник электроцеха; 5.3 - начальник турбинного цеха; 5.4 - начальник гидроцеха; 5.5 - производственно-технический отдел; 5.6 - служба связи; 5.7 - инженер по эксплуатации и техни­ке безопасности; 5.2.1 - электротехническая лаборатория; б - 3-я и 4-я группы; 1 - отдел материально-технического снабжения; 2 - производственно-техни­ческий отдел (ПТО); 3 - бухгалтерия; 4 - гидротехнический цех; 5 - элект­ромашинный цех

Организационная структура управления каскадом ГЭС: а - вариант 1; 1 - начальник электроцеха каскада; 2 - начальник турбинного цеха каскада; 3 - начальник гидроцеха каскада; 4 - начальник ПТО; 5 - на­чальник ГЭС-1; 6 - начальник ГЭС-2; 7 - начальник ГЭС-3; 8 - служба связи; 9 - местная служба релейной защиты и автоматики; 10 - инженер-инс­пектор по эксплуатации и технике безопасности; 5.1, 6.1, 7.1 - производствен­ный персонал соответственно ГЭС-1, 2, 3; б - вариант 2; 1 - директор каска­да; 2 - административные подразделения каскада; 3 - главный инженер; 3.1, 3.2, 3.3 - начальник соответственно ГЭС-1, 2, 3; 3.1.1, 3.2.1, 3.3.1 - произ­водственные подразделения, включая оперативный персонал соответственно ГЭС-1, 2, 3

В зависимости от мощности ГЭС и каскадов ГЭС, МВт, по струк­туре управления принято рассматривать шесть групп и столько же каскадов ГЭС:

  • В первых четырех группах применяется в основном цеховая организационная структура управления . На ГЭС и ее каскадах 1-й и 2-й групп предусматриваются, как правило, электрический, тур­бинный и гидротехнический цеха; 3-й и 4-й групп - электротур­бинный и гидротехнический;
  • На ГЭС малой мощности (5-я группа ) при­меняют бесцеховые структуры управления с организацией соот­ветствующих участков;
  • На ГЭС и каскадах мощностью до 25 МВт (6-я группа ) - только оперативно-ремонтный персонал .

При организации каскада ГЭС одна из станций каскада, как правило, наибольшая по мощности, выбирается базовой, на кото­рой размещаются управление каскадом, его отделы и службы, цеха, основные центральные склады и мастерские. При цеховой структу­ре управления каждый цех обслуживает оборудование и сооруже­ния всех ГЭС, входящих в каскад, а персонал находится или на базовой ГЭС, или распределен по станциям каскада. В случаях когда ГЭС каскада расположены на значительном расстоянии друг от друга и соответственно от базовой, необходимо назначать ответ­ственных за работу ГЭС, входящей в каскад.

При объединении в каскад больших по мощности ГЭС целесо­образна централизация только управленческих функций (руководство каскадом, бухгалтерия, снабжение и т.п.). На каждой ГЭС организуются цеха, проводящие полное эксплуатационное и ре­монтное обслуживание. При проведении крупных ремонтных ра­бот, например при капитальном ремонте агрегатов, часть рабочих соответствующего цеха с одной или нескольких ГЭС передается на ту станцию, где это необходимо.

Таким образом, рациональная структура управления в каждом случае принимается исходя из конкретных условий образования каскада. При большом числе ГЭС, входящих в каскад, использу­ется предварительное укрупнение станций, наиболее близко рас­положенных друг к другу, возглавляемых начальником группы ГЭС. Каждая группа самостоятельно ведет эксплуатационное обслужи­вание, включая текущий ремонт оборудования и сооружений.

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

Электроэнергию производят на электростанциях за счет использования энергии, скрытой в различных природных ресурсах. Как видно из табл. 1.2 это происходит в основном на тепловых (ТЭС) и атомных электростанциях (АЭС), работающих по тепловому циклу.

Типы тепловых электростанций

По виду генерируемой и отпускаемой энергии тепловые электростанции разделяют на два основных типа: конденсационные (КЭС), предназначенные только для производства электроэнергии, и теплофикационные, или теплоэлектроцентрали (ТЭЦ). Конденсационные электрические станции, работающие на органическом топливе, строят вблизи мест его добычи, а теплоэлектроцентрали размещают вблизи потребителей тепла – промышленных предприятий и жилых массивов. ТЭЦ также работают на органическом топливе, но в отличие от КЭС вырабатывают как электрическую, так и тепловую энергию в виде горячей воды и пара для производственных и теплофикационных целей. К основным видам топлива этих электростанций относятся: твердое – каменные угли, антрацит, полуантрацит, бурые угли, торф, сланцы; жидкое – мазут и газообразное – природный, коксовый, доменный и т.п. газ.

Таблица 1.2. Выработка электроэнергии в мире

Показатель

2010 г. (прогноз)

Доля общей выработки по электростанциям, % АЭС

ТЭС на газе

ТЭС на мазуте

Выработка электроэнергии по регионам, %

Западная Европа

Восточная Европа Азия и Австралия Америка

Средний Восток и Африка

Установленная мощность электростанций в мире (всего), ГВт

В том числе, % АЭС

ТЭС на газе

ТЭС на мазуте

ТЭС на угле и прочих видах топлива

ГЭС и ЭС на других, возобновляемых, видах топлива

Выработка электроэнергии (суммарная),

млрд. кВт·ч


Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива.

В зависимости от типа теплосиловой установки для привода электрогенератора электростанции подразделяются на паротурбинные (ПТУ), газотурбинные (ГТУ), парогазовые (ПГУ) и электростанции с двигателями внутреннего сгорания (ДЭС).

В зависимости от длительности работы ТЭС в течение года по покрытию графиков энергетических нагрузок, характеризующихся числом часов использования установленной мощностиτ у ст , электростанции принято классифицировать на: базовые (τ у ст > 6000 ч/год); полупиковые (τ у ст = 2000 – 5000 ч/год); пиковые (τ у ст < 2000 ч/год).

Базовыми называют электростанции, несущие максимально возможную постоянную нагрузку в течение большей части года. В мировой энергетике в качестве базовых используют АЭС, высокоэкономические КЭС, а также ТЭЦ при работе по тепловому графику. Пиковые нагрузки покрывают ГЭС, ГАЭС, ГТУ, обладающие маневренностью и мобильностью, т.е. быстрым пуском и остановкой. Пиковые электростанции включаются в часы, когда требуется покрыть пиковую часть суточного графика электрической нагрузки. Полупиковые электростанции при уменьшении общей электрической нагрузки либо переводятся на пониженную мощность, либо выводятся в резерв.

По технологической структуре тепловые электростанции подразделяются на блочные и неблочные. При блочной схеме основное и вспомогательное оборудование паротурбинной установки не имеет технологических связей с оборудованием другой установки электростанции. Для электростанций на органическом топливе при этом к каждой турбине пар подводится от одного или двух соединенных с ней котлов. При неблочной схеме ТЭС пар от всех котлов поступает в общую магистраль и оттуда распределяется по отдельным турбинам.



На конденсационных электростанциях, входящих в крупные энергосистемы, применяются только блочные системы с промежуточным перегревом пара. Неблочные схемы с поперечными связями по пару и воде применяются без промежуточного перегрева.

Принцип работы и основные энергетические характеристики тепловых электростанций

Электроэнергию на электростанциях производят за счет использования энергии, скрытой в различных природных ресурсах (уголь, газ, нефть, мазут, уран и др.), по достаточно простому принципу, реализовывая технологию преобразования энергии. Общая схема ТЭС (см. рис. 1.1) отражает последовательность такого преобразования одних видов энергии в другие и использования рабочего тела (вода, пар) в цикле тепловой электростанции. Топливо (в данном случае уголь) сгорает в котле, нагревает воду и превращает ее в пар. Пар подается в турбины, преобразующие тепловую энергию пара в механическую энергию и приводящие в действие генераторы, вырабатывающие электроэнергию (см. раздел 4.1).

Современная тепловая электростанция – это сложное предприятие, включающее большое количество различного оборудования. Состав оборудования электростанции зависит от выбранной тепловой схемы, вида используемого топлива и типа системы водоснабжения.

Основное оборудование электростанции включает: котельные и турбинные агрегаты с электрическим генератором и конденсатором. Эти агрегаты стандартизованы по мощности, параметрам пара, производительности, напряжению и силе тока и т.д. Тип и количество основного оборудования тепловой электростанции соответствуют заданной мощности и предусмотренному режиму её работы. Существует и вспомогательное оборудование, служащее для отпуска теплоты потребителям и использования пара турбины для подогрева питательной воды котлов и обеспечения собственных нужд электростанции. К нему относится оборудование систем топливоснабжения, деаэрационно-питательной установки, конденсационной установки, теплофикационной установки (для ТЭЦ), систем технического водоснабжения, маслоснабжения, регенеративного подогрева питательной воды, химводоподготовки, распределения и передачи электроэнергии (см. раздел 4).

На всех паротурбинных установках применяется регенеративный подогрев питательной воды, существенно повышающий тепловую и общую экономичность электростанции, поскольку в схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора расход пара в конденсаторе снижается и в результате к.п.д. установки растет.

Тип применяемого парового котла (см. раздел 2) зависит от вида топлива, используемого на электростанции. Для наиболее распространённых топлив (ископаемые угли, газ, мазут, фрезторф) применяются котлы с П-, Т-образной и башенной компоновкой и топочной камерой, разработанной применительно к тому или иному виду топлива. Для топлив с легкоплавкой золой используются котлы с жидким шлакоудалением. При этом достигается высокое (до 90%) улавливание золы в топке и снижается абразивный износ поверхностей нагрева. Из этих же соображений для высокозольных топлив, таких как сланцы и отходы углеобогащения, применяются паровые котлы с четырехходовой компоновкой. На тепловых электростанциях используются, как правило, котлы барабанной или прямоточной конструкции.

Турбины и электрогенераторы согласуются по шкале мощности. Каждой турбине соответствует определенный тип генератора. Для блочных тепловых конденсационных электростанций мощность турбин соответствует мощности блоков, а число блоков определяется заданной мощностью электростанции. В современных блоках используются конденсационные турбины мощностью 150, 200, 300, 500, 800 и 1200 МВт с промежуточным перегревом пара.

На ТЭЦ применяются турбины (см. подраздел 4.2) с противодавлением (типа Р), с конденсацией и производственным отбором пара (типа П), с конденсацией и одним или двумя теплофикационными отборами (типа Т), а также с конденсацией, промышленным и теплофикационными отборами пара (типа ПТ). Турбины типа ПТ также могут иметь один или два теплофикационных отбора. Выбор типа турбины зависит от величины и соотношения тепловых нагрузок. Если преобладает отопительная нагрузка, то в дополнение к турбинам ПТ могут быть установлены турбины типа Т с теплофикационными отборами, а при преобладании промышленной нагрузки – турбины типов ПР и Р с промышленным отбором и противодавлением.

В настоящее время на ТЭЦ наибольшее распространение имеют установки электрической мощностью 100 и 50 МВт, работающие на начальных параметрах 12,7 МПа, 540–560°С. Для ТЭЦ крупных городов созданы установки электрической мощностью 175–185 МВт и 250 МВт (с турбиной Т-250-240). Установки с турбинами Т-250-240 являются блочными и работают при сверхкритических начальных параметрах (23,5 МПа, 540/540°С).

Особенностью работы электрических станций в сети является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, должно полностью соответствовать потребляемой энергии. Основная часть электрических станций работает параллельно в объединенной энергетической системе, покрывая общую электрическую нагрузку системы, а ТЭЦ одновременно и тепловую нагрузку своего района. Есть электростанции местного значения, предназначенные для обслуживания района и не подсоединенные к общей энергосистеме.

Графическое изображение зависимости электропотребления во времени называютграфиком электрической нагрузки . Суточные графики электрической нагрузки (рис.1.5) меняются в зависимости от времени года, дня недели и характеризуются обычно минимальной нагрузкой в ночной период и максимальной нагрузкой в часы пик (пиковая часть графика). Наряду с суточными графиками большое значение имеют годовые графики электрической нагрузки (рис. 1.6), которые строятся по данным суточных графиков.

Графики электрических нагрузок используются при планировании электрических нагрузок электростанций и систем, распределении нагрузок между отдельными электростанциями и агрегатами, в расчетах по выбору состава рабочего и резервного оборудования, определении требуемой установленной мощности и необходимого резерва, числа и единичной мощности агрегатов, при разработке планов ремонта оборудования и определении ремонтного резерва и др.

При работе с полной нагрузкой оборудование электростанции развивает номинальную или максимально длительную мощность (производительность), которая является основной паспортной характеристикой агрегата. На этой наибольшей мощности (производительности) агрегат должен длительно работать при номинальных значениях основных параметров. Одной из основных характеристик электростанции является ее установленная мощность, которая определяется как сумма номинальных мощностей всех электрогенераторов и теплофикационного оборудования с учетом резерва.

Работа электростанции характеризуется также числом часов использования установленной мощности , которое зависит от того, в каком режиме работает электростанция. Для электростанций, несущих базовую нагрузку, число часов использования установленной мощности составляет 6000–7500 ч/год, а для работающих в режиме покрытия пиковых нагрузок – менее 2000–3000 ч/год.

Нагрузку, при которой агрегат работает с наибольшим к.п.д., называют экономической нагрузкой. Номинальная длительная нагрузка может быть равна экономической. Иногда возможна кратковременная работа оборудования с нагрузкой на 10–20% выше номинальной при более низком к.п.д. Если оборудование электростанции устойчиво работает с расчетной нагрузкой при номинальных значениях основных параметров или при изменении их в допустимых пределах, то такой режим называется стационарным.

Режимы работы с установившимися нагрузками, но отличающимися от расчетных, или с неустановившимися нагрузками называют нестационарными или переменными режимами. При переменных режимах одни параметры остаются неизменными и имеют номинальные значения, другие – изменяются в определенных допустимых пределах. Так, при частичной нагрузке блока давление и температура пара перед турбиной могут оставаться номинальными, в то время как вакуум в конденсаторе и параметры пара в отборах изменятся пропорционально нагрузке. Возможны также нестационарные режимы, когда изменяются все основные параметры. Такие режимы имеют место, например, при пуске и остановке оборудования, сбросе и набросе нагрузки на турбогенераторе, при работе на скользящих параметрах и называются нестационарными.

Тепловая нагрузка электростанции используется для технологических процессов и промышленных установок, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд. Для производственных целей обычно требуется пар давлением от 0,15 до 1,6 МПа. Однако, чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды ТЭЦ подает обычно горячую воду с температурой от 70 до 180°С.

Тепловая нагрузка, определяемая расходом тепла на производственные процессы и бытовые нужды (горячее водоснабжение), зависит от наружной температуры воздуха. В условиях Украины летом эта нагрузка (так же как и электрическая) меньше зимней. Промышленная и бытовая тепловые нагрузки изменяются в течение суток, кроме того, среднесуточная тепловая нагрузка электростанции, расходуемая на бытовые нужды, меняется в рабочие и выходные дни. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района приведены на рис 1.7 и 1.8.

Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, одни из которых оценивают совершенство тепловых процессов (к.п.д., расходы теплоты и топлива), а другие характеризуют условия, в которых работает ТЭС. Например, на рис. 1.9 (а ,б ) приведены примерные тепловые балансы ТЭЦ и КЭС.

Как видно из рисунков, комбинированная выработка электрической и тепловой энергии обеспечивает значительное повышение тепловой экономичности электростанций благодаря уменьшению потерь теплоты в конденсаторах турбин.

Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты.

Тепловые электростанции имеют как преимущества, так и недостатки в сравнении с другими типами электростанций. Можно указать следующие достоинства ТЭС:

  • относительно свободное территориальное размещение, связанное с широким распространением топливных ресурсов;
  • способность (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;
  • площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и ГЭС;
  • ТЭС сооружаются гораздо быстрее, чем ГЭС или АЭС, а их удельная стоимость на единицу установленной мощности ниже по сравнению с АЭС.
  • В то же время ТЭС обладают крупными недостатками:
  • для эксплуатации ТЭС обычно требуется гораздо больше персонала, чем для ГЭС, что связано с обслуживанием весьма масштабного по объему топливного цикла;
  • работа ТЭС зависит от поставок топливных ресурсов (уголь, мазут, газ, торф, горючие сланцы);
  • переменность режимов работы ТЭС снижают эффективность, повышают расход топлива и приводят к повышенному износу оборудования;
  • существующие ТЭС характеризуются относительно низким к.п.д. (в основном до 40%);
  • ТЭС оказывают прямое и неблагоприятное воздействие на окружающую среду и не являются эколигически «чистыми» источниками электроэнергии.
  • Наибольший ущерб экологии окружающих регионов приносят электростанции, работающие на угле, особенно высокозольном. Среди ТЭС наиболее «чистыми» являются станции, использующие в своем технологическом процессе природный газ.

По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200–250 млн. тонн золы, более 60 млн. тонн сернистого ангидрида, большое количество оксидов азота и углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), поглощая большое количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода). Тем не менее, хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также меньшая стоимость их сооружения приводят к тому, что на ТЭС приходится основная часть мирового производства электроэнергии. По этой причине совершенствованию технологий ТЭС и снижению отрицательного влияния их на окружающую среду во всем мире уделяется большое внимание (см. раздел 6).

Энергию, скрытую в органическом топливе - угле, нефти или природном газе, невозможно сразу получить в виде электричества. Топливо сначала сжигают. Выделившаяся теплота нагревает воду, превращает её в пар. Пар вращает турбину , а турбина - ротор генератора , который генерирует, т. е. вырабатывает, электрический ток.

Схема работы конденсационной электростанции.

Славянская ТЭС. Украина, Донецкая область.

Весь этот сложный, многоступенчатый процесс можно наблюдать на тепловой электрической станции (ТЭС), оборудованной энергетическими машинами, преобразующими энергию, скрытую в органическом топливе (горючих сланцах, угле, нефти и продуктах её переработки, природном газе), в электрическую энергию. Основные части ТЭС - котельная установка, паровая турбина и электрогенератор.

Котельная установка - комплекс устройств для получения водяного пара под давлением. Она состоит из топки, в которой сжигается органическое топливо, топочного пространства, по которому продукты горения проходят в дымовую трубу, и парового котла, в котором кипит вода. Часть котла, во время нагрева соприкасающаяся с пламенем, называется поверхностью нагрева.

Котлы бывают 3 типов: дымогарные, водотрубные и прямоточные. Внутри дымогарных котлов помещен ряд трубок, по которым продукты горения проходят в дымовую трубу. Многочисленные дымогарные трубки имеют огромную поверхность нагрева, вследствие чего в них хорошо используется энергия топлива. Вода в этих котлах находится между дымогарными трубками.

В водотрубных котлах - все наоборот: по трубкам пускают воду, а между трубками горячие газы. Основные части котла - топка, кипятильные трубки, паровой котел и пароперегреватель. В кипятильных трубках идет процесс парообразования. Образующийся в них пар поступает в паровой котел, где и собирается в верхней его части, над кипящей водой. Из парового котла пар проходит в пароперегреватель и там дополнительно нагревается. Топливо в этот котел забрасывают через дверцу, а воздух, необходимый для горения топлива, подают через другую дверцу в поддувало. Горячие газы поднимаются вверх и, огибая перегородки, проходят путь, указанный на схеме (см. рис.).

В прямоточных котлах воду нагревают в длинных трубах-змеевиках. Вода подается в эти трубы насосом . Проходя через змеевик, она полностью испаряется, а образовавшийся пар перегревается до требуемой температуры и затем выходит из змеевиков.

Котельные установки, работающие с промежуточным перегревом пара, являются составной частью установки, называемой энергоблоком «котел - турбина».

В перспективе, например, для использования угля Канско-Ачинского бассейна будут сооружены крупные тепловые электростанции мощностью до 6400 МВт с энергетическими блоками по 800 МВт, где котельные установки будут вырабатывать 2650 т пара в 1 ч с температурой до 565 °C и давлением 25 МПа.

Котельная установка вырабатывает пар высокого давления, который идет в паровую турбину - главный двигатель тепловой электростанции. В турбине пар расширяется, давление его падает, а скрытая энергия преобразуется в механическую. Паровая турбина приводит в движение ротор генератора, вырабатывающего электрический ток.

В крупных городах чаще всего строят теплоэлектроцентрали (ТЭЦ), а в районах с дешевым топливом - конденсационные электростанции (КЭС).

ТЭЦ - это тепловая электростанция, вырабатывающая не только электрическую энергию, но и теплоту в виде горячей воды и пара. Пар, покидающий паровую турбину, содержит в себе еще много тепловой энергии. На ТЭЦ эту теплоту используют двояко: либо пар после турбины направляется потребителю и обратно на станцию не возвращается, либо он передает теплоту в теплообменнике воде, которая направляется потребителю, а пар возвращается обратно в систему. Поэтому ТЭЦ имеет высокий КПД, достигающий 50–60%.

Различают ТЭЦ отопительного и промышленного типов. Отопительные ТЭЦ обогревают жилые и общественные здания и снабжают их горячей водой, промышленные - снабжают теплотой промышенные предприятия. Передача пара от ТЭЦ осуществляется на расстояния до нескольких километров, а передача горячей воды - до 30 и более километров. Вследствие этого теплоэлектроцентрали строятся неподалеку от крупных городов.

Огромное количество тепловой энергии направляется на теплофикацию или централизованное отопление наших квартир, школ, учреждений. До Октябрьской революции централизованного теплоснабжения домов не было. Дома отапливались печами, в которых сжигалось много дров и угля. Теплофикаций в нашей стране началась в первые годы советской власти, когда по плану ГОЭЛРО (1920 г.) приступили к строительству крупных ТЭС. Суммарная мощность ТЭЦ в начале 1980‑х гг. превысила 50 млн кВт.

Но основная доля электроэнергии, которую вырабатывают тепловые электростанции, приходится на конденсационные электростанции (КЭС). У нас их чаще называют государственными районными электрическими станциями (ГРЭС). В отличие от ТЭЦ, где теплота отработанного в турбине пара используется для отопления жилых и производственных зданий, на КЭС отработанный в двигателях (паровых машинах, турбинах) пар превращается конденсаторами в воду (конденсат), направляемую обратно в котлы для повторного использования. КЭС сооружаются непосредственно у источников водоснабжения: у озера, реки, моря. Теплота, выводимая из электростанции с охлаждающей водой, безвозвратно теряется. КПД КЭС не превышает 35–42%.

На высокую эстакаду день и ночь по строгому графику подают вагоны с мелко раздробленным углем. Особый разгрузчик опрокидывает вагоны, и топливо ссыпается в бункер. Мельницы тщательно размалывают его в топливный порошок, и он вместе с воздухом влетает в топку парового котла. Языки пламени плотно охватывают пучки трубок, вода в которых закипает. Образуется водяной пар. По трубам - паропроводам - пар направляется к турбине и через сопла бьет в лопатки ротора турбины. Отдав энергию ротору, отработанный пар идет в конденсатор, охлаждается и превращается в воду. Насосы подают её обратно в котел. А энергия продолжает свое движение от ротора турбины к ротору генератора. В генераторе происходит её последнее превращение: она становится электричеством. На этом заканчивается энергетическая цепочка КЭС.

В отличие от ГЭС тепловые электростанции можно построить в любом месте, а тем самым приблизить источники получения электроэнергии к потребителю и расположить тепловые электростанции равномерно по территории экономических районов страны. Преимущество ТЭС состоит и в том, что они работают практически на всех видах органического топлива - углях, сланцах, жидком топливе, природном газе.

К крупнейшим конденсационным ТЭС в относятся Рефтинская (Свердловская область), Запорожская (Украина), Костромская, Углегорская (Донецкая область, Украина). Мощность каждой из них превышает 3000 МВт.

Наша страна - пионер строительства тепловых электростанций, энергию которым дает атомный реактор (см.