Способы получения озона. Озон (О3) является трехатомной модификацией кислорода (О2). Влияние газа на человека. Как озон действует на другие микроорганизмы

Озон - газообразное вещество, являющееся видоизменением кислорода (состоит из трех атомов его). Он всегда присутствует в атмосфере, но впервые был обнаружен в 1785 г. во время изучения действия искры на воздух голландским физиком Ван Марумом. В 1840 г. немецкий химик Кристиан Фридрих Шенбейн подтвердил эти наблюдения и предложил, что им открыт новый элемент, которому он дал название «озон» (от греческого ozon - пахнущий). В 1850 г. была определена высокая активность озона как окислителя и способность его присоединяться к двойным связям в реакциях со многими органическими соединениями. Оба эти свойства озона в дальнейшем нашли широкое практическое применение. Однако значение озона не ограничивается только этими двумя свойствами. Было установлено, что он обладает рядом ценных свойств как дезинфектанта и дезодоранта.
Впервые озон стали использовать в санитарии как средство для обеззараживания питьевой воды и воздуха. В числе первых исследователей процессов озонирования были и русские ученые. Еще в 1874 г. создатель перво" школы (русской) гигиенистов профессор А. Д. Доброе ш вин предложил озон как лучшее средство для обеззараживания питьевой воды и воздуха от патогенной микро флоры. Дозднее, в 1886 г. Н. К. Келдыш провел исследования бактерицидного действия озона и рекомендовали его как высокоэффективное дезинфицирующее средство. Особенно широко развернулись исследования озона в XX в. И уже в 1911 г. в.Петербурге была пущена в эксплуатацию первая в Европе озоноводопроводная станция. В этот же период были проведены многочисленные исследования озонирования с лечебной целью в медицине, с санитарной целью в пищевой промышленности, в окислительных процессах химической промышленности и др.
Сферы и масштабы использования озона в последнее десятилетие увеличиваются быстрыми темпами. В настоящее время наиболее важные области применения озона следующие: очистка и обеззараживание питьевой и промышленной воды, а также хозяйственно-фекальных и промышленных стоков с целью снижения биологического потребления кислорода (БПК), обесцвечивание, нейтрализация вредных ядовитых веществ (цианидов, фенолов, меркаптанов), устранение неприятных запахов, дезодорация и очистка воздуха различных производств, озонирование в системах кондиционирования воздуха, хранение пищевых продуктов, стерилизация упаковочных и перевязочных материалов в фармацевтической промышленности, терапия и медицинская профилактика различных заболеваний и др.
В последние годы установлено еще одно свойство озона - способность повышать биологическую ценность кормов для животных и продуктов питания для человека, что позволило применять озон в процессах переработки, подготовки и хранения кормов и различных продуктов. Поэтому разработка технологий озонирования в сельскохозяйственном производстве, и, в частности в птицеводстве, весьма перспективна

Физические свойства озона

Озон - это высокоактивная, аллотропная форма кислорода; при обычных температурах - это газ светло-голубого цвета с характерным острым запахом (запах органолептически ощущается при концентрации озона 0,015 мг/м3 воздуха). В жидкой фазе озон имеет индиго-голубой, а в твердой - густой фиолетово-голубоватый цвет, слой озона толщиной в 1 мм практически светонепроницаем. Озон образуется из кислорода, поглощая при этом тепло и, наоборот, при разложении переходит в кислород, выделяя тепло (подобно горению). Процесс этот можно записать в следующем виде:
Экзотермическая реакция
2Оз=ЗО2+68 ккал
Эндотермическая реакция

Скорости этих реакций зависят от температуры, давления и концентрации озона. При нормальной температуре и давлении реакции протекают медленно, но при повышенных температурах ускоряется распад озона.
Образование озона под действием энергии различных излучений довольно сложно. Первичные процессы образования озона из кислорода могут протекать по-разному в зависимости от количества приложенной энергии.
Возбуждение молекулы кислорода происходит при энергии электронов 6,1 эВ; образование молекулярных ионов кислорода - при энергии электронов 12,2 эВ; диссоциация в кислороде - при энергии электронов 19,2 эВ. Все свободные электроны захватываются молекулами кислорода, в результате чего образуются отрицательные ионы кислорода. После возбуждения молекулы наступает реакция образования озона.
При энергии электронов 12,2 эВ, когда происходит образование молекулярных ионов кислорода, выхода озона не наблюдается, а при энергии электронов 19,2 эВ, когда участвуют как атом, так и ион кислорода, образуется озон. Наряду с этим образуются положительные и отрицательные ионы кислорода. Механизм распада озона*, в котором участвуют гомогенные и гетерогенные системы, сложен и зависит от условий. Разложение озона ускоряется в гомогенных системах газообразными добавками (окислы азота, хлор и др.), а в гетерогенных системах металлами (ртуть, серебро, медь и др.) и окислами металлов (железо, медь, никель, свинец и др.). При высоких концентрациях озона реакция происходит со взрывом. При концентрации озона до 10% взрывного разложения его не происходит. Низкие температуры способствуют сохранению озона. При температурах около - 183°С жидкий озон можно хранить длительное время без заметного разложения. Быстрое нагревание до точки кипения (-119°С) или быстрое охлаждение озона могут привести к взрыву. Поэтому знание свойств озона и соблюдение мер предосторожности очень важно при работе с ним. В таблице 1 приведены основные физические свойства озона.
При газообразном состоянии озон диамагнитен, а в жидком - слабо парамагнитен. Озон хорошо растворяется в эфирных маслах, скипидаре, четыреххлористом углероде. Растворимость его в воде выше, чем кислорода, более чем в 15 раз.
Молекула озона, как уже отмечалось, состоит из трех атомов кислорода и имеет несимметричную структуру треугольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).

Основные физические свойства озона

Показатель Значение
Молекулярный вес 47,998
Удельный вес по воздуху 1,624
Плотность при НТД 2,1415 г/л
Объем при НТД 506 см3/г
Температура плавления - 192,5° С
Температура кипения -111,9°С
Критическая температура - 12,1° С
Критическое давление 54,6 атм
Критический объем 147,1 см3/моль
Вязкость при НТД 127- КГ* пауз
Теплота образования (18° С) 34,2 ккал/моль
Теплота испарения (-112° С) 74,6 ккал/моль
Теплота растворения (НгО, 18° С) 3,9 ккал/моль
Потенциал ионизации 12,8 эВ
Сродство к электрону 1,9-2,7 эВ
Диэлектрическая постоянная
Газообразного озона при НТД
1,0019
Теплопроводность (25° С) 3,3- 10~"5 кал/с- см2
Скорость детонации (25° С) 1863 м/с
Давление детонации (25° С) 30 атм
Магнитная восприимчивость
(18° С) 0,002- Ю-6 ед
Молекулярные коэффициенты
.кстинции (25° С) 3360 см""1 моль (при 252 нмУФЛ); 1,32см-1
(при 605 нм видимого света)
Растворимость в воде при ("С):
0 1,13 г/л
10 0,875 г/л
20 0,688 г/л
40 0,450 г/л
СО 0,307 г/л
Растворимость озона:
в уксусной кислоте (18,2° С) 2,5 г/л
в трихлоруксусной кислоте, 0"С) 1,69 г/л
, ангидриде уксусной кислоты (0°С) 2,15 г/л
в пропионовой кислоте (17,3° С) 3,6 г/л
в ангидриде пропионовой кислоты (18,2° С) 2,8 г/л
в четыреххлористом углероде (21° С) 2,95 г/л

Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.



гольника, характеризующегося тупым углом при вершине (116,5°) и равными ядерными расстояниями (1,28°А) со средней энергией связи (78 ккал/моль) и слабовыражен-ной полярностью (0,58).
Оптические свойства озона характеризуются его нестойкостью к излучениям различного спектрального состава. Излучения могут не только поглощаться озоном, разрушая его, но и образовывать озон. Образование озона в атмосфере происходит под воздействием ультрафиолетового излучения солнца в коротковолновом участке спектра 210-220 и 175 нм. При этом на поглощенный квант света образуются две молекулы озона. Спектральные свойства озона, его образование и распад под влиянием солнечной радиации обеспечивают оптимальные параметры климата в биосфере Земли.
Озон обладает хорошей способностью адсорбироваться силикагелем и алюмогелем, что позволяет использовать это явление для извлечения озона из газовых смесей и из растворов, а также для безопасного обращения с ним при высоких концентрациях. В последнее время для безопасной работы с высокими концентрациями озона широко используют фреоны. Концентрированный озон, растворенный во фреоне, может сохраняться длительное время.
При синтезе озона, как правило, образуются газовые смеси (O3+O2 или Оз + воздух), в которых содержание озона не превышает 2-5% по объему. Получение чистого озона - технически сложная задача и до настоящего времени еще нерешенная. Существует способ отделения кислорода от смесей путем низкотемпературной ректификации газовых смесей. Однако пока еще не удалось исключить опасность взрыва озона при ректификации. В исследовательской практике часто используют прием двойного намораживания озона жидким азотом, позволяющий получить концентрированный озон. Более безопасным является метод получения концентрированного озона путем адсорбции - десорбции, когда поток газовой смеси продувают через слой охлажденного (-80°С) силикагеля, а затем адсорбент продувают инертным газом (азотом или гелием). Таким методом можно получить соотношение озон: кислород =9:1, т. е. высококонцентрированный озон.
Использование в промышленных целях концентрированного озона как окислительного компонента незначительно.

Химические свойства озона

Характерными химическими свойствами озона в первую очередь следует считать его нестойкость, способность быстро разлагаться, и высокую окислительную активность.
Для озона установлено окислительное число И, которое характеризует число атомов кислорода, отдаваемых озоном окисляемому веществу. Как показали опыты, оно может быть равным 0,1, 3. В первом случае озон разлагается с увеличением объема: 2Оз--->ЗО2, во втором он отдает окисляемому веществу один атом кислорода: О3 ->О2+О (при этом, объем не увеличивается), и в третьем случае происходит присоединение озона к окисляемому веществу: О3->ЗО (при этом объем его уменьшается) .
Окислительными свойствами характеризуются химические реакции озона с неорганическими веществами.
Озон окисляет все металлы, за исключением золота и группы платины. Сернистые соединения окисляются им до сернокислых, нитриты - в нитраты. В реакциях с соединениями йода и брома озон проявляет восстановительные свойства, и на этом основан ряд методов его количественного определения. В реакцию с озоном вступают азот, углерод и их окислы. В реакции озона с водородом образуются гидроксильные радикалы: Н+О3-> HO+O2. Окислы азота реагируют с озоном быстро, образуя высшие окислы:
NO+Оз->NO2+O2;
NO2+O3----->NO3+O2;
NO2+O3->N2O5.
Аммиак окисляется озоном в азотнокислый аммоний.
Озон разлагает галогеноводороды и переводит низшие окислы в высшие. Галогены, участвующие в качестве активаторов процесса, также образуют высшие окислы.
Восстановительный потенциал озон - кислород достаточно высокий и в кислой среде определен величиной 2,07 В, а в щелочном растворе - 1,24 В. Сродство озона с электроном определено величиной в 2 эВ, и только фтор, его окислы и свободные радикалы обладают более сильным сродством к электрону.
Высокое окислительное действие озона было использовано для перевода ряда трансурановых элементов в семивалентное состояние, хотя высшее валентное состояние их равно 6. Реакция озона с металлами переменной валентности (Сг, Сог и др.) находит практическое применение при получении исходного сырья в производстве красителей и витамина PP.
Щелочные и щелочно-земельные металлы под действием озона окисляются, а их гидроокиси образуют озониды (триоксиды). Известны озониды давно, о них упоминал еще в 1886 г. французский химик-органик Шарль Адольф Вюрц. Они представляют собой кристаллическое вещество красно-коричневого цвета, в решетку молекул которого входят однократно отрицательные ионы озона (O3-), чем и обусловлены их парамагнитные свойства. Предел термической устойчивости озонидов -60±2° С, содержание активного кислорода - 46% по весу. Как многие пе-рекисные соединения озониды щелочных металлов нашли широкое применение в регенеративных процессах.
Озониды образуются в реакциях озона с натрием, калием, рубидием, цезием, которые идут через промежуточный неустойчивый комплекс типа М+ О- Н+ O3--с дальнейшей реакцией с озоном, в результате чего образуется смесь озонида и водного гидрата окиси щелочного металла.
Озон активно вступает в химическое взаимодействие со многими органическими соединениями. Так, первичным продуктом взаимодействия озона с двойной связью непредельных соединений является малозоид, который нестоек и распадается на биполярный ион и карбонильные соединения (альдегид или кетон). Промежуточные продукты, которые образуются в этой реакции, вновь соединяются в другой последовательности, образуя озо-нид. В присутствии веществ, способных вступать в реакцию с биполярным ионом (спирты, кислоты), вместо озонидов образуются различные перекисные соединения.
Озон активно вступает в реакцию с ароматическими соединениями, при этом реакция идет как с разрушением ароматического ядра, так и без его разрушения.
В реакциях с насыщенными углеводородами озон вначале распадается с образованием атомарного кислорода, который инициирует цепное окисление, при этом выход продуктов окисления соответствует расходу озона. Взаимодействие озона с насыщенными углеводородами протекает как в газовой фазе, так и в растворах.
С озоном легко реагируют фенолы, при этом происходит разрушение последних до соединений с нарушенным ароматическим ядром (типа хиноина), а также малотоксичных производных непредельных альдегидов и кислот.
Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Использование реакции озона с непредельными соединениями позволяет получать искусственным путем различные жирные кислоты, аминокислоты, гормоны, витамины и полимерные материалы; реакции озона с ароматическими углеводородами - дифениловую кислоту, фталевый диальдегид и фталевую кислоту, глиоксалевую кислоту и др.
Реакции озона с ароматическими углеводородами легли в основу разработки методов дезодорации различных сред, помещений, сточных вод, абгазов, а с серосодержащими соединениями - в основу разработки методов очистки сточных вод и отходящих газов различных производств, включая сельское хозяйство, от серосодержащих вредных соединений (сероводород, меркаптаны, сернистый ангидрид).


1. Что мы знаем об ОЗОНЕ?

Озон (от греческого ozon - пахнущий) - газ голубого цвета с резким запахом, сильный окислитель. Озон аллотроп кислорода. Молекулярная формула О3. Тяжелее кислорода в 2,5 раза. Используется для обеззараживания воды, продуктов питания и воздуха.

Технологии

Основываясь на технологии коронического разряда озона, был разработан многофункциональный анионный озонатор Green World, который использует озон для дезинфекции и стериализации.

Характеристики химического элемента озона

Озон, научное название которого О3, получается в процессе соединения трех атомов кислорода.Обладает высокими окислительными функциями, которые эффективны при дезинфекции и стеарилизации. Он способен уничтожить большинство бактерий в воде и воздухе. Его считают эффективным дезинфектором и антисептиком. Озон является важным компонентом атмосферы. В нашей атмосфере содержится 0.01ppm-0.04ppm озона, который балансирует уровень бактерий в природе. Озон также образуется в природе при разрядах молнии во время грозы. Во время электрического разряда молнии появляется приятный сладкий запах, который мы называем свежим воздухом.

Молекулы озона неустойчивы и очень быстро распадаются на молекулы кислорода. Благодаря этому качеству озон является ценным газом и очистителем воды. Молекулы озона соединяются с молекулами других веществ и распадаются, в итоге он окисляет органические соединения, превращая их в безвредные углекислый газ и воду. По причине того, что озон легко распадается на молекулы кислорода, он значительно менее токсичен, чем другие дезинфекционные вещества, такие как хлор. Эго твкже называют «самый чистый окислитель и дезинфикатор».

Свойства озона - убивает микроорганизмы

1. убивает бактерии

а) убивает большую часть коли-бактерий и стафилококков в воздухе

б) убивает 99.7% коли-бактерий и 99.9% стафилококков на поверхности предметов

в) убивает 100% of коли-бактерий, стафилококков и микробы группы сальмонелла в фосфатных соединениях

г) убивает 100% of коли-бактерий в воде

2. уничтожает споры бактерий

а) уничтожает brevibacteiumspores

б) способность уничтожать бактерии в воздухе

в) убивает 99.999% brevibacteiumspores в воде

3. разрушает вирусы

а) разрушает 99.99% HBsAg и 100% HAAg

б) разрушает вирус гриппа в воздухе

в) разрушает PVI и вирус Геппатита А в воде в течении нескольких секунд или минут

г) разрушает вирус SA-11 в воде

д) когда концентрация озона в сыворотке крови достигает 4мг/л, он способен разрушить HIV в 106cd50/ml

а) убивает 100% aspergillusversicolor и penicillium

б) убивает 100% aspergillusniger, fusariumoxysporumf.sp.melonogea и fusariumoxysporumf.sp. lycopersici

в) убивает aspergillus niger и candida bacteria

2. Как образуется озон в природе?

Образуется из молекулярного кислорода (О2) при электрическом разряде или под действием ультрафиолетового излучения. Особенно это ощутимо в местах, богатых кислородом: в лесу, в приморской зоне или около водопада. При попадании солнечных лучей, в капле воды кислород преобразуется в озон. Также Вы чувствуете запах озона после грозы, когда он образуется при электрическом разряде.

3. Почему воздух после грозы кажется чище?

Озон окисляет примеси органических веществ и обеззараживает воздух, придавая приятную свежесть (запах грозы). Характерный запах озона проявляется при концентрациях 10-7 %.

4. Что такое озоносфера? Каково ее влияние на жизнь на планете?

Основная масса озона в атмосфере расположена на высоте от 10 до 50 км с максимальной концентрацией на высоте 20-25 км, образуя слой, называемый озоносферой.

Озоносфера отражает жесткое ультрафиолетовое излучение, защищает живые организмы от губительного действия радиации. Именно, благодаря образованию "озона из кислорода воздуха стала возможна жизнь на суше.

5. Когда был открыт озон и какова история его использования?

Впервые озон описан в 1785г. голландским физиком Мак Ван Марум.

В 1832г. проф. Базельского университета Шонбейн опубликовал книгу «Получение озона химическим способом». Он же дал ему название «озон» от греческого «пахнущий».

В 1857г. Вернер фон Сименс сконструировал первую техническую установку для очистки питьевой воды. С тех пор озонирование позволяет получить гигиенически чистую воду.

К 1977г. во всем мире действует более 1000 установок по озонированию питьевой воды. В настоящее время 95% питьевой воды в Европе обрабатывается озоном. Большое распространение озонирование получило в Канаде и США. В России действует несколько крупных станций, которые используются для доочистки питьевой воды, подготовки воды плавательных бассейнов, при глубокой очистке сточных вод в оборотном водоснабжении автомобильных моек.

Впервые озон как антисептическое средство был использован во время первой мировой войны.

С 1935г. стали использовать ректально введение озонокислородной смеси для лечения различных заболеваний кишечника (проктит, геморрой, язвенный колит, свищи, подавление патогенных микроорганизмов, восстановление кишечной флоры).

Изучение действия озона позволили использовать его в хирургической практике при инфекционных поражениях, лечении туберкулеза, пневмонии, гепатитов, герпетической инфекции, анемии и пр.

В Москве в 1992г. под руководством Заслуженного деятеля науки РФ д.м.н. Змызговой А..В. создан «Научно-практический центр озонотерапии», где озон используется для лечения широкого круга заболеваний. Продолжаются разработки эффективных неповреждающих методов воздействия с использованием озона. Сегодня озон считается популярным и эффективным средством обеззараживания воды, воздуха и очищения продуктов питания. Так же кислородно-озоновые смеси используются в лечении различных заболеваний, косметологии и многих сферах хозяйствования.

6. Можно ли дышать озоном? Является ли озон вредным газом?

Действительно, дышать озоном высоких концентраций опасно, он способен сжечь слизистую оболочку дыхательных органов.

Озон является сильным окислителем. Здесь кроются его положительные и вредоносные свойства. Все зависит от концентрации, т.е. от процентного соотношения содержания озона в воздухе. Действие его подобно огню... В малых количествах он поддерживает и оздоравливает, в больших количествах - может погубить.

7. В каких случаях используются низкие и высокие концентрации озона?

Относительно высокие концентрации используются для дезинфекции, а более низкие концентрации озона не повреждают белковые структуры и способствуют заживлению.

8. Каково действие озона на вирусы?

Озон подавляет (инактивирует) вирус как вне, так и внутри клетки, частично разрушая его оболочку. Прекращается процесс его размножения и нарушается способность вирусов соединяться с клетками организма.

9. Как проявляется бактерицидное свойство озона при воздействии на микроорганизмы?

При воздействии озона на микроорганизмы, в том числе на дрожжи, локально повреждается их клеточная мембрана, что приводит к их гибели или невозможности размножаться. Отмечено повышение чувствительности микроорганизмов к антибиотикам.

В экспериментах установлено, что газообразный озон убивает практически все виды бактерий, вирусов, плесневых и дрожжеподобных грибов и простейших. Озон в концентрациях от 1 до 5 мг/л приводит к гибели 99,9% эшерихии коли, стрептококков, мукобактерий, филококков, кишечной и синегнойной палочек, протеев, клебсиеллы и др. в течении 4-20 мин.

10. Как действует озон в неживой природе?

Озон реагирует с большинством органических и неорганических веществ. В процессе реакций образуется кислород, вода, оксиды углерода и высшие оксиды других элементов. Все эти продукты не загрязняют окружающую среду и не приводят к образованию концерагенных веществ в отличие от соединений хлора и фтора.

11. Могут ли быть опасными соединения, образующиеся в жилых помещениях при озонировании воздуха?

Концентрации озона, создаваемые бытовым озонатором приводят к образованию безвредных соединений в жилых помещениях. В результате озонирования помещения происходит увеличение содержания кислорода в воздухе и очистка от вирусов и бактерий.

12. Какие соединения образуются в результате озонирования воздуха в закрытых помещениях?

Большинство компонентов, окружающих нас соединений, реагируют с озоном, приводя к образованию безвредных соединений.

Большинство из них распадаются на углекислый газ, воду и свободный кислород. В ряде случаев образуются неактивные (безвредные) соединения (оксиды). Есть еще так называемые нереагентные вещества - оксиды титана, кремния, кальция и т.д. Они в реакцию с озоном не вступают.

13. Надо ли озонировать воздух в помещениях с кондиционерами?

После прохождения воздуха через кондиционеры и нагревательные приборы в воздухе снижается содержание кислорода и не снижается уровень токсичных компонентов воздуха. К тому же, старые кондиционеры сами являются источником загрязнения и заражения. «Синдром закрытых помещений» - головная боль, усталость, частые респираторные заболевания. Озонирование таких помещений просто необходимо.

14. Можно ли дезинфицировать кондиционер?

Да, можно.

15. Эффективно ли применение озонирования воздуха для устранения запахов прокуренных помещений и помещений после ремонта (запахи краски, лака)?

Да, эффективно. Обработку следует провести несколько раз, сочетая с влажной уборкой.

16. Какие концентрации озона губительны для бактерий, грибков в домашнем воздухе?

Концентрация 50-и частиц озона на 1000000000 частиц воздуха значительно снижает загрязнение воздуха. Особенно сильное воздействие оказывается на ешерихию коли, сальмонеллу, стафилококк, кандиду, аспергиллиус.

17. Проводились ли исследования воздействия озонированного воздуха на людей?

В частности, описан эксперимент, который проводился в течение 5-и месяцев с двумя группами людей - контрольной и тестируемой.

Воздух в помещении тестируемой группы наполнялся озоном с концентрацией 15 частиц озона на 1000000000 частиц воздуха. Все испытуемые отмечали хорошее самочувствие, исчезновение раздражительности. Медики отметили повышение содержания кислорода в крови, укрепление иммунной системы, нормализацию давления, исчезновение многих симптомов стресса.

18. Не является ли озон вредным для клеток организма?

Концентрации озона, создаваемые бытовыми озонаторами, подавляют вирусы и микроорганизмы, но не повреждают клеток организма, т.к. озон не повреждает кожу. Здоровые клетки организма человека имеют естественную защиту от повреждающего действия окисления (антиоксидантную). Иначе говоря, действие озона избирательно по отношению к живым организмам.

Это не исключает применения мер предосторожности. Во время процесса озонирования нахождение в помещении нежелательно, а после проведения озонирования помещение следует проветрить. Озонатор надо поместить в недоступное для детей место или предусмотреть невозможность его включения.

19. Какова производительность озонатора?

При нормальном режиме - 200 мг/час, при усиленном - 400 мг/час. Какова концентрация озона в помещении в результате работы озонатора? Концентрация зависит от объема помещения, от места расположения озонатора, от влажности воздуха и температуры. Озон не стойкий газ и быстро разлагается, поэтому концентрация озона сильно зависит от времени. Ориентировочные данные 0,01 - 0,04 РРm.

20. Какие концентрации озона в воздухе считаются предельными?

Безопасными считаются концентрации озона в пределах 0,5 - 2,5 РРm (0,0001 мг/л).

21. Для чего применяется озонирование воды?

Озон применяется для обеззараживания, удаления примесей, запаха и цветности воды.

1. В отличие от хлорирования и фторирования воды при озонировании в воду не вносится ничего постороннего (озон быстро распадается). При этом минеральный состав и pН остаются без изменений.

2. Озон обладает наибольшим обеззараживающим свойством против возбудителей болезней.

3. Разрушаются органические вещества в воде, предотвращая тем самым дальнейшее развитие микроорганизмов.

4. Без образования вредных соединений разрушаются большинство химикатов. К ним относятся пестициды, гербициды, нефтепродукты, моющие средства, соединения серы и хлора, являющиеся концерагенами.

5. Окисляются до неактивных соединений металлы, в том числе железо, марганец, алюминий, и пр. Окислы выпадают в осадок и легко фильтруются.

6. Быстро распадаясь озон превращается в кислород, улучшая вкусовые и лечебные свойства воды.

23. Каков показатель кислотности воды, прошедшей озонирование?

Вода имеет слабощелочную реакцию РН = 7,5 - 9,0. Эта вода рекомендуется для питья.

24. На сколько увеличивается содержание кислорода в воде после озонирования?

Содержание кислорода в воде увеличивается в 12 раз.

25. Как быстро распадается озон в воздухе, в воде?

В воздухе через 10 мин. концентрация озона уменьшается на половину, образуя кислород и воду.

В воде через 20-30 мин. озон распадается на половину, образуя гидроксильную группу и воду.

26. Как влияет нагрев воды на содержание в ней кислорода?

Содержание кислорода в воде после нагрева снижается.

27. От чего зависит концентрация озона в воде?

Концентрация озона зависит от примесей, температуры, кислотности воды, материала и геометрии емкости.

28. Почему используется молекула О 3 , а не О 2 ?

Озон примерно в 10 раз лучше растворим в воде, чем кислород, и хорошо сохраняется. Чем ниже температура воды, тем больше время сохранения.

29. Почему полезно пить насыщенную кислородом воду?

Использование озона усиливает потребление глюкозы тканями и органами, увеличивает насыщаемость кислородом плазмы крови, уменьшает степень кислородного голодания, улучшает микроциркуляцию.

Озон оказывает положительное действие на метаболизм печени и почек. Поддерживает работу сердечной мышцы. Уменьшает частоту дыхания и увеличивает дыхательный объем.

30. Для чего предназначен бытовой озонатор?

Бытовой озонатор можно использовать для:

дезинфекции и дезодорации воздуха в жилых помещениях, в ванной и туалетной комнатах, бытовках, шкафах, холодильнике и пр.;

обработки пищевых продуктов (мясо, рыба, яйца, овощи и фрукты);

улучшения качества воды (дезинфекция, обогащение кислородом, устранение хлора и др. вредных примесей);

домашней косметологии (устранение перхоти, угрей, полоскание горла, чистка зубов, устранение грибковых заболеваний, приготовление озонированного масла);

ухода за домашними животными и рыбками;

полива комнатных растений и обработка семян;

отбеливания и придания цветности белью;

обработки обуви.

31. Каков эффект применения озона в медицинской практике?

Озон оказывает антибактериальное, антивирусное действие (инактивация вирусов и уничтожение спор).

Озон активизирует и нормализует ряд биохимических процессов.

Эффект, получаемый при озонотерапии, характеризуется:

активизацией процессов детоксикации, происходит подавление

активности внешних и внутренних токсинов;

активизацией процессов метаболизма (обменных процессов);

усилением микроциркуляции (кровоснабжение

улучшением реологических свойств крови (кровь становитсяподвижной);

имеет четко выраженный обезболивающий эффект.

32. Как действует озон на иммунитет человека?

Повышается клеточный и гуморальный иммунитет. Активизируется фагоцитоз, усиливается синтез интерферонов и прочих неспецифических систем организма.

33. Как влияет озонирование на процессы метаболизма?

Использование озона усиливает потребление глюкозы тканями и органами, увеличивает насыщаемость кислородом плазмы крови, уменьшает степень кислородного голодания, улучшает микроциркуляцию. Озон оказывает положительное действие на метаболизм печени и почек. Поддерживает работу сердечной мышцы. Уменьшает частоту дыхания и увеличивает дыхательный объем.

34. Озон образуется при проведении сварочных работ и при работе ксерокса. Вреден ли этот озон?

Да, вреден, так как при этом образуются опасные примеси. Озон, вырабатываемый озонатором, чист и поэтому безвреден.

35. Есть ли разница между индустриальными, медицинскими и бытовыми озонаторами?

Индустриальные озонаторы дают большую концентрацию озона, опасную для домашнего применения.

Медицинские и бытовые озонаторы близки по показателям производительности, но медицинские рассчитаны на большее время непрерывной работы.

36. Каковы сравнительные характеристики дезинфекции при использовании ультрафиолетовых установок и озонаторов?

Озон по своим свойствам уничтожения бактерий и вирусов в 2,5 - 6 раз эффективнее ультрафиолетовых лучей и в 300 - 600 раз эффективнее хлора. При этом в отличии от хлора озон уничтожает даже цисты глистов и вируса герпеса и туберкулеза.

Озон удаляет из воды органические и химические вещества, разлагая их до воды, углекислого газа, образуя осадок неактивных элементов.

Озон легко окисляет соли железа и марганца, образуя нерастворимые вещества, которые устраняются отстаиванием или фильтрацией. В результате озонированная вода безопасна, прозрачна и приятна на вкус.

37. Можно ли дезинфицировать посуду с помощью озона?

Да! Хорошо дезинфицировать детскую посуду, посуду для консервирования и пр. Для этого поместить посуду в емкость с водой, опустить воздуховод с рассекателем. Обрабатывать в течение 10-15 мин.

38. Из каких материалов должна быть посуда для озонирования?

Стеклянная, керамическая, деревянная, пластмассовая, эмалированная (баз сколов и трещин). Нельзя использовать металлическую, в том числе алюминиевую и медную посуду. Резина не выдерживает контакта с озоном.

Анионный озонатор от американской корпорации Green World поможет Вам не только сохранить, но и значительно укрепить здоровье. Вы имеете возможность использовать в своем доме незаменимый прибор - анионный озонатор, который объединил в себе все качества и функциональные возможности как ионизатора воздуха, так и озонатора (многофункционального...

Озонатор для автомобиля снабженподсветкой и ароматизатором. Одновременно может быть включен режим озонации и ионизации. Эти режимы могут быть включены и по отдельности. Этот озонатор незаменим при дальних поездках, когда увеличивается утомляемость водителя, ухудшается зрение и память. Озонатор снимаетсонливость, придавая бодрость за счет притока...

Впервые ученые узнали о существовании неизвестного им газа, когда начали экспериментировать с электростатическими машинами. Случилась это в 17 веке. Но начали изучать новый газ лишь в конце следующего столетия. В 1785 голландский физик Мартин ван Марум получил озон, пропуская через кислород электрические искры. Название же озон появилось лишь в 1840; его придумал швейцарский химик Кристиан Шенбейн, произведя его от греческого ozon – пахнущий. По химическому составу этот газ не отличался от кислорода, но был значительно агрессивнее. Так, он мгновенно окислял бесцветный иодид калия с выделением бурого иода; эту реакцию Шенбейн использовал для определения озона по степени посинения бумаги, пропитанной раствором иодида калия и крахмала. Даже малоактивные при комнатной температуре ртуть и серебро в присутствии озона окисляются.

Оказалось, что молекулы озона, как и кислорода, состоят только из атомов кислорода, только не из двух, а из трех. Кислород О2 и озон О3 – единственный пример образования одним химическим элементом двух газообразных (при обычных условиях) простых веществ. В молекуле О3 атомы расположены под углом, поэтому эти молекулы полярны. Получается озон в результате «прилипания» к молекулам О2 свободных атомов кислорода, которые образуются из молекул кислорода под действием электрических разрядов, ультрафиолетовых лучей, гамма-квантов, быстрых электронов и других частиц высокой энергии. Озоном всегда пахнет около работающих электрических машин, в которых «искрят» щетки, около бактерицидных ртутно-кварцевых ламп, которые излучают ультрафиолет. Атомы кислорода выделяются и в ходе некоторых химических реакций. Озон образуется в малых количествах при электролизе подкисленной воды, при медленном окислении на воздухе влажного белого фосфора, при разложении соединений с высоким содержанием кислорода (KMnO4, K2Cr2O7 и др.), при действии на воду фтора или на пероксид бария концентрированной серной кислоты. Атомы кислорода всегда присутствуют в пламени, поэтому если направить струю сжатого воздуха поперек пламени кислородной горелки, в воздухе обнаружится характерный запах озона.
Реакция 3O2 → 2O3 сильно эндотермичная: для получения 1 моль озона надо затратить 142 кДж. Обратная реакция идет с выделением энергии и осуществляется очень легко. Соответственно озон неустойчив. В отсутствие примесей газообразный озон медленно разлагается при температуре 70° С и быстро – выше 100° С. Скорость разложения озона значительно увеличивается в присутствии катализаторов. Ими могут быть и газы (например, оксид азота, хлор), и многие твердые вещества (даже стенки сосуда). Поэтому чистый озон получить трудно, а работать с ним опасно из-за возможности взрыва.

Не удивительно, что в течение многих десятилетий после открытия озона неизвестны были даже основные его физические константы: долго никому не удавалось получить чистый озон. Как писал в своем учебнике Основы химии Д.И.Менделеев, «при всех способах приготовления газообразного озона содержание его в кислороде всегда незначительно, обыкновенно лишь несколько десятых долей процента, редко 2%, и только при очень пониженной температуре оно достигает 20%». Лишь в 1880 французские ученые Ж.Готфейль и П.Шаппюи получали озон из чистого кислорода при температуре минус 23° С. Оказалось, что в толстом слое озон имеет красивую синюю окраску. Когда охлажденный озонированный кислород медленно сжали, газ стал темно-синим, а после быстрого сброса давления температура еще более понизилась и образовались капли жидкого озона темно-фиолетового цвета. Если же газ не охлаждали или сжимали быстро, то озон мгновенно, с желтой вспышкой, переходил в кислород.

Позднее разработали удобный метод синтеза озона. Если подвергнуть электролизу концентрированный раствор хлорной, фосфорной или серной кислоты с охлаждаемым анодом из платины или из оксида свинца(IV), то выделяющийся на аноде газ будет содержать до 50% озона. Были уточнены и физические константы озона. Он сжижается намного легче кислорода – при температуре –112° С (кислород – при –183° С). При –192,7° С озон затвердевает. Твердый озон имеет сине-черный цвет.

Опыты с озоном опасны. Газообразный озон способен взрываться, если его концентрация в воздухе превысит 9%. Еще легче взрываются жидкий и твердый озон, особенно при контакте с окисляющимися веществами. Озон можно хранить при низких температурах в виде растворов во фторированных углеводородах (фреонах). Такие растворы имеют голубой цвет.

Химические свойства озона.

Для озона характерна чрезвычайно высокая реакционная способность. Озон – один из сильнейших окислителей и уступает в этом отношении только фтору и фториду кислорода OF2. Действующее начало озона как окислителя – атомарный кислород, который образуется при распаде молекулы озона. Поэтому, выступая в качестве окислителя, молекула озона, как правило, «использует» только один атом кислорода, а два других выделяются в виде свободного кислорода, например, 2KI + O3 + H2O → I2 + 2KOH + O2. Так же происходит окисление многих других соединений. Однако бывают и исключения, когда молекула озона использует для окисления все три имеющиеся у нее атома кислорода, например, 3SO2 + O3 → 3SO3; Na2S + O3 → Na2SO3.

Очень важное отличие озона от кислорода в том, что озон проявляет окислительные свойства уже при комнатной температуре. Например, PbS и Pb(OH)2 в обычных условиях не реагируют с кислородом, тогда как в присутствии озона сульфид превращается в PbSO4, а гидроксид – в PbO2. Если в сосуд с озоном налить концентрированный раствор аммиака, появится белый дым – это озон окислил аммиак с образованием нитрита аммония NH4NO2. Особенно характерна для озона способность «чернить» серебряные изделия с образованием AgO и Ag2O3.

Присоединив один электрон и превратившись в отрицательный ион О3–, молекула озона становится более стабильной. Содержащие такие анионы «озонокислые соли» или озониды были известны давно – их образуют все щелочные металлы, кроме лития, причем устойчивость озонидов растет от натрия к цезию. Известны и некоторые озониды щелочноземельных металлов, например, Са(О3)2. Если направить на поверхность твердой сухой щелочи струю газообразного озона, то образуется оранжево-красная корка, содержащая озониды, например, 4КОН + 4О3 → 4КО3 + О2 + 2Н2О. При этом твердая щелочь эффективно связывает воду, что предохраняет озонид от немедленного гидролиза. Однако при избытке воды озониды бурно разлагаются: 4КО3+ 2Н2О → 4КОН + 5О2. Разложение идет и при хранении: 2КО3 → 2КО2 + О2. Озониды хорошо растворимы в жидком аммиаке, что позволило выделить их в чистом виде и изучить их свойства.

Органические, вещества, с которыми озон соприкасается, он обычно разрушает. Так, озон, в отличие от хлора, способен расщеплять бензольное кольцо. При работе с озоном нельзя использовать резиновые трубки и шланги – они моментально «прохудятся». Реакции озона с органическими соединениями идут с выделением большого количества энергии. Например, эфир, спирт, вата, смоченная скипидаром, метан и многие другие вещества самовоспламеняются при соприкосновении с озонированным воздухом, а смешение озона с этиленом приводит к сильному взрыву.

Применение озона.

Озон не всегда «сжигает» органические вещества; в ряде случаев удается провести специфические реакции с сильно разбавленным озоном. Например, при озонировании олеиновой кислоты (она в больших количествах содержится в растительных маслах) образуется азелаиновая кислота НООС(СН2)7СООН, которую используют для получения высококачественных смазочных масел, синтетических волокон и пластификаторов для пластмасс. Аналогично получают адипиновую кислоту, которую используют при синтезе найлона. В 1855 Шенбейн открыл реакцию с озоном непредельных соединений, содержащих двойные связи С=С, но только в 1925 немецкий химик Х.Штаудингер установил механизм этой реакции. Молекула озона присоединяется к двойной связи с образованием озонида – на этот раз органического, причем на место одной из связей С=С встает атом кислорода, а на место другой – группировка –О–О–. Хотя некоторые органические озониды выделены в чистом виде (например, озонид этилена), эту реакцию обычно проводят в разбавленном растворе, так как в свободном виде озониды – очень неустойчивые взрывчатые вещества. Реакция озонирования непредельных соединений пользуется у химиков-органиков большим почетом; задачи с этой реакцией часто предлагают даже на школьных олимпиадах. Дело в том, что при разложении озонида водой образуются две молекулы альдегида или кетона, которые легко идентифицировать и далее установить строение исходного непредельного соединения. Таким образом химики еще в начале 20 века установили строение многих важных органических соединений, в том числе природных, содержащих связи С=С.

Важная область применения озона – обеззараживание питьевой воды. Обычно воду хлорируют. Однако некоторые примеси в воде под действием хлора превращаются соединения с очень непpиятым запахом. Поэтому уже давно предложено заменить хлор озоном. Озонированная вода не приобретает постороннего запаха или вкуса; при полном окислении озоном многих органических соединений образуются только углекислый газ и вода. Очищают озоном и сточные воды. Продукты окисления озоном даже таких загрязнителей как фенолы, цианиды, повеpхностно-активные вещества, сульфиты, хлоpамины, представляют собой безвредные соединения без цвета и запаха. Избыток же озона довольно быстро распадается с образованием кислорода. Однако озонирование воды обходится дороже, чем хлорирование; кроме того, озон нельзя перевозить, и он должен производиться на месте использования.

Озон в атмосфере.

Озона в атмосфере Земли немного – 4 млрд. тонн, т.е. в среднем всего 1 мг/м3. Концентрация озона растет с удалением от поверхности Земли и достигает максимума в стратосфере, на высоте 20–25 км – это и есть «озоновый слой». Если весь озон из атмосферы собрать у поверхности Земли при нормальном давлении, получится слой толщиной всего около 2–3 мм. И вот такие малые количества озона в воздухе фактически обеспечивают жизнь на Земле. Озон создает «защитный экран», не пропускающий к поверхности Земли жесткие ультрафиолетовые солнечные лучи, губительные для всего живого.

В последние десятилетия большое внимание уделяется появлению так называемых «озоновых дыр» – областях со значительно уменьшенным содержанием стратосферного озона. Через такой «прохудившийся» щит до поверхности Земли доходит более жесткое ультрафиолетовое излучение Солнца. Поэтому ученые давно следят за озоном в атмосфере. В 1930 английский геофизик С.Чепмен для объяснения постоянной концентрации озона в стратосфере предложил схему из четырех реакций (эти реакции получили название цикла Чепмена, в них М означает любой атом или молекулу, которые уносят избыточную энергию):

О2 → 2О
О + О + М → О2 + М
О + О3 → 2О2
О3 → О2 + О.

Первая и четвертая реакции этого цикла – фотохимические, они идут под действием солнечной радиации. Для распада молекулы кислорода на атомы требуется излучение с длиной волны менее 242 нм, тогда как озон распадается при поглощении света в области 240–320 нм (последняя реакция как раз и защищает нас от жесткого ультрафиолета, так как кислород в этой спектральной области не поглощает). Остальные две реакции термические, т.е. идут без действия света. Очень важно, что третья реакция, приводящая к исчезновению озона, имеет энергию активации; это означает, что скорость такой реакции может увеличиваться под действием катализаторов. Как выяснилось, основной катализатор распада озона – оксид азота NO. Он образуется в верхних слоях атмосферы из азота и кислорода под действием наиболее жесткой солнечной радиации. Попадая в озоносферу, он вступает в цикл из двух реакций O3 + NO → NO2 + O2, NO2 + O → NO + O2, в результате которой его содержание в атмосфере не меняется, а стационарная концентрация озона снижается. Существуют и другие циклы, приводящие к снижению содержания озона в стратосфере, например, с участием хлора:

Cl + O3 → ClO + O2
ClO + O → Cl + O2.

Разрушают озон также пыль и газы, которые в большом количестве попадают в атмосферу при извержении вулканов. В последнее время возникло предположение, что озон также эффективно разрушает водород, выделяющийся из земной коры. Совокупность всех реакций образования и распада озона приводит к тому, что среднее время жизни молекулы озона в стратосфере составляет около трех часов.

Предполагают, что помимо природных, существуют и искусственные факторы, влияющие на озоновый слой. Хорошо известный пример – фреоны, которые являются источниками атомов хлора. Фреоны – это углеводороды, в которых атомы водорода замещены атомами фтора и хлора. Их используют в холодильной технике и для заполнения аэрозольных баллончиков. В конечном счете фреоны попадают в воздух и медленно поднимаются с потоками воздуха все выше и выше, достигая, наконец, озонового слоя. Разлагаясь под действием солнечной радиации, фреоны сами начинают каталитически разлагать озон. Пока не известно в точности, в какой степени именно фреоны повинны в «озоновых дырах», и, тем не менее, уже давно принимают меры по ограничению их применения.

Как показывают расчеты, через 60–70 лет концентрация озона в стратосфере может уменьшиться на 25%. И одновременно увеличится концентрации озона в приземном слое – тропосфере, что тоже плохо, так как озон и продукты его превращений в воздухе ядовиты. Основной источник озона в тропосфере – перенос с массами воздуха стратосферного озона в нижние слои. Ежегодно в приземный слой озона поступает примерно 1,6 млрд. тонн. Время жизни молекулы озона в нижней части атмосферы значительно выше – более 100 суток, поскольку в приземном слое меньше интенсивность ультрафиолетового солнечного излучения, разрушающего озон. Обычно озона в тропосфере очень мало: в чистом свежем воздухе его концентрация составляет в среднем всего 0,016 мкг/л. Концентрация озона в воздухе зависит не только от высоты, но и от местности. Так, над океанами озона всегда больше, чем над сушей, так как там озон распадается медленнее. Измерения в Сочи показали, что воздух у морского побережья содержит на 20% больше озона, чем в лесу в 2 км от берега.

Современные люди вдыхают значительно больше озона, чем их предки. Основная причина этого – увеличение количества метана и оксидов азота в воздухе. Так, содержание метана в атмосфере постоянно растет, начиная с середины 19 века, когда началось использование природного газа. В загрязненной оксидами азота атмосфере метан вступает в сложную цепочку превращений с участием кислорода и паров воды, итог которой можно выразить уравнением CH4 + 4O2 → HCHO + H2O + 2O3. В роли метана могут выступать и другие углеводороды, например, содержащиеся в выхлопных газах автомобилей при неполном сгорании бензина. В результате в воздухе крупных городов за последние десятилетия концентрация озона выросла в десятки раз.

Всегда считалось, что во время грозы концентрация озона в воздухе резко увеличивается, так как молнии способствуют превращению кислорода в озон. На самом деле увеличение незначительно, причем оно происходит не во время грозы, а за несколько часов до нее. Во время же грозы и в течение нескольких часов после нее концентрация озона снижается. Объясняется это тем, что перед грозой происходит сильное вертикальное перемешивание воздушных масс, так что дополнительное количество озона поступает из верхних слоев. Кроме того, перед грозой увеличивается напряженность электрического поля, и создаются условия для образования коронного разряда на остриях различных предметов, например, кончиков ветвей. Это также способствует образованию озона. А затем при развитии грозового облака под ним возникают мощные восходящие потоки воздуха, которые и снижают содержание озона непосредственно под облаком.
Интересен вопрос о содержании озона в воздухе хвойных лесов. Например, в Курсе неорганической химии Г.Реми можно прочитать, что «озонированный воздух хвойных лесов» – выдумка. Так ли это? Ни одно растение озон, конечно, не выделяет. Но растения, особенно хвойные, выделяют в воздух множество летучих органических соединений, в том числе ненасыщенных углеводородов класса терпенов (их много в скипидаре). Так, в жаркий день сосна выделяет в час 16 мкг терпенов на каждый грамм сухой массы хвои. Терпены выделяют не только хвойные, но и некоторые лиственные деревья, среди которых – тополь и эвкалипт. А некоторые тропические деревья способны выделить в час 45 мкг терпенов на 1 г сухой массы листьев. В результате в сутки один гектар хвойного леса может выделить до 4 кг органических веществ, лиственного – около 2 кг. Покрытая лесом площадь Земли составляет миллионы гектаров, и все они выделяют в год сотни тысяч тонн различных углеводородов, в том числе и терпенов. А углеводороды, как это было показано на примере метана, под действием солнечной радиации и в присутствии других примесей способствуют образованию озона. Как показали опыты, терпены в подходящих условиях действительно очень активно включаются в цикл атмосферных фотохимических реакций с образованием озона. Так что озон в хвойном лесу – вовсе не выдумка, а экспериментальный факт.

Озон и здоровье.

Как приятно прогуляться после грозы! Воздух чист и свеж, его бодрящие струи, кажется, без всяких усилий сами втекают в легкие. «Озоном пахнет, – часто говорят в таких случаях. – Очень полезно для здоровья». Так ли это?

Когда-то озон безусловно считали полезным для здоровья. Но если его концентрация превышает определенный порог, он может вызывать массу неприятных последствий. В зависимости от концентрации и времени вдыхания озон вызывает изменения в легких, раздражение слизистых глаз и носа, головную боль, головокружение, снижение кровяного давления; озон уменьшает сопротивляемость организма бактериальным инфекциям дыхательных путей. Предельно допустимая его концентрация в воздухе составляет всего 0,1 мкг/л, а это означает, что озон намного опаснее хлора! Если несколько часов провести в помещении при концентрации озона всего лишь 0,4 мкг/л, могут появиться загрудинные боли, кашель, бессонница, снижается острота зрения. Если долго дышать озоном при концентрации больше 2 мкг/л, последствия могут быть более тяжелыми – вплоть до оцепенения и упадка сердечной деятельности. При содержании озона 8–9 мкг/л через несколько часов происходит отек легких, что чревато смертельным исходом. А ведь такие ничтожные количества вещества обычно с трудом поддаются анализу обычными химическими методами. К счастью, человек чувствует присутствие озона уже при очень малых его концентрациях – примерно 1 мкг/л, при которых иодкрахмальная бумажка еще и не собирается синеть. Одним людям запах озона в малых концентрациях напоминает запах хлора, другим – сернистого газа, третьим – чеснока.

Ядовит не только сам озон. С его участием в воздухе образуется, например, пероксиацетилнитрат (ПАН) СН3–СО–ООNО2 – вещество, оказывающее сильнейшее раздражающее, в том числе слезоточивое, действие, затрудняющее дыхание, а в более высоких концентрациях вызывающее паралич сердца. ПАН – один из компонентов образующегося летом в загрязненном воздухе так называемого фотохимического смога (это слово образовано от английского smoke – дым и fog – туман). Концентрация озона в смоге может достигать 2 мкг/л, что в 20 раз больше предельно допустимой. Следует также учесть, что совместное действие озона и оксидов азота в воздухе в десятки раз сильнее, чем каждого вещества порознь. Не удивительно, что последствия возникновения такого смога в больших городах могут быть катастрофическими, особенно если воздух над городом не продувается «сквозняками» и образуется застойная зона. Так, в Лондоне в 1952 от смога в течение нескольких дней погибло более 4000 человек. А смог в Нью-Йорке в 1963 убил 350 человек. Аналогичные истории были в Токио, других крупных городах. Страдают от атмосферного озона не только люди. Американские исследователи показали, например, что в областях с повышенным содержанием озона в воздухе время службы автомобильных шин и других изделий из резины значительно уменьшается.
Как уменьшить содержание озона в приземном слое? Снизить поступление в атмосферу метана вряд ли реалистично. Остается другой путь – уменьшить выбросы оксидов азота, без которых цикл реакций, приводящих к озону, идти не может. Путь это тоже непростой, так как оксиды азота выбрасываются не только автомобилями, но и (главным образом) тепловыми электростанциями.

Источники озона – не только на улице. Он образуется в рентгеновских кабинетах, в кабинетах физиотерапии (его источник – ртутно-кварцевые лампы), при работе копировальной техники (ксероксов), лазерных принтеров (здесь причина его образования – высоковольтный разряд). Озон – неизбежный спутник производства пергидроля, аргоно-дуговой сварки. Для уменьшения вредного действия озона необходимо оборудование вытяжки у ультрафиолетовых ламп, хорошее проветривание помещения.

И все же вряд ли правильно считать озон безусловно вредным для здоровья. Все зависит от его концентрации. Как показали исследования, свежий воздух очень слабо светится в темноте; причина свечения – реакции окисления с участием озона. Свечение наблюдали и при встряхивании воды в колбе, в которую был предварительно напущен озонированный кислород. Это свечение всегда связано с присутствием в воздухе или воде небольших количеств органических примесей. При смешении свежего воздуха с выдыхаемым человеком интенсивность свечения повышалась в десятки раз! И это не удивительно: в выдыхаемом воздухе обнаружены микропримеси этилена, бензола, уксусного альдегида, формальдегида, ацетона, муравьиной кислоты. Они-то и «высвечиваются» озоном. В то же время «несвежий», т.е. полностью лишенный озона, хотя и очень чистый, воздух свечения не вызывает, а человек его ощущает как «затхлый». Такой воздух можно сравнить с дистиллированной водой: она очень чистая, практически не содержит примесей, а пить ее вредно. Так что полное отсутствие в воздухе озона, по-видимому, тоже неблагоприятно для человека, так как увеличивает содержание в нем микроорганизмов, приводит к накоплению вредных веществ и неприятных запахов, которые озон разрушает. Таким образом, становится понятной необходимость регулярного и длительного проветривания помещений, даже если в нем нет людей: ведь попавший в комнату озон долго в ней не задерживается – частично он распадается, а в значительной степени оседает (адсорбируется) на стенках и других поверхностях. Сколько должно быть озона в помещении, пока сказать трудно. Однако в минимальных концентрациях озон, вероятно, необходим и полезен.

Илья Леенсон

ОПРЕДЕЛЕНИЕ

Озон является аллотропной модификацией кислорода. В обычном состоянии он представляет собой светло-синий газ, в жидком - темно-голубой, а в твердом - темно-фиолетовый (до черного).

Может оставаться в состоянии переохлажденной жидкости до температуры (-250 o C). плохо растворяется в воде, лучше в тетрахлориде углерода и различных фторхлоруглеродах. Очень сильный окислитель.

Химическая формула озона

Химическая формула озона - O 3 . Она показывает, что в составе молекулы этого вещества находится три атома кислорода (Ar = 16 а.е.м.). По химической формуле можно вычислить молекулярную массу озона:

Mr(O 3) = 3×Ar(O) = 3×16 = 48

Структурная (графическая) формула озона

Более наглядной является структурная (графическая) формула озона . Она показывает то, как связаны атомы между собой внутри молекулы (рис. 1).

Рис. 1. Строение молекулы озона.

Электронная формула , показывающая распределение электронов в атоме по энергетическим подуровням показана ниже:

16 O 1s 2 2s 2 2p 6 3s 2 3p 4

Она также показывает, что кислород, из которого состоит озон, относится к элементам р-семейства, а также число валентных электронов — на внешнем энергетическом уровне находится 6 электронов (3s 2 3p 4).

Примеры решения задач

ПРИМЕР 1

Задание Массовая доля водорода в его соединении с кремнием равна 12,5%. Выведите эмпирическую формулу соединения и рассчитайте его молярную массу.
Решение

Вычислим массовую долю кремния в соединении:

ω (Si) = 100% — ω(H) = 100% — 12,5% = 87,5%

Обозначим количество моль элементов, входящих в состав соединения за «х» (кремний) и «у» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y = ω(Si)/Ar(Si) : ω(H)/Ar(H);

x:y= 87,5/28: 12,5/1;

x:y= 3,125: 12,5 = 1: 4

Значит формула соединения кремния с водородом будет иметь вид SiH 4 . Это гидрид кремния.

Ответ SiH 4

ПРИМЕР 2

Задание В соединении калия, хлора и кислорода массовые доли элементов соответственно равны 31,8%, 29%, 39,2%. Установите простейшую формулу соединения.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%

Обозначим количество моль элементов, входящих в состав соединения за «х» (калий), «у» (хлор) и «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(K)/Ar(K) : ω(Cl)/Ar(Cl) : ω(O)/Ar(O);

x:y:z= 31,8/39: 29/35,5: 39,2/16;

x:y:z= 0,82: 0,82: 2,45 = 1: 1: 3

Значит формула соединения калия, хлора и кислорода будет иметь вид KClO 3 . Это бертолетова соль.

Ответ KClO 3

Из-за неблагополучного состояния окружающей среды в России ежегодно погибают более 300 тыс. человек. К традиционным, существовавшим в нашей стране много лет экологическим проблемам прибавилась еще одна - проблема тропосферного (приземного) озона.

Озон: полезен вверху, вреден внизу

Трудно найти человека, который не знал бы о существовании в стратосфере Земли озоновых дыр, лишающих нас защиты от избыточного ультрафиолета Солнца, губительного для всего живого. На фоне этой глобальной проблемы, казалось бы, совершенно невинно выглядит влияние на наше здоровье другого озона, находящегося в приземном воздухе, которым мы дышим. Люди обращают внимание на загрязнение атмосферы выбросами промышленных предприятий и выхлопами автомобилей, но мало кто знает, как опасен приземный озон для человеческого организма.

Токсичность озона (О3) проявляется в результате его действия на дыхательную систему человека и животных. Озон обладает высокой химической активностью, для проявления его токсического действия достаточно минимальных концентраций. Он является почти идеальным боевым отравляющим веществом, и только по причине трудности его

получения он не оказался в числе примененных боевых газов в период Первой мировой войны. К числу его недостатков военные относят резкий запах.

Опасность приземного озона, условия его возникновения и необходимость разработки способов защиты давно тревожат общественность и правительства промышленно развитых стран.

Существует международный термин «доиндустриальный озон». Его концентрация в воздухе составляла 10-20 мкг/м3. Развитие автотранспорта привело к значительному увеличению концентрации озона в тропосфере. Этот приземный озон американцы называют «плохим», в отличие от хорошего - стратосферного. Индустриально развитые страны столкнулись с этой бедой несколько десятилетий назад, а Россия - только в конце 1990-х годов.

Как образуется озон?

Повышенный уровень приземного озона возникает лишь при определенных метеорологических условиях - в жаркую погоду.

В приземном слое атмосферы основным источником озона являются фотохимические реакции, в которых участвуют оксиды азота, летучие углеводороды (выхлопы автотранспорта и промышленные выбросы) и ряд других веществ. Эти компоненты называются предшественниками озона. Под действием ветра они могут распространяться на сотни километров. Когда уровень солнечной радиации мал (пасмурная летняя погода, осень, зима), фотохимические реакции в приземной атмосфере отсутствуют или потекают очень вяло. Но стоит увеличиться солнечной радиации, особенно в безветренную погоду, как воздух в городе и за его пределами становится особенно ядовитым.

Жарким летом 2002 г. в традиционном курортном месте дальнего Подмосковья мы фиксировали уровни озона, превышавшие 300 мкг/м3! Что означают эти цифры?

Озон - вещество высшего класса опасности, по токсичности он превосходит синильную кислоту и хлор, которые являются боевыми отравляющими веществами. Всемирная организация здравоохранения отнесла озон к веществам безпорогового действия, т. е. любая концентрация в воздухе этого газа, сильнейшего канцерогена, опасна для человека. Предельно допустимые концентрации озона в России составляют:
- для жилых зон 30 мкг/м3 (среднее за сутки) и 160 мкг/м3 (среднее за 30 мин и не более 1% повторяемости в год);
- для промышленных зон - не более 100 мкг/м3.

В станах Европейского Союза принят стандарт 110 мкг/м3 за 8 ч светлого времени суток.

В чем опасность озона для здоровья?

Озон попадает в организм со вдыхаемым воздухом. Озон оказывает общетоксическое, раздражающее, канцерогенное, мутагенное, генотоксическое действие; вызывает усталость, головную боль, тошноту, рвоту, раздражение дыхательных путей, кашель, расстройство дыхания, хронический бронхит, эмфизему легких, приступы астмы, отек легких, гемолитическую анемию (из справочника Я.М. Глушко «Вредные неорганические соединения в промышленных выбросах в атмосферу»; Л.,: Химия, 1987).

А эта информация взята с американского правительственного экологического сайта (www.epa.gov/air now (environmental Protection Agency). Ученые США определили, что каждый третий американец обладает повышенной чувствительностью к озону. Люди этой группы могут серьезно навредить своему здоровью, если не будут следить за сообщениями о содержании озона в приземных слоях атмосферы в районах мест их проживания. Такие сведения предоставляет ЕРА (Агентство по защите окружающей среды) совместно с Правительством США. Получая ее, люди оптимизируют свои решения.

Воздействие озона на здоровье человека:
- вызывает раздражение органов дыхания, кашель, тяжесть в груди; эти симптомы могут длиться несколько часов и переходить в хроническую фазу;
- уменьшает легочную функцию;
- способствует развитию астмы и увеличивает количество ее приступов;
- провоцирует возникновение аллергических реакций;
- повреждает ткани бронхов и легких;
- способствует возникновению бесплодия у мужчин;
- значительно понижает иммунитет;
- провоцирует канцерогенные и мутогенные процессы.

Ученые выявили четыре группы людей, которые подвергаются повышенному риску негативного воздействия озона:
- дети;
- взрослые, по роду занятий много времени проводящие в активном движении на открытом воздухе;
- люди, имеющие высокую чувствительность к озону (причину ученые определить пока не могут);
- пожилые люди. К этой же группе относятся больные с хроническими заболеваниями органов дыхания и сердечно-сосудистой системы.

Как защитить себя от действия приземного озона?

Если вы узнали о его повышенной концентрации, выход один - избегать нахождения на открытом воздухе; если это невозможно, максимально ограничить пребывание вне помещения, не двигаться при этом активно; не разрешать детям выходить на улицу.

Ученые Йельского университета США опубликовали данные о негативном воздействии озона на здоровье человека. Они сопоставили данные о смертности с данными о выбросах озона в 95 городах за период 1987-2000 гг. Повышение в воздухе концентрации озона на 20 мкг/м3 приводит к увеличению смертности на следующей неделе более чем на 0,5 % общего количества смертей.

В 2005 г. несколько европейских государств подписали Протокол об ограничении выбросов загрязняющих веществ. Европейские эксперты подсчитали, что при сокращении выбросов предшественников озона (оксидов азота и летучих углеводородов) примерно на 40% уменьшится количество дней, в которые происходит интенсивное образование тропосферного озона.

При уменьшении вредных выбросов промышленности и автомобильного транспорта (соответственно и уменьшения образования приземного озона) количество лет жизни, потерянных людьми из-за хронических болезней, в 2010 году будет на 2,3 млн лет меньше, чем в 1990. Показатели смертности среди детей и подростков, спровоцированных присутствием в атмосфере этого опасного газа и микрочастиц, могут сократиться приблизительно на 47 500 случаев. Вредное воздействие повышенной концентрации озона на процесс роста растений по сравнению с 1990 г. уменьшится на 44% .

В России в 1993 г. ущерб от повышенного озонового фона только по ржи и пшенице составил 150 млн долл., а в Европе - более 2 млрд.

Анализ, проведенный в ходе переговоров о заключении Протокола, показал, что предполагаемая польза от его реализации (улучшение здоровья населения, повышение урожайности в сельском хозяйстве, ограничение ущерба для строений и памятников) значительно превышает по стоимости прогнозируемые расходы (самое малое - в 3 раза) по претворению этого документа в жизнь.

Мы проводили эксперимент по одновременному измерению озона двумя одинаковыми газоанализаторами в Москве и в курортном районе дальнего Подмосковья. Оказалось, что за период летних измерений концентрации озона в городском воздухе были меньше, чем аналогичные показатели в атмосфере курортной зоны. Парадоксальный факт удалось объяснить с помощью модели образования этого газа в пригородах мегаполисов, которую разработали зарубежные ученые. Суть метода в следующем.

С подветренной стороны мегаполиса концентрации озона начинают расти с расстояния примерно 20 км от города и достигают максимальных значений при удалении от него на 50-60 км. В городской среде постоянно действуют мощные источники оксидов азота. Они вступают в реакцию с озоном и нейтрализуют его, а за городом таких источников нет и избыток озона остается в воздухе.

Эти реакции носят циклический характер и определяют равновесие в атмосфере. Таким образом, за городом фотохимическое равновесие устанавливается в сторону высоких значений озона, а в городской среде - более низких. Но это не значит, что воздух мегаполисе безопасней. За последние годы атмосфера Москвы превратилась в химический реактор, производящий очень ядовитые соединения. В присутствии двуокиси азота (а этого газа в городском воздухе всегда много) озон становится в 20 раз более токсичным. Москвичи, спасаясь на дачах от летней жары, не представляют, какой опасности подвергают свое здоровье. Единственное спасение - холодное, пасмурное и дождливое лето! Потепление климата в Московском регионе может привести к катастрофической ситуации с уровнем приземного озона, особенно если наши власти и дальше будут считать его полезным.

Следует сказать несколько слов еще об одном популярном мифе. В художественной литературе можно встретить фразу «после грозы чудесно пахнет озоном». Практически все люди, включая министра экологии, считают, что чем больше озона в воздухе, тем полезней для здоровья, дышать нужно как можно глубже. Между тем многолетние измерения озона в курортных зонах и городах всегда показывают одну картину: - после грозы и ливня в приземной атмосфере озон исчезает.

Как решают проблему тропосферного озона в США и странах Европейского союза? В Европе насчитывается более 10 тыс. станций контроля за предшественниками озона и за ним самим. Получаемая информация используется для оповещения населения. Самый посещаемый сайт в Германии - о содержании озона в воздухе. На основе полученных данных формируется политика в области охраны окружающей среды стран - членов ЕС. США и Европе уже удалось добиться ежегодного снижения концентраций озона в атмосферном воздухе.

В России нет ни одной станции контроля озона и его предшественников, хотя есть качественная аналитическая техника, для контроля уровня озона, специалисты, предлагающие способы решения этой проблемы. У властей нет ни воли, ни желания вникать в нее.

Как же реагируют на эту острейшую ситуацию чиновники, которые формируют политику природопользования, чиновники, которые строят дворцы на самой дорогой и самой опасной земле Подмосковья?

22 августа 2004 г. принят Федеральный закон № 12 «О внесении изменений в законодательные акты Российской Федерации и признании утратившими силу некоторых законодательных актов Российской Федерации в связи с принятием федеральных законов «О внесении изменений и дополнений в Федеральный закон «Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов Российской Федерации» и «Об общих принципах организации местного самоуправления в Российской Федерации».

Название закона, казалось бы, указывает на то, что изменения должны касаться органов государственной власти и местного самоуправления. Мы же убедились в том, что этот закон внес существенные изменения в жизнь всех граждан России, причем далеко не позитивного характера. Тенденция изменений в области природоохранного законодательства не внушает оптимизма, она демонстрирует факт самоустранения органов государственной власти от выполнения обязательств перед обществом по обеспечению экологической безопасности и ликвидации правовых гарантий и практических механизмов охраны окружающей среды. Важнейшим негативным аспектом принятых изменений является лишение природоохранной деятельности государственной финансовой поддержки, а также антиконституционные изменения в части разграничения полномочий между федеральными органами власти и органами власти субъектов РФ.

Ликвидированы правовые механизмы защиты атмосферного воздуха в городах.

Федеральные власти сняли с себя ответственность за жизнь и здоровье миллионов горожан.

Федеральный закон «Об охране атмосферного воздуха»

Качество воздушной среды является одним из определяющих факторов состояния окружающей среды. Общая тенденция развития законодательства в этой области демонстрирует отход от соблюдения конституционных гарантий права граждан на благоприятную окружающую среду.

Состояние атмосферного воздуха таких городов, как Москва, Новокузнецк, Череповец, Кемерово, Челябинск, Екатеринбург, является катастрофическим. Люди, проживающие в городах, вынуждены дышать токсичными выбросами промышленных предприятий, превышающими предельно допустимые нормы в сотни раз. Последние изменения, внесенные в Федеральный закон «Об охране атмосферного воздуха», лишают их даже теоретической возможности изменить ситуацию в будущем.

Возможно, судьба значительной части населения России, обеспечивающего благосостояние страны, не волнует ни исполнительную, ни законодательную власти. Однако собственная жизнь, казалось бы, не должна быть безразлична даже власть имущим. Существует мнение, что Москва находится в особом положении и трудности, переживаемые в регионах, москвичам не знакомы, а уж правительство, президент и депутаты Государственной думы вообще живут на другой планете. Во многом такое мнение обоснованно, но только не в ситуации с воздухом. И бомж, и президент, и председатель правительства, живя в Москве, дышат одним воздухом.

В Федеральный закон «Об охране атмосферного воздуха» внесены изменения, свидетельствующие о полной ликвидации системы защиты воздушной среды.

Статья 8 (утратила силу)

«Специально уполномоченный федеральный орган исполнительной власти в области охраны атмосферного воздуха в установленном порядке осуществляет деятельность в области охраны атмосферного воздуха совместно с другими федеральными органами исполнительной власти в пределах их компетенции и взаимодействует с органами исполнительной власти субъектов Российской Федерации».

Статья 9 (утратила силу)

«1. Юридические лица, имеющие источники выбросов вредных (загрязняющих) веществ в атмосферный воздух, а также вредного физического воздействия на атмосферный воздух, разрабатывают и осуществляют в области охраны атмосферного воздуха мероприятия по охране атмосферного воздуха.

2. С учетом мероприятий по уменьшению выбросов вредных (загрязняющих) веществ, данных мониторинга атмосферного воздуха, результатов контроля выбросов вредных (загрязняющих) веществ, результатов расчетов рассеивания выбросов вредных (загрязняющих) веществ специально уполномоченный федеральный орган исполнительной власти в области охраны атмосферного воздуха, его территориальные органы разрабатывают соответствующие федеральные целевые программы, программы субъектов Российской Федерации и местные программы охраны атмосферного воздуха.

Мероприятия по охране атмосферного воздуха не должны приводить к загрязнению других объектов окружающей природной среды.

3. Проекты программ охраны атмосферного воздуха могут выноситься на обсуждение граждан и общественных объединений в целях учета их предложений при планировании и осуществлении мероприятий по улучшению качества атмосферного воздуха.

Статья 10 (утратила силу)

«Финансирование программ охраны атмосферного воздуха и мероприятий по его охране осуществляется в соответствии законодательством Российской Федерации.»

Анализируя внесенные в законодательство изменения, можно сделать следующие выводы:

1. Ликвидирован специально уполномоченный орган по охране атмосферного воздуха, фактически снята ответственность с федеральной власти за ужасающее состояние воздушной среды огромного количества российских городов с развитой промышленностью. Состояние воздуха в них представляет угрозу не только для здоровья, но и для жизни людей (ст. 8)

2. Ликвидированы программы охраны атмосферного воздуха (ст. 9).

3. С юридических лиц, имеющих источники выбросов вредных веществ, снята обязанность по охране атмосферного воздуха.

4. С федеральных органов власти и властей субъектов Российской Федерации снята обязанность по разработке и реализации программ и проведению мероприятий по охране атмосферного воздуха.

5. Ликвидирован контроль общественности и ее участие в планировании и осуществлении программ по охране атмосферного воздуха.

6. Ликвидировано финансирование программ и мероприятий по охране атмосферного воздуха (ст. 10).

Признание указанных статей утратившими силу делает бессмысленным само существование в России Закона об охране атмосферного воздуха.

Без гарантий правовой защиты оставлено население всех промышленных городов России, проживающих в условиях катастрофического загрязнения атмосферы.

А.М.Чучалин, О.А. Яковлева, В.А. Миляев, С.Н. Котельников.