Такой разный озон: пять фактов о газе, который может спасать и убивать. Химия соединений

Впервые ученые узнали о существовании неизвестного им газа, когда начали экспериментировать с электростатическими машинами. Случилась это в 17 веке. Но начали изучать новый газ лишь в конце следующего столетия. В 1785 голландский физик Мартин ван Марум получил озон, пропуская через кислород электрические искры. Название же озон появилось лишь в 1840; его придумал швейцарский химик Кристиан Шенбейн, произведя его от греческого ozon – пахнущий. По химическому составу этот газ не отличался от кислорода, но был значительно агрессивнее. Так, он мгновенно окислял бесцветный иодид калия с выделением бурого иода; эту реакцию Шенбейн использовал для определения озона по степени посинения бумаги, пропитанной раствором иодида калия и крахмала. Даже малоактивные при комнатной температуре ртуть и серебро в присутствии озона окисляются.

Оказалось, что молекулы озона, как и кислорода, состоят только из атомов кислорода, только не из двух, а из трех. Кислород О2 и озон О3 – единственный пример образования одним химическим элементом двух газообразных (при обычных условиях) простых веществ. В молекуле О3 атомы расположены под углом, поэтому эти молекулы полярны. Получается озон в результате «прилипания» к молекулам О2 свободных атомов кислорода, которые образуются из молекул кислорода под действием электрических разрядов, ультрафиолетовых лучей, гамма-квантов, быстрых электронов и других частиц высокой энергии. Озоном всегда пахнет около работающих электрических машин, в которых «искрят» щетки, около бактерицидных ртутно-кварцевых ламп, которые излучают ультрафиолет. Атомы кислорода выделяются и в ходе некоторых химических реакций. Озон образуется в малых количествах при электролизе подкисленной воды, при медленном окислении на воздухе влажного белого фосфора, при разложении соединений с высоким содержанием кислорода (KMnO4, K2Cr2O7 и др.), при действии на воду фтора или на пероксид бария концентрированной серной кислоты. Атомы кислорода всегда присутствуют в пламени, поэтому если направить струю сжатого воздуха поперек пламени кислородной горелки, в воздухе обнаружится характерный запах озона.
Реакция 3O2 → 2O3 сильно эндотермичная: для получения 1 моль озона надо затратить 142 кДж. Обратная реакция идет с выделением энергии и осуществляется очень легко. Соответственно озон неустойчив. В отсутствие примесей газообразный озон медленно разлагается при температуре 70° С и быстро – выше 100° С. Скорость разложения озона значительно увеличивается в присутствии катализаторов. Ими могут быть и газы (например, оксид азота, хлор), и многие твердые вещества (даже стенки сосуда). Поэтому чистый озон получить трудно, а работать с ним опасно из-за возможности взрыва.

Не удивительно, что в течение многих десятилетий после открытия озона неизвестны были даже основные его физические константы: долго никому не удавалось получить чистый озон. Как писал в своем учебнике Основы химии Д.И.Менделеев, «при всех способах приготовления газообразного озона содержание его в кислороде всегда незначительно, обыкновенно лишь несколько десятых долей процента, редко 2%, и только при очень пониженной температуре оно достигает 20%». Лишь в 1880 французские ученые Ж.Готфейль и П.Шаппюи получали озон из чистого кислорода при температуре минус 23° С. Оказалось, что в толстом слое озон имеет красивую синюю окраску. Когда охлажденный озонированный кислород медленно сжали, газ стал темно-синим, а после быстрого сброса давления температура еще более понизилась и образовались капли жидкого озона темно-фиолетового цвета. Если же газ не охлаждали или сжимали быстро, то озон мгновенно, с желтой вспышкой, переходил в кислород.

Позднее разработали удобный метод синтеза озона. Если подвергнуть электролизу концентрированный раствор хлорной, фосфорной или серной кислоты с охлаждаемым анодом из платины или из оксида свинца(IV), то выделяющийся на аноде газ будет содержать до 50% озона. Были уточнены и физические константы озона. Он сжижается намного легче кислорода – при температуре –112° С (кислород – при –183° С). При –192,7° С озон затвердевает. Твердый озон имеет сине-черный цвет.

Опыты с озоном опасны. Газообразный озон способен взрываться, если его концентрация в воздухе превысит 9%. Еще легче взрываются жидкий и твердый озон, особенно при контакте с окисляющимися веществами. Озон можно хранить при низких температурах в виде растворов во фторированных углеводородах (фреонах). Такие растворы имеют голубой цвет.

Химические свойства озона.

Для озона характерна чрезвычайно высокая реакционная способность. Озон – один из сильнейших окислителей и уступает в этом отношении только фтору и фториду кислорода OF2. Действующее начало озона как окислителя – атомарный кислород, который образуется при распаде молекулы озона. Поэтому, выступая в качестве окислителя, молекула озона, как правило, «использует» только один атом кислорода, а два других выделяются в виде свободного кислорода, например, 2KI + O3 + H2O → I2 + 2KOH + O2. Так же происходит окисление многих других соединений. Однако бывают и исключения, когда молекула озона использует для окисления все три имеющиеся у нее атома кислорода, например, 3SO2 + O3 → 3SO3; Na2S + O3 → Na2SO3.

Очень важное отличие озона от кислорода в том, что озон проявляет окислительные свойства уже при комнатной температуре. Например, PbS и Pb(OH)2 в обычных условиях не реагируют с кислородом, тогда как в присутствии озона сульфид превращается в PbSO4, а гидроксид – в PbO2. Если в сосуд с озоном налить концентрированный раствор аммиака, появится белый дым – это озон окислил аммиак с образованием нитрита аммония NH4NO2. Особенно характерна для озона способность «чернить» серебряные изделия с образованием AgO и Ag2O3.

Присоединив один электрон и превратившись в отрицательный ион О3–, молекула озона становится более стабильной. Содержащие такие анионы «озонокислые соли» или озониды были известны давно – их образуют все щелочные металлы, кроме лития, причем устойчивость озонидов растет от натрия к цезию. Известны и некоторые озониды щелочноземельных металлов, например, Са(О3)2. Если направить на поверхность твердой сухой щелочи струю газообразного озона, то образуется оранжево-красная корка, содержащая озониды, например, 4КОН + 4О3 → 4КО3 + О2 + 2Н2О. При этом твердая щелочь эффективно связывает воду, что предохраняет озонид от немедленного гидролиза. Однако при избытке воды озониды бурно разлагаются: 4КО3+ 2Н2О → 4КОН + 5О2. Разложение идет и при хранении: 2КО3 → 2КО2 + О2. Озониды хорошо растворимы в жидком аммиаке, что позволило выделить их в чистом виде и изучить их свойства.

Органические, вещества, с которыми озон соприкасается, он обычно разрушает. Так, озон, в отличие от хлора, способен расщеплять бензольное кольцо. При работе с озоном нельзя использовать резиновые трубки и шланги – они моментально «прохудятся». Реакции озона с органическими соединениями идут с выделением большого количества энергии. Например, эфир, спирт, вата, смоченная скипидаром, метан и многие другие вещества самовоспламеняются при соприкосновении с озонированным воздухом, а смешение озона с этиленом приводит к сильному взрыву.

Применение озона.

Озон не всегда «сжигает» органические вещества; в ряде случаев удается провести специфические реакции с сильно разбавленным озоном. Например, при озонировании олеиновой кислоты (она в больших количествах содержится в растительных маслах) образуется азелаиновая кислота НООС(СН2)7СООН, которую используют для получения высококачественных смазочных масел, синтетических волокон и пластификаторов для пластмасс. Аналогично получают адипиновую кислоту, которую используют при синтезе найлона. В 1855 Шенбейн открыл реакцию с озоном непредельных соединений, содержащих двойные связи С=С, но только в 1925 немецкий химик Х.Штаудингер установил механизм этой реакции. Молекула озона присоединяется к двойной связи с образованием озонида – на этот раз органического, причем на место одной из связей С=С встает атом кислорода, а на место другой – группировка –О–О–. Хотя некоторые органические озониды выделены в чистом виде (например, озонид этилена), эту реакцию обычно проводят в разбавленном растворе, так как в свободном виде озониды – очень неустойчивые взрывчатые вещества. Реакция озонирования непредельных соединений пользуется у химиков-органиков большим почетом; задачи с этой реакцией часто предлагают даже на школьных олимпиадах. Дело в том, что при разложении озонида водой образуются две молекулы альдегида или кетона, которые легко идентифицировать и далее установить строение исходного непредельного соединения. Таким образом химики еще в начале 20 века установили строение многих важных органических соединений, в том числе природных, содержащих связи С=С.

Важная область применения озона – обеззараживание питьевой воды. Обычно воду хлорируют. Однако некоторые примеси в воде под действием хлора превращаются соединения с очень непpиятым запахом. Поэтому уже давно предложено заменить хлор озоном. Озонированная вода не приобретает постороннего запаха или вкуса; при полном окислении озоном многих органических соединений образуются только углекислый газ и вода. Очищают озоном и сточные воды. Продукты окисления озоном даже таких загрязнителей как фенолы, цианиды, повеpхностно-активные вещества, сульфиты, хлоpамины, представляют собой безвредные соединения без цвета и запаха. Избыток же озона довольно быстро распадается с образованием кислорода. Однако озонирование воды обходится дороже, чем хлорирование; кроме того, озон нельзя перевозить, и он должен производиться на месте использования.

Озон в атмосфере.

Озона в атмосфере Земли немного – 4 млрд. тонн, т.е. в среднем всего 1 мг/м3. Концентрация озона растет с удалением от поверхности Земли и достигает максимума в стратосфере, на высоте 20–25 км – это и есть «озоновый слой». Если весь озон из атмосферы собрать у поверхности Земли при нормальном давлении, получится слой толщиной всего около 2–3 мм. И вот такие малые количества озона в воздухе фактически обеспечивают жизнь на Земле. Озон создает «защитный экран», не пропускающий к поверхности Земли жесткие ультрафиолетовые солнечные лучи, губительные для всего живого.

В последние десятилетия большое внимание уделяется появлению так называемых «озоновых дыр» – областях со значительно уменьшенным содержанием стратосферного озона. Через такой «прохудившийся» щит до поверхности Земли доходит более жесткое ультрафиолетовое излучение Солнца. Поэтому ученые давно следят за озоном в атмосфере. В 1930 английский геофизик С.Чепмен для объяснения постоянной концентрации озона в стратосфере предложил схему из четырех реакций (эти реакции получили название цикла Чепмена, в них М означает любой атом или молекулу, которые уносят избыточную энергию):

О2 → 2О
О + О + М → О2 + М
О + О3 → 2О2
О3 → О2 + О.

Первая и четвертая реакции этого цикла – фотохимические, они идут под действием солнечной радиации. Для распада молекулы кислорода на атомы требуется излучение с длиной волны менее 242 нм, тогда как озон распадается при поглощении света в области 240–320 нм (последняя реакция как раз и защищает нас от жесткого ультрафиолета, так как кислород в этой спектральной области не поглощает). Остальные две реакции термические, т.е. идут без действия света. Очень важно, что третья реакция, приводящая к исчезновению озона, имеет энергию активации; это означает, что скорость такой реакции может увеличиваться под действием катализаторов. Как выяснилось, основной катализатор распада озона – оксид азота NO. Он образуется в верхних слоях атмосферы из азота и кислорода под действием наиболее жесткой солнечной радиации. Попадая в озоносферу, он вступает в цикл из двух реакций O3 + NO → NO2 + O2, NO2 + O → NO + O2, в результате которой его содержание в атмосфере не меняется, а стационарная концентрация озона снижается. Существуют и другие циклы, приводящие к снижению содержания озона в стратосфере, например, с участием хлора:

Cl + O3 → ClO + O2
ClO + O → Cl + O2.

Разрушают озон также пыль и газы, которые в большом количестве попадают в атмосферу при извержении вулканов. В последнее время возникло предположение, что озон также эффективно разрушает водород, выделяющийся из земной коры. Совокупность всех реакций образования и распада озона приводит к тому, что среднее время жизни молекулы озона в стратосфере составляет около трех часов.

Предполагают, что помимо природных, существуют и искусственные факторы, влияющие на озоновый слой. Хорошо известный пример – фреоны, которые являются источниками атомов хлора. Фреоны – это углеводороды, в которых атомы водорода замещены атомами фтора и хлора. Их используют в холодильной технике и для заполнения аэрозольных баллончиков. В конечном счете фреоны попадают в воздух и медленно поднимаются с потоками воздуха все выше и выше, достигая, наконец, озонового слоя. Разлагаясь под действием солнечной радиации, фреоны сами начинают каталитически разлагать озон. Пока не известно в точности, в какой степени именно фреоны повинны в «озоновых дырах», и, тем не менее, уже давно принимают меры по ограничению их применения.

Как показывают расчеты, через 60–70 лет концентрация озона в стратосфере может уменьшиться на 25%. И одновременно увеличится концентрации озона в приземном слое – тропосфере, что тоже плохо, так как озон и продукты его превращений в воздухе ядовиты. Основной источник озона в тропосфере – перенос с массами воздуха стратосферного озона в нижние слои. Ежегодно в приземный слой озона поступает примерно 1,6 млрд. тонн. Время жизни молекулы озона в нижней части атмосферы значительно выше – более 100 суток, поскольку в приземном слое меньше интенсивность ультрафиолетового солнечного излучения, разрушающего озон. Обычно озона в тропосфере очень мало: в чистом свежем воздухе его концентрация составляет в среднем всего 0,016 мкг/л. Концентрация озона в воздухе зависит не только от высоты, но и от местности. Так, над океанами озона всегда больше, чем над сушей, так как там озон распадается медленнее. Измерения в Сочи показали, что воздух у морского побережья содержит на 20% больше озона, чем в лесу в 2 км от берега.

Современные люди вдыхают значительно больше озона, чем их предки. Основная причина этого – увеличение количества метана и оксидов азота в воздухе. Так, содержание метана в атмосфере постоянно растет, начиная с середины 19 века, когда началось использование природного газа. В загрязненной оксидами азота атмосфере метан вступает в сложную цепочку превращений с участием кислорода и паров воды, итог которой можно выразить уравнением CH4 + 4O2 → HCHO + H2O + 2O3. В роли метана могут выступать и другие углеводороды, например, содержащиеся в выхлопных газах автомобилей при неполном сгорании бензина. В результате в воздухе крупных городов за последние десятилетия концентрация озона выросла в десятки раз.

Всегда считалось, что во время грозы концентрация озона в воздухе резко увеличивается, так как молнии способствуют превращению кислорода в озон. На самом деле увеличение незначительно, причем оно происходит не во время грозы, а за несколько часов до нее. Во время же грозы и в течение нескольких часов после нее концентрация озона снижается. Объясняется это тем, что перед грозой происходит сильное вертикальное перемешивание воздушных масс, так что дополнительное количество озона поступает из верхних слоев. Кроме того, перед грозой увеличивается напряженность электрического поля, и создаются условия для образования коронного разряда на остриях различных предметов, например, кончиков ветвей. Это также способствует образованию озона. А затем при развитии грозового облака под ним возникают мощные восходящие потоки воздуха, которые и снижают содержание озона непосредственно под облаком.
Интересен вопрос о содержании озона в воздухе хвойных лесов. Например, в Курсе неорганической химии Г.Реми можно прочитать, что «озонированный воздух хвойных лесов» – выдумка. Так ли это? Ни одно растение озон, конечно, не выделяет. Но растения, особенно хвойные, выделяют в воздух множество летучих органических соединений, в том числе ненасыщенных углеводородов класса терпенов (их много в скипидаре). Так, в жаркий день сосна выделяет в час 16 мкг терпенов на каждый грамм сухой массы хвои. Терпены выделяют не только хвойные, но и некоторые лиственные деревья, среди которых – тополь и эвкалипт. А некоторые тропические деревья способны выделить в час 45 мкг терпенов на 1 г сухой массы листьев. В результате в сутки один гектар хвойного леса может выделить до 4 кг органических веществ, лиственного – около 2 кг. Покрытая лесом площадь Земли составляет миллионы гектаров, и все они выделяют в год сотни тысяч тонн различных углеводородов, в том числе и терпенов. А углеводороды, как это было показано на примере метана, под действием солнечной радиации и в присутствии других примесей способствуют образованию озона. Как показали опыты, терпены в подходящих условиях действительно очень активно включаются в цикл атмосферных фотохимических реакций с образованием озона. Так что озон в хвойном лесу – вовсе не выдумка, а экспериментальный факт.

Озон и здоровье.

Как приятно прогуляться после грозы! Воздух чист и свеж, его бодрящие струи, кажется, без всяких усилий сами втекают в легкие. «Озоном пахнет, – часто говорят в таких случаях. – Очень полезно для здоровья». Так ли это?

Когда-то озон безусловно считали полезным для здоровья. Но если его концентрация превышает определенный порог, он может вызывать массу неприятных последствий. В зависимости от концентрации и времени вдыхания озон вызывает изменения в легких, раздражение слизистых глаз и носа, головную боль, головокружение, снижение кровяного давления; озон уменьшает сопротивляемость организма бактериальным инфекциям дыхательных путей. Предельно допустимая его концентрация в воздухе составляет всего 0,1 мкг/л, а это означает, что озон намного опаснее хлора! Если несколько часов провести в помещении при концентрации озона всего лишь 0,4 мкг/л, могут появиться загрудинные боли, кашель, бессонница, снижается острота зрения. Если долго дышать озоном при концентрации больше 2 мкг/л, последствия могут быть более тяжелыми – вплоть до оцепенения и упадка сердечной деятельности. При содержании озона 8–9 мкг/л через несколько часов происходит отек легких, что чревато смертельным исходом. А ведь такие ничтожные количества вещества обычно с трудом поддаются анализу обычными химическими методами. К счастью, человек чувствует присутствие озона уже при очень малых его концентрациях – примерно 1 мкг/л, при которых иодкрахмальная бумажка еще и не собирается синеть. Одним людям запах озона в малых концентрациях напоминает запах хлора, другим – сернистого газа, третьим – чеснока.

Ядовит не только сам озон. С его участием в воздухе образуется, например, пероксиацетилнитрат (ПАН) СН3–СО–ООNО2 – вещество, оказывающее сильнейшее раздражающее, в том числе слезоточивое, действие, затрудняющее дыхание, а в более высоких концентрациях вызывающее паралич сердца. ПАН – один из компонентов образующегося летом в загрязненном воздухе так называемого фотохимического смога (это слово образовано от английского smoke – дым и fog – туман). Концентрация озона в смоге может достигать 2 мкг/л, что в 20 раз больше предельно допустимой. Следует также учесть, что совместное действие озона и оксидов азота в воздухе в десятки раз сильнее, чем каждого вещества порознь. Не удивительно, что последствия возникновения такого смога в больших городах могут быть катастрофическими, особенно если воздух над городом не продувается «сквозняками» и образуется застойная зона. Так, в Лондоне в 1952 от смога в течение нескольких дней погибло более 4000 человек. А смог в Нью-Йорке в 1963 убил 350 человек. Аналогичные истории были в Токио, других крупных городах. Страдают от атмосферного озона не только люди. Американские исследователи показали, например, что в областях с повышенным содержанием озона в воздухе время службы автомобильных шин и других изделий из резины значительно уменьшается.
Как уменьшить содержание озона в приземном слое? Снизить поступление в атмосферу метана вряд ли реалистично. Остается другой путь – уменьшить выбросы оксидов азота, без которых цикл реакций, приводящих к озону, идти не может. Путь это тоже непростой, так как оксиды азота выбрасываются не только автомобилями, но и (главным образом) тепловыми электростанциями.

Источники озона – не только на улице. Он образуется в рентгеновских кабинетах, в кабинетах физиотерапии (его источник – ртутно-кварцевые лампы), при работе копировальной техники (ксероксов), лазерных принтеров (здесь причина его образования – высоковольтный разряд). Озон – неизбежный спутник производства пергидроля, аргоно-дуговой сварки. Для уменьшения вредного действия озона необходимо оборудование вытяжки у ультрафиолетовых ламп, хорошее проветривание помещения.

И все же вряд ли правильно считать озон безусловно вредным для здоровья. Все зависит от его концентрации. Как показали исследования, свежий воздух очень слабо светится в темноте; причина свечения – реакции окисления с участием озона. Свечение наблюдали и при встряхивании воды в колбе, в которую был предварительно напущен озонированный кислород. Это свечение всегда связано с присутствием в воздухе или воде небольших количеств органических примесей. При смешении свежего воздуха с выдыхаемым человеком интенсивность свечения повышалась в десятки раз! И это не удивительно: в выдыхаемом воздухе обнаружены микропримеси этилена, бензола, уксусного альдегида, формальдегида, ацетона, муравьиной кислоты. Они-то и «высвечиваются» озоном. В то же время «несвежий», т.е. полностью лишенный озона, хотя и очень чистый, воздух свечения не вызывает, а человек его ощущает как «затхлый». Такой воздух можно сравнить с дистиллированной водой: она очень чистая, практически не содержит примесей, а пить ее вредно. Так что полное отсутствие в воздухе озона, по-видимому, тоже неблагоприятно для человека, так как увеличивает содержание в нем микроорганизмов, приводит к накоплению вредных веществ и неприятных запахов, которые озон разрушает. Таким образом, становится понятной необходимость регулярного и длительного проветривания помещений, даже если в нем нет людей: ведь попавший в комнату озон долго в ней не задерживается – частично он распадается, а в значительной степени оседает (адсорбируется) на стенках и других поверхностях. Сколько должно быть озона в помещении, пока сказать трудно. Однако в минимальных концентрациях озон, вероятно, необходим и полезен.

Илья Леенсон


1. Что мы знаем об ОЗОНЕ?

Озон (от греческого ozon - пахнущий) - газ голубого цвета с резким запахом, сильный окислитель. Озон аллотроп кислорода. Молекулярная формула О3. Тяжелее кислорода в 2,5 раза. Используется для обеззараживания воды, продуктов питания и воздуха.

Технологии

Основываясь на технологии коронического разряда озона, был разработан многофункциональный анионный озонатор Green World, который использует озон для дезинфекции и стериализации.

Характеристики химического элемента озона

Озон, научное название которого О3, получается в процессе соединения трех атомов кислорода.Обладает высокими окислительными функциями, которые эффективны при дезинфекции и стеарилизации. Он способен уничтожить большинство бактерий в воде и воздухе. Его считают эффективным дезинфектором и антисептиком. Озон является важным компонентом атмосферы. В нашей атмосфере содержится 0.01ppm-0.04ppm озона, который балансирует уровень бактерий в природе. Озон также образуется в природе при разрядах молнии во время грозы. Во время электрического разряда молнии появляется приятный сладкий запах, который мы называем свежим воздухом.

Молекулы озона неустойчивы и очень быстро распадаются на молекулы кислорода. Благодаря этому качеству озон является ценным газом и очистителем воды. Молекулы озона соединяются с молекулами других веществ и распадаются, в итоге он окисляет органические соединения, превращая их в безвредные углекислый газ и воду. По причине того, что озон легко распадается на молекулы кислорода, он значительно менее токсичен, чем другие дезинфекционные вещества, такие как хлор. Эго твкже называют «самый чистый окислитель и дезинфикатор».

Свойства озона - убивает микроорганизмы

1. убивает бактерии

а) убивает большую часть коли-бактерий и стафилококков в воздухе

б) убивает 99.7% коли-бактерий и 99.9% стафилококков на поверхности предметов

в) убивает 100% of коли-бактерий, стафилококков и микробы группы сальмонелла в фосфатных соединениях

г) убивает 100% of коли-бактерий в воде

2. уничтожает споры бактерий

а) уничтожает brevibacteiumspores

б) способность уничтожать бактерии в воздухе

в) убивает 99.999% brevibacteiumspores в воде

3. разрушает вирусы

а) разрушает 99.99% HBsAg и 100% HAAg

б) разрушает вирус гриппа в воздухе

в) разрушает PVI и вирус Геппатита А в воде в течении нескольких секунд или минут

г) разрушает вирус SA-11 в воде

д) когда концентрация озона в сыворотке крови достигает 4мг/л, он способен разрушить HIV в 106cd50/ml

а) убивает 100% aspergillusversicolor и penicillium

б) убивает 100% aspergillusniger, fusariumoxysporumf.sp.melonogea и fusariumoxysporumf.sp. lycopersici

в) убивает aspergillus niger и candida bacteria

2. Как образуется озон в природе?

Образуется из молекулярного кислорода (О2) при электрическом разряде или под действием ультрафиолетового излучения. Особенно это ощутимо в местах, богатых кислородом: в лесу, в приморской зоне или около водопада. При попадании солнечных лучей, в капле воды кислород преобразуется в озон. Также Вы чувствуете запах озона после грозы, когда он образуется при электрическом разряде.

3. Почему воздух после грозы кажется чище?

Озон окисляет примеси органических веществ и обеззараживает воздух, придавая приятную свежесть (запах грозы). Характерный запах озона проявляется при концентрациях 10-7 %.

4. Что такое озоносфера? Каково ее влияние на жизнь на планете?

Основная масса озона в атмосфере расположена на высоте от 10 до 50 км с максимальной концентрацией на высоте 20-25 км, образуя слой, называемый озоносферой.

Озоносфера отражает жесткое ультрафиолетовое излучение, защищает живые организмы от губительного действия радиации. Именно, благодаря образованию "озона из кислорода воздуха стала возможна жизнь на суше.

5. Когда был открыт озон и какова история его использования?

Впервые озон описан в 1785г. голландским физиком Мак Ван Марум.

В 1832г. проф. Базельского университета Шонбейн опубликовал книгу «Получение озона химическим способом». Он же дал ему название «озон» от греческого «пахнущий».

В 1857г. Вернер фон Сименс сконструировал первую техническую установку для очистки питьевой воды. С тех пор озонирование позволяет получить гигиенически чистую воду.

К 1977г. во всем мире действует более 1000 установок по озонированию питьевой воды. В настоящее время 95% питьевой воды в Европе обрабатывается озоном. Большое распространение озонирование получило в Канаде и США. В России действует несколько крупных станций, которые используются для доочистки питьевой воды, подготовки воды плавательных бассейнов, при глубокой очистке сточных вод в оборотном водоснабжении автомобильных моек.

Впервые озон как антисептическое средство был использован во время первой мировой войны.

С 1935г. стали использовать ректально введение озонокислородной смеси для лечения различных заболеваний кишечника (проктит, геморрой, язвенный колит, свищи, подавление патогенных микроорганизмов, восстановление кишечной флоры).

Изучение действия озона позволили использовать его в хирургической практике при инфекционных поражениях, лечении туберкулеза, пневмонии, гепатитов, герпетической инфекции, анемии и пр.

В Москве в 1992г. под руководством Заслуженного деятеля науки РФ д.м.н. Змызговой А..В. создан «Научно-практический центр озонотерапии», где озон используется для лечения широкого круга заболеваний. Продолжаются разработки эффективных неповреждающих методов воздействия с использованием озона. Сегодня озон считается популярным и эффективным средством обеззараживания воды, воздуха и очищения продуктов питания. Так же кислородно-озоновые смеси используются в лечении различных заболеваний, косметологии и многих сферах хозяйствования.

6. Можно ли дышать озоном? Является ли озон вредным газом?

Действительно, дышать озоном высоких концентраций опасно, он способен сжечь слизистую оболочку дыхательных органов.

Озон является сильным окислителем. Здесь кроются его положительные и вредоносные свойства. Все зависит от концентрации, т.е. от процентного соотношения содержания озона в воздухе. Действие его подобно огню... В малых количествах он поддерживает и оздоравливает, в больших количествах - может погубить.

7. В каких случаях используются низкие и высокие концентрации озона?

Относительно высокие концентрации используются для дезинфекции, а более низкие концентрации озона не повреждают белковые структуры и способствуют заживлению.

8. Каково действие озона на вирусы?

Озон подавляет (инактивирует) вирус как вне, так и внутри клетки, частично разрушая его оболочку. Прекращается процесс его размножения и нарушается способность вирусов соединяться с клетками организма.

9. Как проявляется бактерицидное свойство озона при воздействии на микроорганизмы?

При воздействии озона на микроорганизмы, в том числе на дрожжи, локально повреждается их клеточная мембрана, что приводит к их гибели или невозможности размножаться. Отмечено повышение чувствительности микроорганизмов к антибиотикам.

В экспериментах установлено, что газообразный озон убивает практически все виды бактерий, вирусов, плесневых и дрожжеподобных грибов и простейших. Озон в концентрациях от 1 до 5 мг/л приводит к гибели 99,9% эшерихии коли, стрептококков, мукобактерий, филококков, кишечной и синегнойной палочек, протеев, клебсиеллы и др. в течении 4-20 мин.

10. Как действует озон в неживой природе?

Озон реагирует с большинством органических и неорганических веществ. В процессе реакций образуется кислород, вода, оксиды углерода и высшие оксиды других элементов. Все эти продукты не загрязняют окружающую среду и не приводят к образованию концерагенных веществ в отличие от соединений хлора и фтора.

11. Могут ли быть опасными соединения, образующиеся в жилых помещениях при озонировании воздуха?

Концентрации озона, создаваемые бытовым озонатором приводят к образованию безвредных соединений в жилых помещениях. В результате озонирования помещения происходит увеличение содержания кислорода в воздухе и очистка от вирусов и бактерий.

12. Какие соединения образуются в результате озонирования воздуха в закрытых помещениях?

Большинство компонентов, окружающих нас соединений, реагируют с озоном, приводя к образованию безвредных соединений.

Большинство из них распадаются на углекислый газ, воду и свободный кислород. В ряде случаев образуются неактивные (безвредные) соединения (оксиды). Есть еще так называемые нереагентные вещества - оксиды титана, кремния, кальция и т.д. Они в реакцию с озоном не вступают.

13. Надо ли озонировать воздух в помещениях с кондиционерами?

После прохождения воздуха через кондиционеры и нагревательные приборы в воздухе снижается содержание кислорода и не снижается уровень токсичных компонентов воздуха. К тому же, старые кондиционеры сами являются источником загрязнения и заражения. «Синдром закрытых помещений» - головная боль, усталость, частые респираторные заболевания. Озонирование таких помещений просто необходимо.

14. Можно ли дезинфицировать кондиционер?

Да, можно.

15. Эффективно ли применение озонирования воздуха для устранения запахов прокуренных помещений и помещений после ремонта (запахи краски, лака)?

Да, эффективно. Обработку следует провести несколько раз, сочетая с влажной уборкой.

16. Какие концентрации озона губительны для бактерий, грибков в домашнем воздухе?

Концентрация 50-и частиц озона на 1000000000 частиц воздуха значительно снижает загрязнение воздуха. Особенно сильное воздействие оказывается на ешерихию коли, сальмонеллу, стафилококк, кандиду, аспергиллиус.

17. Проводились ли исследования воздействия озонированного воздуха на людей?

В частности, описан эксперимент, который проводился в течение 5-и месяцев с двумя группами людей - контрольной и тестируемой.

Воздух в помещении тестируемой группы наполнялся озоном с концентрацией 15 частиц озона на 1000000000 частиц воздуха. Все испытуемые отмечали хорошее самочувствие, исчезновение раздражительности. Медики отметили повышение содержания кислорода в крови, укрепление иммунной системы, нормализацию давления, исчезновение многих симптомов стресса.

18. Не является ли озон вредным для клеток организма?

Концентрации озона, создаваемые бытовыми озонаторами, подавляют вирусы и микроорганизмы, но не повреждают клеток организма, т.к. озон не повреждает кожу. Здоровые клетки организма человека имеют естественную защиту от повреждающего действия окисления (антиоксидантную). Иначе говоря, действие озона избирательно по отношению к живым организмам.

Это не исключает применения мер предосторожности. Во время процесса озонирования нахождение в помещении нежелательно, а после проведения озонирования помещение следует проветрить. Озонатор надо поместить в недоступное для детей место или предусмотреть невозможность его включения.

19. Какова производительность озонатора?

При нормальном режиме - 200 мг/час, при усиленном - 400 мг/час. Какова концентрация озона в помещении в результате работы озонатора? Концентрация зависит от объема помещения, от места расположения озонатора, от влажности воздуха и температуры. Озон не стойкий газ и быстро разлагается, поэтому концентрация озона сильно зависит от времени. Ориентировочные данные 0,01 - 0,04 РРm.

20. Какие концентрации озона в воздухе считаются предельными?

Безопасными считаются концентрации озона в пределах 0,5 - 2,5 РРm (0,0001 мг/л).

21. Для чего применяется озонирование воды?

Озон применяется для обеззараживания, удаления примесей, запаха и цветности воды.

1. В отличие от хлорирования и фторирования воды при озонировании в воду не вносится ничего постороннего (озон быстро распадается). При этом минеральный состав и pН остаются без изменений.

2. Озон обладает наибольшим обеззараживающим свойством против возбудителей болезней.

3. Разрушаются органические вещества в воде, предотвращая тем самым дальнейшее развитие микроорганизмов.

4. Без образования вредных соединений разрушаются большинство химикатов. К ним относятся пестициды, гербициды, нефтепродукты, моющие средства, соединения серы и хлора, являющиеся концерагенами.

5. Окисляются до неактивных соединений металлы, в том числе железо, марганец, алюминий, и пр. Окислы выпадают в осадок и легко фильтруются.

6. Быстро распадаясь озон превращается в кислород, улучшая вкусовые и лечебные свойства воды.

23. Каков показатель кислотности воды, прошедшей озонирование?

Вода имеет слабощелочную реакцию РН = 7,5 - 9,0. Эта вода рекомендуется для питья.

24. На сколько увеличивается содержание кислорода в воде после озонирования?

Содержание кислорода в воде увеличивается в 12 раз.

25. Как быстро распадается озон в воздухе, в воде?

В воздухе через 10 мин. концентрация озона уменьшается на половину, образуя кислород и воду.

В воде через 20-30 мин. озон распадается на половину, образуя гидроксильную группу и воду.

26. Как влияет нагрев воды на содержание в ней кислорода?

Содержание кислорода в воде после нагрева снижается.

27. От чего зависит концентрация озона в воде?

Концентрация озона зависит от примесей, температуры, кислотности воды, материала и геометрии емкости.

28. Почему используется молекула О 3 , а не О 2 ?

Озон примерно в 10 раз лучше растворим в воде, чем кислород, и хорошо сохраняется. Чем ниже температура воды, тем больше время сохранения.

29. Почему полезно пить насыщенную кислородом воду?

Использование озона усиливает потребление глюкозы тканями и органами, увеличивает насыщаемость кислородом плазмы крови, уменьшает степень кислородного голодания, улучшает микроциркуляцию.

Озон оказывает положительное действие на метаболизм печени и почек. Поддерживает работу сердечной мышцы. Уменьшает частоту дыхания и увеличивает дыхательный объем.

30. Для чего предназначен бытовой озонатор?

Бытовой озонатор можно использовать для:

дезинфекции и дезодорации воздуха в жилых помещениях, в ванной и туалетной комнатах, бытовках, шкафах, холодильнике и пр.;

обработки пищевых продуктов (мясо, рыба, яйца, овощи и фрукты);

улучшения качества воды (дезинфекция, обогащение кислородом, устранение хлора и др. вредных примесей);

домашней косметологии (устранение перхоти, угрей, полоскание горла, чистка зубов, устранение грибковых заболеваний, приготовление озонированного масла);

ухода за домашними животными и рыбками;

полива комнатных растений и обработка семян;

отбеливания и придания цветности белью;

обработки обуви.

31. Каков эффект применения озона в медицинской практике?

Озон оказывает антибактериальное, антивирусное действие (инактивация вирусов и уничтожение спор).

Озон активизирует и нормализует ряд биохимических процессов.

Эффект, получаемый при озонотерапии, характеризуется:

активизацией процессов детоксикации, происходит подавление

активности внешних и внутренних токсинов;

активизацией процессов метаболизма (обменных процессов);

усилением микроциркуляции (кровоснабжение

улучшением реологических свойств крови (кровь становитсяподвижной);

имеет четко выраженный обезболивающий эффект.

32. Как действует озон на иммунитет человека?

Повышается клеточный и гуморальный иммунитет. Активизируется фагоцитоз, усиливается синтез интерферонов и прочих неспецифических систем организма.

33. Как влияет озонирование на процессы метаболизма?

Использование озона усиливает потребление глюкозы тканями и органами, увеличивает насыщаемость кислородом плазмы крови, уменьшает степень кислородного голодания, улучшает микроциркуляцию. Озон оказывает положительное действие на метаболизм печени и почек. Поддерживает работу сердечной мышцы. Уменьшает частоту дыхания и увеличивает дыхательный объем.

34. Озон образуется при проведении сварочных работ и при работе ксерокса. Вреден ли этот озон?

Да, вреден, так как при этом образуются опасные примеси. Озон, вырабатываемый озонатором, чист и поэтому безвреден.

35. Есть ли разница между индустриальными, медицинскими и бытовыми озонаторами?

Индустриальные озонаторы дают большую концентрацию озона, опасную для домашнего применения.

Медицинские и бытовые озонаторы близки по показателям производительности, но медицинские рассчитаны на большее время непрерывной работы.

36. Каковы сравнительные характеристики дезинфекции при использовании ультрафиолетовых установок и озонаторов?

Озон по своим свойствам уничтожения бактерий и вирусов в 2,5 - 6 раз эффективнее ультрафиолетовых лучей и в 300 - 600 раз эффективнее хлора. При этом в отличии от хлора озон уничтожает даже цисты глистов и вируса герпеса и туберкулеза.

Озон удаляет из воды органические и химические вещества, разлагая их до воды, углекислого газа, образуя осадок неактивных элементов.

Озон легко окисляет соли железа и марганца, образуя нерастворимые вещества, которые устраняются отстаиванием или фильтрацией. В результате озонированная вода безопасна, прозрачна и приятна на вкус.

37. Можно ли дезинфицировать посуду с помощью озона?

Да! Хорошо дезинфицировать детскую посуду, посуду для консервирования и пр. Для этого поместить посуду в емкость с водой, опустить воздуховод с рассекателем. Обрабатывать в течение 10-15 мин.

38. Из каких материалов должна быть посуда для озонирования?

Стеклянная, керамическая, деревянная, пластмассовая, эмалированная (баз сколов и трещин). Нельзя использовать металлическую, в том числе алюминиевую и медную посуду. Резина не выдерживает контакта с озоном.

Анионный озонатор от американской корпорации Green World поможет Вам не только сохранить, но и значительно укрепить здоровье. Вы имеете возможность использовать в своем доме незаменимый прибор - анионный озонатор, который объединил в себе все качества и функциональные возможности как ионизатора воздуха, так и озонатора (многофункционального...

Озонатор для автомобиля снабженподсветкой и ароматизатором. Одновременно может быть включен режим озонации и ионизации. Эти режимы могут быть включены и по отдельности. Этот озонатор незаменим при дальних поездках, когда увеличивается утомляемость водителя, ухудшается зрение и память. Озонатор снимаетсонливость, придавая бодрость за счет притока...

ОБЩИЕ СВЕДЕНИЯ.

Озон - О3, аллотропная форма кислорода, являющаяся мощным окислителем химических и других загрязняющих веществ, разрушающихся при контакте. В отличие от молекулы кислорода, молекула озона состоит из трех атомов и имеет более длинные связи между атомами кислорода. По своей реакционной способности озон занимает второе место, уступая только фтору.

История открытия
В 1785 г. голландский физик Ван Ма-рум, проводя опыты с электричеством, обратил внимание на запах при образовании искр в электрической машине и на окислительные способности воздуха после пропускания через него электрических искр.
В 1840 г. немецкий ученый Шейнбейн занимаясь гидролизом воды пытался с помощью электрической дуги разложить её на кислород и водород. И тогда он обнаружил, что образовался новый, доселе не известный науке газ со специфическим запахом. Имя “озон” было присвоено газу Шейнбейном из-за характерного запаха и происходит от греческого слова “озиен”, что значит “пахнуть”.
22 сентября 1896 г. изобретатель Н. Тесла запатентовал первый генератор озона.

Физические свойства озона.
Озон может существовать во всех трех агрегатных состояниях. При нормальных условиях озон - газ голубоватого цвета. Температура кипения озона - 1120С, а температура плавления составляет - 1920С.
Благодаря своей химической активности озон имеет очень низкую предельно-допустимую концентрацию в воздухе (соизмеримую с ПДК боевых отравляющих веществ) 5·10-8 % или 0,1 мг/м3, что в 10 раз больше обонятельного порога для человека.

Химические свойства озона.
Следует отметить прежде всего два основных свойства озона:

Озон в отличие от атомарного кислорода является относительно устойчивым соединением. Он самопроизвольно разлагается при высоких концентрациях, при этом чем выше концентрация, тем выше скорость реакции разложения. При концентрациях озона 12-15 % озон может разлагаться со взрывом. Следует также отметить, что процесс разложения озона ускоряется с ростом температуры, а сама реакция разложения 2О3>3О2 + 68 ккал экзотермична и сопровождается выделением большого количества тепла.

O3 -> О + О 2
О3 + О -> 2 О2
О2 + E- -> О2-

Озон является одним из сильнейших природных окислителей. Окислительный потенциал озона составляет 2,07 В (для сравнения у фтора 2,4 В, а у хлора 1,7 В).

Озон окисляет все металлы за исключением золота и группы платины, доокисляет оксиды серы и азота, окисляет аммиак с образованием нитрита аммония.
Озон активно вступает в реакцию с ароматическими соединениями с разрушением ароматического ядра. В частности озон реагирует с фенолом с разрушением ядра. Озон активно взаимодействует с насыщенными углеводородами с разрушением двойных углеродных связей.
Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Реакции озона с ароматическими соединениями легли в основу технологий дезодорации различных сред, помещений и сточных вод.

Биологические свойства озона.
Несмотря на большое количество исследований механизм недостаточно раскрыт. Известно, что при высоких концентрациях озона наблюдаются поражения дыхательных путей, легких и слизистой оболочки. Длительное воздействие озона приводит к развитию хронических заболеваний легких и верхних дыхательных путей.
Воздействие малыми дозами озона оказывает профилактическое и терапевтическое воздействие и начинает активно использоваться в медицине - в первую очередь для дерматологии и косметологии.
Кроме большой способности уничтожения бактерий озон обладает высокой эффективностью в уничтожении спор, цист (плотные оболочки, образующиеся вокруг одноклеточных организмов, например, жгутиковых и корненожек, при их размножении, а также в неблагоприятных для них условиях) и многих других патогенных микробов.

Технологическое применение озона
В последние 20 лет области применения озона значительно расширились и во всем мире ведутся новые разработки. Столь бурному развитию технологий с использованием озона способствует его экологическая чистота. В отличие от других окислителей озон в процессе реакций разлагается на молекулярный и атомарный кислород и предельные оксиды. Все эти продукты, как правило, не загрязняют окружающую среду и не приводят к образованию канцерогенных веществ как, например, при окислении хлором или фтором.

Вода:
В 1857 г. с помощью созданной Вернером фон Сименсом "совершенной трубки магнитной индукции" удалось построить первую техническую озоновую установку. В 1901 г. фирмой "Сименс" построена первая гидростанция с озонаторной установкой в Висбанде.
Исторически применение озона началось с установок по подготовке питьевой воды, когда в 1898 году в городе Сан Мор (Франция) прошли испытания первой опытно-промышленной установки. Уже в 1907 году был построен первый завод по озонированию воды в городе Бон Вуаяж (Франция) для нужд города Ниццы. В 1911 году была пущена в эксплуатацию станция озонирования питьевой воды в Санкт-Петербурге.
В настоящее время 95% питьевой воды в Европе проходит озонную подготовку. В США идет процесс перевода с хлорирования на озонирование. В России действуют несколько крупных станций (в Москве, Нижнем Новгороде и других городах).

Воздух:
Применение озона в системах очистки воды доказано в высшей степени эффективным, однако до сих пор не создано таких же эффективных и доказано безопасных воздухоочистительных систем. Озонирование считается нехимическим способом очистки и поэтому популярно среди населения. Вместе с тем, хроническое воздействие микро-концентраций озона на организм человека достаточно не изучено.
При очень незначительной концентрации озона воздух в помещении чувствуется приятным и свежим, а неприятные запахи ощущаются гораздо слабее. В противоположность распространенному мнению о благоприятном воздействии этого газа, которое приписывают в некоторых проспектах богатому озоном лесному воздуху, в действительности озон даже при большом разбавлении представляет собой очень токсичный и опасный раздражающий газ. Даже малые концентрации озона могут оказывать раздражающее действие на слизистые оболочки и вызывать нарушения центральной нервной системы, что ведет к появлению бронхита и головных болей.

Медицинское применение озона
В 1873 г. Фоке наблюдал уничтожение микроорганизмов под воздействием озона и это уникальное свойство озона привлекло к себе внимание медиков.
История использования озона в медицинских целях берет свое начало в 1885 г., когда Чарли Кенворф впервые опубликовал свой доклад в Медицинской Ассоциации Флориды, США. Краткие сведения о применении озона в медицине обнаружены и до этой даты.
В 1911 г. М. Eberhart использовал озон при лечении туберкулеза, анемии, пневмонии, диабета и др. заболеваний. А. Вольф (1916) в период первой мировой войны применяет кислородно-озоновую смесь у раненых при сложных переломах, флегмонах, абсцессах, гнойных ранах. Н. Kleinmann (1921) применил озон для общего лечения “полостей тела”. В 30-х гг. 20 века Е.А. Фиш, зубной врач, начинает лечение озоном на практике.
В заявке на изобретение первого лабораторного прибора Фишем был предложен термин "CYTOZON", который и сегодня значится на генераторах озона, используемых в зубоврачебной практике. Йоахим Хэнзлер (1908-1981) создал первый медицинский генератор озона, который позволял точно дозировать озоно-кислородную смесь, и тем самым дал возможность широко применять озонотерапию.
Р. Auborg (1936) выявил эффект рубцевания язв толстой кишки под действием озона и обратил внимание на характер его общего воздействия на организм. Работы по изучению лечебного действия озона во время второй мировой войны активно продолжались в Германии, немцы успешно применяли озон для местного лечения ран и ожогов. Однако после войны практически на два десятилетия исследования были прерваны, что обусловлено появлением антибиотиков, отсутствием надежных, компактных генераторов озона и озоно-стойких материалов. Обширные и систематические исследования в области озонотерапии начались в середине 70-х гг., когда в повседневной медицинской практике появились стойкие к озону полимерные материалы и удобные для работы озонаторные установки.
Исследования in vitro , то есть в идеальных лабораторных условиях, показали что при взаимодействии с клетками организма озон окисляет жиры и образует пероксиды - вещества, губительные для всех известных вирусов, бактерий и грибков. По действию озон можно сравнить с антибиотиками, с той разницей, что он не “сажает” печень и почки, не имеет побочных явлений. Но, к сожалению, in vivo - в реальных условиях всё обстоит гораздо сложнее.
Озонотерапия одно время была весьма популярна - многие считали озон чуть ли панацеей от всех недугов. Но детальное изучение воздействия озона показало, что вместе с больными озон поражает и здоровые клетки кожи, легких. В результате в живых клетках начинаются непредвиденные и непрогнозируемые мутации. Озонотерапия так и не прижилась в Европе, а в США и Канаде официальное медицинское применение озона не легализовано, за исключением альтернативной медицины.
В России, к сожалению, официальная медицина так и не отказалась от столь опасного и недостаточно проверенного способа терапии. В настоящее время воздушные озонаторы и озонаторные установки получили широкое распространение. Малые генераторы озона используются в присутствии людей.

ПРИНЦИП ДЕЙСТВИЯ.
Озон образуется из кислорода. Существует несколько способов получения озона, среди которых наиболее распространенными являются: электролитический, фотохимический и электросинтез в плазме газового разряда. Дабы избежать нежелательных окисей предпочтительнее получать озон из чистого медицинского кислорода используя электросинтез. Концентрацию получаемой озоно-кислородной смеси в таких аппаратах легко варьировать - либо задавая определенную мощность электрического разряда, либо регулируя поток входящего кислорода (чем быстрее кислород проходит через озонатор, тем меньше озона образуется).

Электролитический метод синтеза озона осуществляется в специальных электролитических ячейках. В качестве электролитов используются растворы различных кислот и их соли (H2SO4, HClO4, NaClO4, KClO4). Образование озона происходит за счет разложения воды и образования атомарного кислорода, который присоединяясь к молекуле кислорода образует озон и молекулу водорода. Этот метод позволяет получить концентрированный озон, однако он весьма энергоемкий, и поэтому он не нашел широкого распространения.
Фото-химический метод получения озона представляет из себя наиболее распространенный в природе способ. Образование озона происходит при диссоциации молекулы кислорода под действием коротковолнового УФ излучения. Этот метод не позволяет получать озон высокой концентрации. Приборы, основанные на этом методе, получили распространение для лабораторных целей, в медицине и пищевой промышленности.
Электросинтез озона получил наибольшее распространение. Этот метод сочетает в себе возможность получения озона высоких концентраций с большой производительностью и относительно невысокими энергозатратами.
В результате многочисленных исследований по использованию различных видов газового разряда для электросинтеза озона распространение получили аппараты использующие три формы разряда:

  1. Барьерный разряд - получивший наибольшее распространение, представляет из себя большую совокупность импульсных микроразрядов в газовом промежутке длиной 1-3 мм между двумя электродами, разделенными одним или двумя диэлектрическими барьерами при питании электродов переменным высоким напряжением частотой от 50 Гц до нескольких килогерц. Производительность одной установки может составлять от граммов до 150 кг озона в час.
  2. Поверхностный разряд - близкий по форме к барьерному разряду, получивший распространение в последнее десятилетие благодаря своей простоте и надежности. Так же представляет из себя совокупность микроразрядов, развивающихся вдоль поверхности твердого диэлектрика при питании электродов переменным напряжением частотой от 50 Гц до 15-40 кГц.
  3. Импульсный разряд - как правило стримерный коронный разряд, возникающий в промежутке между двумя электродами при питании электродов импульсным напряжением длительностью от сотен наносекунд до единиц микросекунд.
      • Эффективны в очистке воздуха помещений.
      • Не производят вредных побочных продуктов.
      • Облегчают условия для аллергиков, астматиков и др.

В 1997 г. компании-производители озонаторов Living Air Corporation, Alpine Industries Inc.(ныне “Ecoguest”), Quantum Electronics Corp. и другие, нарушившие предписание ФТК США, решением судов были наказаны в административном порядке, включая запрет на дальнейшую деятельность некоторых из них на территории США. В тоже время частные предприниматели, продававшие генераторы озона c рекомендациями использовать их в помещениях с людьми, получили тюремные сроки заключения от 1 до 6 лет.
В настоящее время некоторые из этих западных компаний успешно развивают активную деятельность по реализации своей продукции в России.

Недостатки озонаторов:
Любая система стерилизации, использующая озон, требует тщательного контроля техники безопасности, тестирование константы концентрации озона газоанализаторами, а также аварийного управления чрезмерной концентрацией озона.
Озонатор не рассчитан для работы в:

    • среде, насыщенной электропроводящей пылью и водяными парами,
    • местах, содержащих активные газы и пары, разрушающие металл,
    • местах с относительной влажностью свыше 95 %,
    • во взрыво- и пожароопасных помещениях.

Применение озонаторов для стерилизации воздуха в помещениях:

    • удлиняет по времени процесс стерилизации,
    • увеличивает токсичность и окисление воздушной среды,
    • приводит к опасности взрыва,
    • возращение людей в продезинфицированное помещение возможно только после полного разложения озона.

РЕЗЮМЕ.
Озонирование высокоэффективно для стерилизации поверхностей и воздушной среды помещения, однако эффект очистки воздуха от механических примесей отсутствует. Невозможность использования метода в присутствии людей и необходимость проводить обеззараживание в герметичном помещении серьезно ограничивает сферу его профессионального применения.

Впервые озон получен и исследован Шенбейном в 1840. Озон—газ голубоватого цвета, резкого характерного запаха;

Сжиженный озон — жидкость тёмно-синего цвета, твердый озон — тёмно-фиолетовая кристаллическая масса. Озон растворим в четыреххлористом углероде, в ледяной уксусной кислоте, в жидком азоте, в воде. Образуется при пропускании тихого электрического разряда через воздух или кислород (свежий запах после грозы обусловлен наличием небольших количеств озона в атмосфере), окислении влажного фосфора, действии лучей радия, ультрафиолетовых или катодных лучей на кислород воздуха, разложении перекиси водорода, электролизе серной кислоты (и др.
кислородсодержащих кислот), действии фтора на воду и т. д. Содержание в земной атмосфере ничтожно; слои воздуха вблизи земной поверхности содержат озона меньше, чем высшие слои атмосферы; на высоте 1.050 м (в области Монблана) Леви нашел 0—3,7 мг, на высоте 3.000 м —9,4 мг. озона на 100 м куб воздуха. В технике и лабораториях для получения озона применяются аппараты—озонаторы. Для озонирования кислород или воздух пропускается между двумя электродами, соединенными с источником тока высокого напряжения.
Озон в чистом виде выделяется из смеси озона с кислородом при охлаждении жидким воздухом. Озон легко разлагается, причем разложение чистого озона ускоряется в присутствии двуокиси марганца, свинца, окислов азота. В присутствии воды разложение озона замедляется, сухой озон при 0° разлагается в 30 раз быстрее, чем влажный озон при 20,4°. Озон обладает чрезвычайно сильным окислительным действием. Он выделяет йод из йодистого калия, окисляет ртуть, переводит сернистые металлы в сернокислые соли, обесцвечивает органические красители и т. д. Озон разрушает каучуковые трубки. Эфир, спирт, светильный газ, вата при соприкосновении с сильно озонированным кислородом воспламеняются. При действии озона на ненасыщенные органические соединения образуются продукты присоединения озониды. Озон применяется для стерилизации воды, для дезодорирования - уничтожения дурного запаха, в препаративной органической практике.

Физические свойства

Химические свойства и методы получения

Список использованной литературы

  1. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.

Что собой представляет формула озона? Попробуем вместе выявить отличительные характеристики данного химического вещества.

Аллотропная модификация кислорода

Молекулярная формула озона в химии О 3 . Его относительная молекулярная масса составляет 48. В составе соединения есть три атома О. Так как формула кислорода и озона включает в себя один и тот же химический элемент, в химии их называют аллотропными модификациями.

Физические свойства

При обычных условиях химическая формула озона - газообразное вещество, обладающее специфическим запахом, имеющим светло-голубой цвет. В природе данное химическое соединение можно ощутить во время прогулки после грозы по сосновому бору. Так как формула озона О 3 , он тяжелее кислорода в 1,5 раза. В сравнении с О 2 растворимость озона значительно выше. При нулевой температуре 49 его объемов легко растворяется в 100 объемах воды. В незначительных концентрациях вещество не обладает свойством токсичности, ядом озон является только в значительных объемах. Предельной допустимой концентрацией считают 5% количества в воздухе О 3 . В случае сильного охлаждения он легко сжижается, а при понижении показателя температуры до -192 градусов становится твердым веществом.

В природе

Молекула озона, формула которого была представлена выше, в природе образуется при грозовом разряде из кислорода. Кроме того, О 3 формируется при окислении смолы хвойных пород, он уничтожает вредные микроорганизмы, считается полезным для человека.

Получение в лаборатории

Как можно получить озон? Вещество, формула которого О 3 , образуется при пропускании через сухой кислород электрического разряда. Процесс осуществляется в специальном приборе - озонаторе. В его основе - две стеклянные трубки, которые вставлены одна в другую. Внутри располагается металлический стержень, снаружи есть спираль. После подключения к катушке высокого напряжения между внешней и внутренней трубкой возникает разряд, и кислород превращается в озон. Элемент, формула которого представлена в виде соединения с ковалентной полярной связью, подтверждает аллотропию кислорода.

Процесс превращения в озон кислорода является эндотермической реакцией, предполагающей существенные затраты энергии. В связи с обратимостью такого превращения наблюдается разложение озона, что сопровождается уменьшением энергии системы.

Химические свойства

Формула озона объясняет его окислительную способность. Он способен взаимодействовать с разными веществами, теряя при этом атом кислорода. Например, в реакции с иодидом калия в водной среде происходит выделение кислорода, образование свободного йода.

Молекулярная формула озона поясняет его способность вступать в реакцию практически со всеми металлами. Исключение составляют золото и платина. Например, после пропускания через озон металлического серебра наблюдается его почернение (образуется оксид). Под действием этого сильного окислителя наблюдается разрушение резины.

В стратосфере озон образуется благодаря действию УФ-облучения Солнца, формируя слой озона. Эта оболочка защищает поверхность планеты от негативного воздействия солнечной радиации.

Биологическое действие на организм

Повышенная окислительная способность данного газообразного вещества, образование свободных радикалов кислорода свидетельствуют о его опасности для организма человека. Какой вред способен нанести человеку озон? Он повреждает и раздражает ткани дыхательных органов.

Озон действует на холестерин, содержащийся в крови, вызывая атеросклероз. При продолжительном нахождении человека в среде, которая содержит повышенную концентрацию озона, развивается мужское бесплодие.

В нашей стране данный окислитель относят к первому (опасному) классу вредных веществ. Его среднесуточная ПДК не должна превышать 0,03 мг на кубический метр.

Токсичность озона, возможность его применения для уничтожения бактерий и плесени, активно применяют для дезинфекции. Стратосферный озон - прекрасный защитный экран земной жизни от ультрафиолетового излучения.

О пользе и вреде озона

Это вещество находится в двух слоях земной атмосферы. Тропосферный озон опасен для живых существ, негативно действует на сельскохозяйственные культуры, деревья, является компонентом городского смога. Стратосферный озон приносит человеку определенную пользу. Распад его в водном растворе зависит от рН, температуры, качества среды. В медицинской практике применяют озонированную воду различной концентрации. Озонотерапия предполагает прямой контакт данного вещества с организмом человека. Впервые подобная методика была применена в девятнадцатом веке. Американские исследователи проанализировали способность озона к окислению вредных микроорганизмов, рекомендовали медикам использовать это вещество при лечении простудных заболеваний.

В нашей стране озонотерапия начала применяться только в конце прошлого века. В терапевтических целях этот окислитель проявляет характеристики сильного биорегулятора, который способен увеличить результативность традиционных методик, а также проявить себя в качестве эффективного самостоятельного средства. После разработки технологии озонотерапии у медиков появилась возможность результативно бороться со многими заболеваниями. В неврологии, стоматологии, гинекологии, терапии, специалисты с помощью этого вещества борются с разнообразными инфекциями. Озонотерапия характеризуется простотой метода, его эффективностью, отличной переносимостью, отсутствием побочных эффектов, незначительными затратами.

Заключение

Озон является сильным окислителем, способным бороться с вредными микробами. Данное свойство широко применяют в современной медицине. В отечественной терапии озон используют в качестве противовоспалительного, иммуномодулирующего, противовирусного, бактерицидного, антистрессового, цитостатического средства. Благодаря его способности восстанавливать нарушения кислородного обмена, дает ему отличные возможности для лечебно-профилактической медицины.

Среди инновационных методик, основанных на окислительной способности данного соединения, выделим внутримышечное, внутривенное, подкожное введение данного вещества. Например, обработка пролежней, грибковых поражений кожи, ожогов, смесью кислорода и озона признана эффективной методикой.

В высоких концентрациях озон можно применять в качестве кровоостанавливающего средства. При низких концентрациях он способствует репарации, заживлению, эпителизации. Это вещество, растворенное в физиологическом растворе, является отличным средством для санации челюсти. В современной европейской медицине широкое распространение получила малая и большая аутогемотерапия. Оба метода связаны с введением в организм озона, использованием его окислительной способности.

В случае большой аутогемотерапии происходит введение озонового раствора заданной концентрацией в вену пациента. Малая аутогемотерапия характеризуется внутримышечным введением озонированной крови. Помимо медицины, этот сильный окислитель востребован в химическом производстве.