Суть концепции живого движения н а бернштейна. Уровни построения движений по Н. А. Бернштейну. Теория - не догма

Н.А. Бернштейном была подробно разработана теория уровневой организации движений , позволяющая разложить сложный двигательный акты на отдельные компоненты, а также выявить состояние мозговых уровней, их роль в регуляции движений и действий.

Каждый уровень построения движений характеризуется морфологической локализацией, ведущей афферентацией, специфическими свойствами движений, основной и фоновой ролью в двигательных актах вышележащих уровней, патологическими синдромами и дисфункцией.

Филогенетически наиболее ранний руброспинальный уровень регуляции движений (уровень А) обеспечивает непроизвольную бессознательную регуляцию тонуса мускулатуры тела с помощью проприорецепции.

Руброспинальный уровень регуляции движений начинает функционировать уже с первых недель жизни ребенка. При патологии в деятельности руброспинального уровня регуляции движений наблюдаются различные дистопии, гипо- или гипердинамические расстройства.

Талямопаллидарный уровень регуляции движений (уровень В) начинает функционировать у ребенка со второго полугодия жизни, обеспечивает согласование, внутреннюю увязку составных частей целостного большого движения, синергию движений и функционирование двигательных штампов. Ведущая афферентация талямопаллидарного уровня - суставно-угловая проприорецепция собственного тела. Деятельность уровня В охватывает выразительные движения, мимику, пантомимику, пластику. движения, управляемые этим уровнем, автоматичны, машинообразны и не могут точно измеряться. При патологии в деятельности уровня В возникают различные диссенергии и асинергии, гипер- и гиподинамические расстройства. Афферентная недостаточность этого уровня ведет к ослаблению выразительности движений, мимики, пластичности, обеднению интонации голоса.

Во втором полугодии жизни ребенка начинает функционировать и третий уровень регуляции движений - пирамидностриальный (уровень С). Сенсорная коррекция этого уровня обеспечивает согласование двигательного акта с внешним пространством при ведущей роли зрительной афферентации. Уровень С обеспечивает целевой характер движений. Такие движения своевременны, точны и могут быть измерены. При патологии в деятельности пирамидно-стриального уровня организации движений возникают параличи и парезы, нарушения координации (дистаксии и атаксии).

Кортикальный (теменно-премоторный, предметный) уровень организации движений (уровень Д) обусловливает возникновение первых осмысленных действий. Проприорецепция играет на этом уровне подчиненную роль, а ведущая афферентация не связана с рецепторными образованиями, а опирается на смысловую сторону действия с предметом. Пространственное поле, в котором организуются движения, приобретает новые топологические категории (верх, низ, между, под, над, прежде, потом). При патологии в деятельности кортикального уровня (поражении или недоразвитии) нарушается смысловая организация и реализация движений (диспраксия и апраксия). Страдают высшие корковые автоматизмы. Утрачивается возможность выработки новых навыков.

Понимание чужой и собственной речи, письменное и устное выражение своих мыслей связаны с деятельностью идеаторного уровня Е. Действие этого уровня основываются на образном мышлении (музыкальное, хореографическое исполнение).

Следовательно, любой двигательный акт есть сложное многоуровневое построение, возглавляемое ведущим уровнем (смысловой структурой) и рядом фоновых уровней (технические компоненты движений).

Основные положения теории Н.А. Бернштейна

В основе научного творчества Н.А. Бернштейна лежит его новое понимание жизнедеятельности организма, в соответствии с которым он рассматривается не как реактивная система, пассивно приспосабливающаяся к условиям среды (именно это следует из условно-рефлекторной теории), а как созданная в процессе эволюции активная, целеустремленная система. Иначе говоря, процесс жизни есть не простое «уравновешивание с внешней средой», а активное преодоление этой среды.

Фигура этого ученого является одной из наиболее значительных среди исследователей мозга XX в. Выдающейся его заслугой является то, что он первый в мировой науке использовал изучение движений в качестве способа познания закономерностей работы мозга. По мнению Н.А. Бернштейна, для тех, кто хочет понять, как работает мозг, как функционирует центральная нервная система (ЦНС), в природе едва ли существует более благодатный объект, чем исследование процессов управления движениями. Если до него движения человека изучали для того, чтобы их описать, то Н.А. Бернштейн стал изучать их, чтобы понять, как происходит управление ими.

В процессе исследования этих механизмов им были открыты такие фундаментальные явления в управлении, как сенсорные коррекции и принцип иерархического, уровневого управления, которые лежат в основе работы этих механизмов и без понимания которых правильное представление о закономерностях работы мозга в процессе управления движениями оказывается невозможным.

Следует особо подчеркнуть, что открытие этих явлений имело громадное значение и для развития многих других областей человеческого знания. Особенно наглядно это проявилось по отношению к одной из наиболее ярких наук XX столетия – кибернетике. Как известно, эта область современных знаний возникла в результате симбиоза (взаимовыгодное сосуществование) таких наук, как математика и физиология (ее раздела «Высшая нервная деятельность»). В основе всех кибернетических систем лежит открытый физиологами и удачно использованный математиками принцип обратной связи. Это название есть не что иное, как современное и более распространенное название принципа сенсорных коррекций, который был впервые описан Н.А. Бернштейном еще в 1928 г., т.е. за 20 лет до того, как это сделал создатель кибернетики Норберт Винер.

В соответствии с теорией сенсорных коррекций для выполнения какого-либо движения мозг не только посылает определенную команду мышцам, но и получает от периферийных органов чувств сигналы о достигнутых результатах и на их основании дает новые корректирующие команды. Таким образом, происходит процесс построения движений, в котором между мозгом и исполнительными органами существует не только прямая, но и непрерывная обратная связь.

Дальнейшие исследования привели Н.А. Бернштейна к гипотезе о том, что для построения движений различной сложности команды отдаются на различных уровнях (иерархических этажах) нервной системы. При автоматизации движений функции управления передаются на более низкий (неосознаваемый) уровень.

Еще одно из замечательных достижений Н.А. Бернштейна представляет собой открытое им явление, которое он назвал «повторением без повторения». Суть его заключается в следующем. При повторении одного и того же движения (например, шагов в ходьбе или беге), несмотря на один и тот же конечный результат (одинаковая длина, время выполнения и т.п.), путь работающей конечности и напряжения мышц в чем-то различны. При этом многократные повторения таких движений не делают эти параметры одинаковыми. Если соответствие и встречается, то не как закономерность, а как случайность. А это значит, что при каждом новом выполнении нервная система не повторяет одни и те же команды мышцам и каждое новое повторение совершается в несколько отличных условиях. Поэтому для достижения одного и того же результата нужны не одинаковые, а существенно различные команды мышцам.

На основании этих исследований был сформулирован важнейший для обучения движениям вывод: тренировка движения состоит не в стандартизации команд, не в «научении командам», а в научении каждый раз отыскивать и передавать такую команду, которая в условиях каждого конкретного повторения движения приведет к нужному двигательному результату.

Из всего этого следует еще один важный вывод: движение не хранится готовым в памяти, как это следует из условно-рефлекторной теории (и как, к сожалению, многие думают до сих пор), не извлекается в случае нужды из кладовых памяти, а каждый раз строится заново в процессе самого действия, чутко реагируя на изменяющуюся ситуацию. В памяти хранятся не штампы самих движений, а предписания (логарифмы) для их конструирования, которые строятся на основе механизма не стереотипного воспроизведения, а целесообразного приспособления.

Неоценимое значение имеет теория Н.А. Бернштейна и для понимания роли сознания в управлении движениями. Во многих учебных пособиях до сих пор можно встретить утверждение о том, что проникновение сознанием в каждую деталь движения содействует повышению скорости и качества его освоения. Это слишком упрощенное и во многом ошибочное утверждение. Нецелесообразность и даже принципиальная невозможность подобного тотального контроля со стороны сознания очень образно и убедительно могут быть продемонстрированы в ряде примеров. Приведем один из них.

Для этого рассмотрим, каким образом обеспечивается деятельность такого исключительного по своей сложности, точности, подвижности и жизненной важности органа, каким является зрительный аппарат человека.

Его двигательную активность обеспечивают 24 работающих попарно мышцы. Все эти мышцы осуществляют свою работу в тончайшем взаимном согласовании с раннего утра и до позднего вечера, причем совершенно бессознательно и в большинстве своем непроизвольно. Нетрудно себе представить, что если бы управление этими двумя дюжинами мышц, осуществляющих всевозможные согласования поворотов глаз, управление хрусталиком, расширение и сужение зрачков, наведение глаз на фокус и т.п., требовало произвольного внимания, то на это понадобилось бы столько труда, что лишило бы человека возможности произвольного управления другими органами тела.

Уровни построения движения

Прежде чем перейти к непосредственному рассмотрению механизмов, лежащих в основе освоения движений с позиции теории Н.А. Бернштейна, необходимо хотя бы в самом общем и кратком виде познакомиться с тем, что представляют собой уровни построения движений, что явилось основой их формирования и поступательного развития.

На протяжении долгих тысячелетий эволюции животного мира такой первоосновой и главной причиной развития явилась жизненная необходимость движения, все усложняющаяся двигательная активность.В процессе эволюции имело место безостановочное усложнение и увеличение разнообразия двигательных задач, решение которых было жизненно необходимо в борьбе различных особей за свое существование, за свое место на планете.

Этот процесс непрерывного двигательного приспособления сопровождался анатомическими усложнениями тех центральных нервных структур, которые должны были управлять новыми видами движений и которые для этого обрастали сверху новыми аппаратами управления, все более мощными и совершенными, более приспособленными к решению все усложняющихся двигательных задач. Эти вновь возникающие более молодые устройства не отрицали и не устраняли более древние, а лишь возглавляли их, благодаря чему формировались новые более совершенные и работоспособные образования.

Каждое из таких поочередно возникавших новых устройств мозга приносило с собой новый список движений, точнее говоря, новый круг посильных для данного вида животных двигательных задач. Следовательно, возникновение каждой очередной новой мозговой надстройки знаменовало собой биологический отклик на новое качество или новый класс двигательных задач.

Это также является убедительным свидетельством того, что именно двигательная активность, ее усложнение и разнообразие являлись на протяжении тысячелетий главной причиной развития и совершенствования функций головного мозга и нервной системы в целом. В результате такого развития сформировалось человеческое координационно-двигательное устройство ЦНС, представляющее собой наивысшую по сложности и совершенству структуру, превосходящую все другие подобные системы у каких бы то ни было живых существ. Эта структура состоит из нескольких разновозрастных (в эволюционном плане) уровней управления движениями, каждый из которых характеризуется своими особыми мозговыми анатомическими образованиями и особым, характерным только для него составом той чувствительности, на которую он опирается в своей деятельности, из которой он образует свои сенсорные коррекции (свое сенсорное поле).

Постепенно увеличиваясь, сложность двигательных задач становилась такой, что ни один даже самый молодой и совершенный уровень сам не мог справиться с их решением. В результате ведущему более молодому уровню приходилось привлекать к себе помощников из числа нижележащих более древних уровней, передавая им все большее количество вспомогательных коррекций, обеспечивающих плавность, быстроту, экономичность, точность движений, лучше оснащенных именно для этих видов коррекций. Такие уровни и их сенсорные коррекции называют фоновыми. А тот уровень, который сохраняет за собой верховное управление двигательным актом, его важнейшими смысловыми коррекциями, называется ведущим.

Таким образом, физиологический уровень построения движений – это совокупность взаимно обусловливающих друг друга явлений, таких как: а) особый класс двигательных задач; б) соответствующий им тип коррекций; в) определенный мозговой этаж и (как итог всего предыдущего) г) определенный класс (список) движений.

В настоящее время у человека выделяют пять уровней построения движений, которые обозначаются буквами А, B, C, D и E и имеют следующие названия:

A – уровень тонуса и осанки; B – уровень синергии (согласованных мышечных сокращений); C – уровень пространственного поля; D – уровень предметных действий (смысловых цепей); E – группа высших кортикальных уровней символической координации (письма, речи и т.п.).

Каждому из этих уровней соответствуют определенные анатомические образования в ЦНС и характерные только для него сенсорные коррекции.

Относительная степень развития отдельных координационных уровней у разных людей может быть различной. Поэтому та или иная степень развития и тренируемости свойственна не отдельным движениям, а целым контингентам движений, которыми управляет тот или иной уровень.

Таким образом, все многообразие двигательной активности человека представляет собой несколько раздельных пластов, различающихся по происхождению, смыслу и множеству физиологических свойств. Качество управления движениями обеспечивается согласованной, синхронной деятельностью ведущего и фоновых уровней. При этом ведущий уровень обеспечивает проявление таких характеристик, как переключаемостъ, маневренность, находчивость, а фоновые уровни – слаженность, пластичность, послушность, точность.

] Научное издание. Под редакцией О.Г. Газенко. Издание подготовил И.М. Фейгенберг.
(Москва: Издательство «Наука», 1990. - Серия «Классики науки»)
Скан: AAW, OCR, обработка, формат Djv: mor, 2010

  • СОДЕРЖАНИЕ:
    От составителя (И.М. Фейгенберг) (7).
    О ПОСТРОЕНИИ ДВИЖЕНИЙ
    Предисловие (11).
    Часть первая. ДВИЖЕНИЯ
    Глава первая. О происхождении двигательной функции (13).
    Эволюционное значение двигательной функции. Обогащение координационных ресурсов. Развитие структур центральной нервной системы. Возникновение и развитие уровней построения движений. Координационные контингенты движений
    Глава вторая. О построении движений (23).
    Кинематические цепи тела и степени свободы подвижности. Трудности управления движениями системы с более чем одной степенью свободы. Основная задача координации. Значение упругости скелетных мышц и периферический цикл взаимодействий. Примеры осложненных соотношений между мышечными напряжениями и движением. Принцип сензорных коррекций. Рефлекторное кольцо. Внутренние, реактивные и внешние силы. Определение координации движений. Уровни построения движений. Ведущие и фоновые уровни. Опись уровней построения
    Часть вторая. УРОВНИ ПОСТРОЕНИЯ ДВИЖЕНИЙ
    Глава третья. Субкортикальные уровни построения. Рубро-спинальный уровень палеокинетических регуляций А (44).
    Палеокинетическая и неокинетическая системы. Свойства нервного процесса в обеих системах. Синапсы неокинетической системы. Альтерационные смещения характеристик. Палеорегуляция неокинетического процесса. Субстраты рубро-спинального уровня А. Афферентации. Характеристический нервный процесс. Функции рубро-спинального уровня. Субординация. Мышечный тонус. Альфа-волны и палеокинетические регуляции. Самостоятельные движения и фоновые компоненты уровня А. Дисфункции
    Глава четвертая. Субкортикальные уровни построения. Уровень синергии и штампов, или таламопаллидарный уровень В. (68).
    Филогенез уровня В. Субстраты. Ведущая афферентация. Координационные качества. Самостоятельные движения. Фоновая роль. Дисфункции
    Глава пятая. Кортикальные уровни построения. Пирамидно-стриальный уровень пространственного поля С (81).
    Двойственность уровня С. Афферентация. Пространственное поле. Характер движений уровня С. Пространственная обусловленность движений. Вариативность, переключаемость, экстемпоральность. Субстраты. Самостоятельные движения. Фоновая роль. Дисфункции
    Глава шестая. Кортикальные уровни построения. Теменно-премоторный уровень действий (d) ... (106).
    Специфически-человеческая принадлежность уровня D. Группа апраксий. Субстраты. Афферентация. Смысловая структура действий. Пространство уровня действий. Эволюция взаимоотношений с предметом. Строение двигательных актов уровня D. Двигательный состав действий. Высшие автоматизмы. Роль премоторных систем. Сензорные и кинетические апраксий. Деавтоматизация. Классификация двигательных актов уровня D. Высшие кортикальные уровни. Уровни, лежащие выше уровня действий (группа E). Координационные свойства группы E
    Часть третья. РАЗВИТИЕ И РАСПАД
    Глава седьмая. Возникновение и развитие уровней построения (142).
    Биогенетический закон и его ограничения. Эмбриогенез моторных центров мозга. Филогенез главных ядер мозга. Схема развития моторики позвоночных. Онтогенез моторики человека в первом полугодии жизни. Дозревание системы striatum. Онтогенез охватывания предмета. Развитие локомоций. Дозревание уровня действий, развитие моторики в отрочестве. Пубертатный период
    Глава восьмая. Развитие двигательных навыков (164).
    Условнорефлекторная теория развития двигательного навыка и ее ошибки. Определение двигательного навыка. Два периода развития навыка. Установление ведущего уровня. Определение двигательного состава. Выявление сензорных коррекций. Фаза автоматизации. Собственно фоны и автоматизмы. Переносы упражненности по навыку. Снижение порогов сигнальных рецепторов. Фаза срабатывания коррекций. Стандартизация. Три стадии развития навыков с синергетическими фонами. Динамически устойчивые движения. Дискретность и общечеловечность динамически устойчивых форм. Фаза стабилизации. Факторы, сбивающие автоматизацию. Возрастание переключаемости. Переносы по органу и приему; генерализация навыка. Прелиминарные коррекции. Структура навыка письма. Развитие навыка письма. Реавтоматизация и врабатывание
    Глава девятая. Признаки уровневой структуры в патологии и в норме (206).
    Требования к признакам координационной структуры. Явления, обусловливающие сложность патологических синдромов. Влияние пункта поражения на рефлекторном кольце. Гиподинамии и эфференации. Гиподинамические синдромы по уровням. Персеверации. Персеверации в норме. Группирование признаков нормы по двум периодам развития навыка. Основные вопросы по уровневой структуре нормальных движений. Признаки точности и вариативности. Уровневые проявления признака точности. Уровневые характеристики деавтоматизирующих факторов
    ОЧЕРКИ ПО ФИЗИОЛОГИИ ДВИЖЕНИЙ И ФИЗИОЛОГИИ АКТИВНОСТИ
    От автора (245).
    Раздел первый
    Очерк первый. К истории изучения движений (248).
    Очерк второй. Циклограмметрический метод (260).
    Очерк третий. Проблема взаимоотношений координации и локализации (266).
    1. Основное дифференциальное уравнение движения (266).
    2. Целостность и структурная сложность живого движения (270).
    3. Взаимоотношения координации и локализации (275).
    4. Экфория двигательных энграмм (280).
    5. Топология и метрика движений. Моторное поле (285).
    6. Принцип «равной простоты» (290).
    Раздел второй
    Очерк шестой. Координация движений в онтогенезе (297).
    1. Противоречия развития между филогенезом и онтогенезом (297).
    2. Развитие координационных систем в филогенезе (299).
    3. Развитие координации в раннем онтогенезе (309).
    4. Природа навыка и тренировки (326).
    Очерк седьмой. Биодинамика локомоций (генез, структура, изменения) (334).
    1. Материал, исходные положения, техника (334).
    2. Основные структурные слагающие локомоторного акта (340).
    3. Генез биодинамической структуры локомоторного акта (347).
    4. Эскизы к качественному анализу биодинамических элементов локомоторного акта (359).
    5. Выводы к учению о координации движений (366).
    Раздел третий
    Очерк восьмой. Назревшие проблемы регуляции двигательных актов (373).
    Очерк девятый. Управление, кодирование и моделирование в физиологии (392).
    Очерк десятый. Модели как средство изучения нервно-двигательных процессов (405).
    Очерк одиннадцатый. Пути и задачи физиологии активности (410).
    Очерк двенадцатый. Новые линии развития в физиологии и биологии активности (431).
    Заключение (450).
    Николай Александрович Бернштейн. Газенко, И.М. Фейгенберг (463).
    Труды Н.А. Бернштейна (480).
    Литература о Н.А. Бернштейне (487).
    Именной указатель (488).
    Bernstein N.A. Physiology of movement and activity (science classics) (492).

Аннотация издательства: В настоящее издание вошли две основные книги Н.А. Бернштейна: «О построении движений» (1947 г.), удостоенная Государственной премии СССР, и «Очерки по физиологии движений и физиологии активности» (1966 г.), подводящая итог научной работы автора. Трудами Бернштейна начата новая глава в физиологии движений - живой организм рассматривается не как реактивная (только лишь реагирующая на стимулы), а как активная система, стремящаяся к достижению «потребного будущего».
Книга рассчитана на физиологов, психологов, биологов, философов, медиков, инженеров, математиков, специалистов по кибернетике.

Чем сложнее (точнее, осмысленнее, предметнее) двигательная задача, тем более высоким является «уровень построения движения» и тем более высокие уровни нервной системы принимают участие в решении этой задачи и реализации соответствующих движений.

Н.А. Бернштейн выделил и подробно описал пять основных уровней построения движений , обозначив их латинскими буквами А, В, С, D, Е.

Самый древний в филогенетическом отношении - уровень А , который называется уровнем «палеокинетических регуляций» , или руброспинальным, по названию анатомических «субстратов», которые отвечают за построение движений на этом уровне: «красное ядро» выступает «высшей» регулирующей инстанцией этого уровня построения движений, к которому имеют отношение и другие подкорковые структуры.

Система данных структур обеспечивает поступление и анализ проприоцептивной информации от мышц, удержание определенной позы, некоторые быстрые ритмические вибрационные движения (например, вибрато у скрипачей), а также ряд непроизвольных движений (дрожь от холода, вздрагивание, стучание зубами от страха).

Уровень А у человека практически никогда не бывает ведущим уровнем построения движений.

Второй - уровень В - называется также уровнем «синергии и штампов» , или таламо-паллидарным уровнем , поскольку его анатомическим субстратом являются «зрительные бугры» и «бледные шары».

Он отвечает за так называемые синергии, т.е. высокослаженные движения всего тела, за ритмические и циклические движения типа «ходьбы» у младенцев, «штампы» - например, стереотипные движения типа наклонов, приседаний.

Этот уровень обеспечивает анализ информации о расположении отдельных конечностей и мышц безотносительно к конкретным условиям осуществления соответствующих движений.

Поэтому он отвечает, например, за бег вообще (скажем, за бег на месте) как переменную работу различных групп мышц.

Однако реальный бег совершается по какой-нибудь конкретной поверхности со своими неровностями и препятствиями, и чтобы он стал возможным, необходимо подключение других, более высоких уровней построения движений.

Этот уровень отвечает также за автоматизацию различных двигательных навыков, выразительную мимику и эмоционально окрашенные пантомимические движения.

Уровень С , называемый уровнем пространственного поля, или пирамидно-стриальным, поскольку его анатомическим субстратом выступают уже некоторые корковые структуры, образующие так называемые пирамидные и экстрапирамидные системы, обеспечивает ориентацию субъекта в пространстве.

Движения, выполняемые на данном уровне, носят отчетливо целевой характер: они ведут откуда-то, куда-то и зачем-то.Соответственно они имеют начало, середину и конец.

Таковы, к примеру, плавание, прыжки в длину, высоту, вольные акробатические упражнения, движения рук машинистки или пианиста по клавиатуре, движения наматывания, т.е. такие, где требуется учет «пространственного поля».

Еще более высоким уровнем является уровень D , называемый также теменно-премоторным , поскольку его анатомическим субстратом являются исключительно кортикальные структуры в те-менно-премоторных областях.

Он называется также уровнем предметных действий , поскольку обеспечивает взаимодействие с объектами в соответствии с их предметными значениями.

Примеры движений на этом уровне: питье из чашки, снятие шляпы, завязывание галстука, изображение домика или человека.

Если вспомнить структуру деятельности, по А.Н.Леонтьеву, то речь идет о выполнении именно действий, а не операций, т.е. цель действия, строящегося на этом уровне, может быть достигнута разными способами (за осуществление операций отвечают другие уровни).

Наконец, уровень Е (Н. А. Бернштейн говорил, что этот уровень наименее изучен в физиологии активности, - возможно, это даже не один, а несколько уровней) отвечает за «ведущие в смысловом отношении координации речи и письма», которые объединены уже не предметом, а отвлеченным заданием или замыслом.

Таковы, например, речевые и другие движения читающего лекцию преподавателя, танец балерины и т.п.

Здесь речь уже идет о передаче научных знаний или замысла художника, что предполагает -исключительно произвольный уровень регуляции разворачивающихся действий.

Анатомический субстрат движений данного уровня еще не вполне изучен, хотя Н. А. Бернштейн подчеркивал несомненное участие в произвольной регуляции движений лобных долей коры головного мозга, ссылаясь на работы А. Р.Лурия.

Как правило, в построении действий человека принимают участие структуры всех уровней, хотя иногда более простые движения регулируются лишь низшими уровнями.

В принципе одно и то же движение может строиться на различных уровнях, если включается в решение разных задач.

Строго говоря, это движение не будет «одним и тем же» (как было показано выше, даже амплитуда движений рук раненых бойцов увеличивается, если больной выполняет более значимую для него работу).

Поэтому можно изменить характер протекания движений, изменив его смысл для человека.

Из вышеизложенного явствует, что концепция неклассической физиологии Н.А. Бернштейна помогает подойти к диалектическому решению психофизиологической проблемы.

Анатомо-физиологические структуры здесь всего лишь инструменты для реализации задач деятельности субъекта.

То, какие именно структуры участвуют в обеспечении построения движений человека, зависит от того, какое место занимает это движение в структуре деятельности субъекта, какой смысл оно имеет для него.

Образно говоря, мозг и нервная система в целом - инструмент, с помощью которого человек «проигрывает мелодии своей жизни».

Мы не должны, однако, забывать, что устройство этого инструмента также заслуживает своего изучения в психологии, поскольку ни один из психических процессов, обеспечивающих ориентировку субъекта в мире и регуляцию его деятельности, невозможен без нормально работающего мозга.

Естественно, патология мозговой деятельности приводит к ограничениям (иногда весьма существенным) в формировании адекватной деятельности субъекта, подобно тому как поломанный или расстроенный инструмент не позволяет музыканту извлечь достойную музыку (хотя, впрочем, Н.Паганини мог играть и на одной струне).

Соколова Е. Е.

Отечественная медицина всегда славилась не просто хорошими специалистами, а настоящими гениями этой науки. Среди огромного количества талантов отдельно стоит выделить человека по имени Бернштейн Николай Александрович, биография которого и будет подробно рассмотрена в статье.

Краткая информация

Итак, кто же этот научный деятель? Бернштейн Николай Александрович при жизни был выдающимся психофизиологом, которому удалось создать целую концепцию в этом направлении. Ему принадлежат труды по созданию передовых методов регистрации естественных движений людей как в нормальном состоянии, так и при патологии. На основе исследований и разработок ученого медики проводили реабилитацию военных и гражданских лиц, получивших ранения во время Великой Отечественной войны. Со временем наработки переместились и в спортивную сферу.

Рождение и родственники

Бернштейн Николай Александрович является потомственным ученым. Он родился в Москве, 5 ноября 1896 году. Его дед - Натан Осипович - был известным физиологом, который после окончания вуза получил звание приват-доцента, а чуть позже и вовсе стал профессором.

Отец героя нашей статьи - Александр Натанович. Он получил известность благодаря своим работам в области психиатрии и психологии. Обе эти науки мужчина напрямую связывал непосредственно с физиологией. По злому стечению обстоятельств Александр был основателем психиатрической клиники в Москве, которая во время правления советской власти превратилась в институт имени Сербского - настоящий каземат, где проводились процедуры карательной психиатрии над людьми, несогласными с действиями тогдашней власти.

Дядя Николая Александровича - Сергей Натанович - отметился в математике как профессор и академик АН СССР.

Мама - Александра Карловна - человек поистине незаурядный и сильный. Она рано начала самостоятельную жизнь: трудилась ткачихой, санитаркой, операционной сестрой и сестрой милосердия в клинике, где и встретила свою судьбу в лице Александра Натановича.

Образование

Бернштейн Николай Александрович грыз гранит науки в столичном университете. Изначально он стал студентом историко-философского факультета, однако чуть позже перевелся на медицинский факультет. Случилось это перед началом Первой мировой войны. В связи с боевыми действиями в он учился по ускоренной программе и, отучившись четыре года, оказался на передовой, где врачи были на вес золота.

Начало карьеры медика

В 1919 году бывший студент попал под мобилизацию в ряды Красной армии как полноценный врач. Демобилизовавшись в 1920 году, он пошел трудиться психиатром в клинику Гиляровского. В этом лечебном заведении он пробыл недолго и перешел на работу в Центральный институт труда, где ему доверили возглавить лабораторию, изучающую биомеханику человека. В качестве основной задачи учреждения было детальное изучение всех движений человека, связанных с его трудовой детальностью для увеличения эффективности труда. Стоит заметить, что до того момента любые серьёзные проблемы с двигательной активностью решали очень просто и кардинально - выключали лишние степени свободы. Именно поэтому Бернштейн Н.А. (биография, фото изучаются сегодня многими) вынес предложение, что нужно внимательно отслеживать крайне непредсказуемую ситуацию на периферии, дабы предварить патологические изменения и использовать для этого «опережающие коррекции». То есть медик предлагал не относиться к движению как исключительно механическому процессу.

Споры

Выдвигаемые ученым теории шли в разрез с мнением руководителя Института труда Гастевым, который в свою очередь намеревался сконструировать движение человека по аналогии с машинами и механизмами. Во многом из-за разногласий в 1925 году Бернштейн Николай Александрович перебрался в Институт психологии, где трудности живого движения были интересны специалистам. А уже в 1926 году медик написал свою работу под названием «Общая биомеханика».

Самым же ярым оппонентом талантливого научного деятеля был Их споры шли на протяжении длительного периода времени. В качестве возражения и аргумента своей позиции Бернштейн написал труд «История учения о нервном импульсе». В 1936 году в стенах Всесоюзного института экспериментальной медицины было запланировано проведение очного диспута между этими двумя выдающимися ученым. Однако этой дискуссии так и не суждено было случиться, так как Павлов умер. Узнав об этом, Николай Александрович не стал издавать книгу.

Профессиональные взгляды

Бернштейн Н.А., биография которого вызывает неподдельный интерес и у современной молодежи, всегда уделял значительное внимание именно клинической медицине. Ученый был превосходным невропатологом, он помогал восстанавливать двигательную активность людям с заболеваниями нервной системы и травмами. Все эти исследования в совокупности дали возможность со временем предложить и внедрить на практике такие приемы лечения, которые реанимировали нарушенные функции у раненых бойцов во время войны.

В 1947 году свет увидела монография Николая Александровича, которую он назвал «О построении движений». В этом научном труде было уделено значительное внимание построению структуры неврологического и нейрофизиологического характера в действиях и навыках. По мнению врача, построение движений выполняют все уровни головного мозга.

Так, например, самый низший уровень А является чистейшей физиологией. Высший уровень подкорки В заведует сложными движениями - бег, ходьба, плавание и прочие.

Уровень С интересен как физиологам, так и психологам. Движения на этом уровне обладают четко выраженным целевым характером. Уровень Д несет в себе смысловую сторону осуществляемых действий. И, наконец, самый высокий уровень Е позволяет формировать максимально сложные навыки, в числе которых работа в космическом пространстве, пилотирование самолетов и другие.

Проблемы

Во время проведения объединённой сессии Академии наук СССР в 1950 году все труды Бернштейна были подвергнуты жесточайшей критике за так называемую «антипавловскую концепцию». Сам же ученый был уволен из институтов и до конца своей жизни больше никогда не имел возможности работать в лабораторных условиях.

Тем не менее, талантливый врач и новатор не пал духом и продолжил работать и развивать свои идеи. При помощи друзей он попал на работу в реферативный журнал. Полная реабилитация Николая Александровича пришлась на эпоху хрущевской оттепели. Именно в то время его работы стали востребованными в среде физиологов, кибернетиков, психологов. На заре 60-х годов Бернштейн Николай Александрович, книги которого обрели популярность, плотно общался со специалистами по физике и математике, читал лекции на семинарах, организованных молодыми талантами.

Конец жизни

В середине 60-х учёному был поставлен смертельный диагноз - рак печени. Потомственный врач осознал, что жить ему осталось недолго, и полностью погрузился в изучение проблем физиологии активности человека, а также различных аспектов биологической направленности в кибернетики. Смерть настигла великого мыслителя и новатора в 1966 году.

Бернштейн, биография и личная жизнь которого не всегда освещались в печатных изданиях, после того как оказался в опале, начал вести затворнический образ жизни. Как вспоминает его приёмная дочь Татьяна Ивановна, однажды к ним в дом приехал лично Корней Чуковский, дабы засвидетельствовать свое почтение ученому от лица всей ленинградской интеллигенции. Также врач на рекомендацию покаяться в своих «грехах» перед научным обществом непременно отвечал: «Лучше я умру!».