Раздел "промышленная биотехнология". Основоположники отечественной биофармацевтики: опытное биотехнологическое производство ИБХ

Биотехнологическим процессом называют синтез какого - либо вещества (биотехнологического продукта) при непосредственном участии живых микроорганизмов и выделенных из них ферментов - биологических катализаторов.

Основными особенностями и отличиями биотехнологического процесса являются: участие микроорганизмов, сложный состав реакционной среды, сложный механизм реакции и длительность её протекания, чувствительность к внешним условиям (стерильности, давлению, температуре и т. п.).

Биотехнологические продукты получают по индивидуальным технологиям со своими агентами, сырьём, количеством стадий, технологическими режимами. Тем не менее можно выделить схему, типовую для данных производств. Общий вид её приведён на рис. 4.


Рис. 4. Типовая схема биотехнологических производств


Основной в этой схеме является биотехнологическая стадия, главная задача которой - получение определённого органического вещества. Она включает в себя ряд следующих биологических процессов, с помощью которых сырьё превращается в тот или иной конечный продукт (см. рис. 4).

Ферментация - особый класс химических превращений вещества, состоящий из серии взаимосвязанных реакций синтеза и разложения, протекающих в органических веществах под воздействием ферментов. Ферменты, таким образом, представляют собой универсальные биологические катализаторы, имеющие сложный состав.

Биотрансформация - процесс изменения химической структуры вещества под действием ферментов или ферментативной активности клеток микроорганизмов.

Биокатализ - химические превращения вещества, протекающие с использованием биокатализаторов - ферментов.

Биоокисление - потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

Метановое брожение - переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

Биокомпостирование - снижение содержания вредных органических веществ ассоциацией микроорганизмов в твёрдых отходах, которым придана специальная взрыхлённая структура для обеспечения доступа воздуха и равномерного увлажнения.

Биосорбция - сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закреплёнными на специальных твёрдых носителях.

Бактериальное выщелачивание - процесс перевода нерастворимых в воде соединений металлов в растворённое состояние под действием специальных микроорганизмов.

Биодеградация - деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии. Здесь используют следующие процессы: приготовление среды, её стерилизацию, подготовку посевного материала и биокатализатора, предварительную обработку сырья.

Разделение жидкости и биомассы в зависимости от их свойств осуществляют различными способами, отличающимися движущей силой процесса:

  • отстаивание - разделение под действием сил гравитации (при очистке сточных вод);
  • фильтрация - пропускание суспензии через фильтрующий материал под действием разности давлений с целью задержки биомассы на поверхности материала. С помощью микро- или ультрафильтрации получают раствор, свободный от взвешенных клеток биомассы;
  • сепарация или центрифугирование - разделение под действием центробежных сил. Таким способом отделяют, например, дрожжи при получении кормовой биомассы;
  • флотация - выделение биомассы из её пенной фракции;
  • коагуляция - отделение твёрдых веществ от жидкости путем их осаждения в виде крупных агломератов и последующего их отстаивания.
Выделение продуктов биосинтеза, очистка и концентрирование продукта являются вспомогательными процессами для получения продукта в готовой форме. Некоторые отличия имеются только на стадии выделения продуктов биосинтеза для внутри- и внеклеточных продуктов. Так, для внутриклеточных продуктов необходимо разрушить клеточную оболочку одним из методов- дезинтеграцией клеток, гидролизом, ферментолизом, автолизом и т. д.

Дезинтеграция клеток осуществляется физическими (ультразвук замораживание, декомпрессия и т. п.), химическими и биотехнологическими методами.

Гидролиз - разрушение клеточных оболочек под действием химических реагентов и температуры.

Ферментолиз - разрушение клеточных оболочек под действием ферментов при повышенной температуре.

Автолиз - разновидность ферментолиза, когда используются собственные ферментные клетки.

Общими для выделения внутри- и внеклеточных продуктов являются экстракция осаждение, адсорбция, ионный обмен, отгонка, ректификация ультрарование и нанофильтрация, обратный осмос, центрифугирование, ультрацентрифугирование.

Экстракция - переход целевого продукта из водной фазы в несмешивающуюся с водой органическую жидкость (экстрагент). Экстракция прямо из твердой фазы, в том числе и биомассы организмов, называется экстрагированием.

Осаждение - выделение целевого продукта путём добавления к жидкости реагента, взаимодействующего с растворённым продуктом и переводящего его в твердую фазу.

Адсорбция - перевод растворенного в жидкости продукта в твёрдую фазу путём его поглощения твёрдым носителем - сорбентом.

Ионный обмен сходен с адсорбцией, но в этом случае в твёрдую фазу переходят ионы (катионы или анионы), а не целиком молекула целевого продукта или примеси.

Отгонка, ректификация используются для выделения растворённых в культуральной жидкости легкокипящих продуктов, например, этилового спирта.

Ультрафильтрация, нанофильтрация, обратный осмос применяются для выделения высокомолекулярных соединений (белков, полипептидов, полинук-леотидов). Обратный осмос и нанофильтрация позволяют отделить даже небольшие по размеру молекулы.

Центрифугирование, ультрацентрифугирование используют для выделения вирусов, клеточных органелл, высокомолекулярных соединений.

Очистка продукта осуществляется с использованием разнообразных процессов, в числе которых экстракция, хроматография, диализ, ультрафильтрация, обратный осмос. На стадии концентрирования применяют выпаривание, сушку, осаждение, кристаллизацию, ультра-, гипер- или нанофильтрацию, обеспечивающие «отжим» растворителя из раствора.

Хроматография используется для разделения смесей веществ, часто очень близких по строению. Процесс проводят в специальных хроматографических колонках, заполненных твердым сорбентом. Все вещества сначала адсорбируются на этом сорбенте. Десорбция же разных по молекулярной массе соединений проходит с разной скоростью, что позволяет разделять и очищать их друг от друга, используя подходящий растворитель.

Диализ используется для разделения смесей низко- и высокомолекулярных соединений. Процесс основан на способности низкомолекулярных веществ проходить через мембрану, являющуюся непроницаемой для высокомолекулярных соединений. Таким путём осуществляют очистку вакцин и ферментов от солей и низкомолекулярных растворимых примесей.

Кристаллизация - процесс, основанный на различной растворимости веществ при разных температурах. Как правило, в ходе этого процесса выделяют твердые целевые продукты, а примеси остаются в маточном растворе. Так, например, получают кристаллы пенициллина.

В зависимости от места, которое занимают биотехнологические продукты в типовой технологической схеме, они могут представлять собой: 1) газы со стадии ферментации (примеры - углекислый газ, биогаз); 2) среду ферментации - кулыпуральную жидкость вместе с микроорганизмами (пример - кефир) или твердый субстрат (пример - сыр); 3) концентрат культуральной жидкости (пример - кормовой лизин); 4) жидкость, полученную после отделения биомассы от культуральной жидкости (пример - квас, пиво); 5) инактивированную биомассу (пример - кормовые дрожжи); 6) жизнеспособную биомассу - биопрепарат (пример - пекарские дрожжи, силосные закваски); 7) ослабленную биомассу (пример - живые вакцины); 8) очищенный поток жидкости при очистке сточных вод и т.д.

С.В. Макаров, Т.Е. Никифорова, Н.А. Козлов

БИОТЕХНОЛОГИЯ

БИОТЕХНОЛОГИЯ - производственное использование биологических агентов (в частности микроорганизмов) для получения полезных продуктов и осуществления целевых превращений. В биотехнологических процессах также используются такие биологические макромолекулы как белки - чаще всего ферменты, рибонуклеиновые кислоты.

Биотехнология - это наука об использовании биологических процессов в технике и промышленном производстве. Название ее происходит от греческих слов bios - жизнь, teken - искусство, logos - слово, учение, наука. В соответствии с определением Европейской федерации биотехнологов (ЕФБ, 1984) биотехнология базируется на интегральном использовании биохимии, микробиологии и инженерных наук в целях промышленной реализации способностей микроорганизмов, культур клеток тканей и их частей. Уже в самом определении предмета отражено его местоположение как пограничного, благодаря чему результаты фундаментальных исследований в области биологических, химических и технических дисциплин приобретают выраженное прикладное значение.

Основным направлением компании ООО "Пропионикс" является пищевая биотехнология:

(пищевая биоиндустрия) - раздел биотехнологии, занимающийся разработкой теории и практики создания пищевых продуктов общего, лечебно-профилактического назначения и специальной ориентации.

Развитие производства и пищевого инжиниринга продуктов данной группы является необходимым элементом для формирования в России рынка здорового питания. Задачей данного комплекса мероприятий является создание пробиотических продуктов, расширение исследований и практики внедрения в ассортимент предприятий новых продуктов и комплексных решений.

К функционально пищевым продуктам относят пищевые продукты систематического употребления, сохраняющие и улучшающие здоровье и снижающие риск развития заболеваний благодаря наличию в их составе функциональных ингредиентов. Они не являются лекарственными средствами, но препятствуют возникновению отдельных болезней, способствуют росту и развитию детей, тормозят старение организма. В соответствии с мировой практикой продукт считается функциональным, если регламентируемое содержание микронутриентов в нем достаточно для удовлетворения (при обычном уровне потребления) 25-50% от среднесуточной потребности в этих компонентах. Развитие направления является важной социальной задачей, снижающей нагрузку на сектор медицины и социально-экономический ущерб от болезней.

"Пищевые ингредиенты, включая витамины и функциональные смеси"

Пищевые ингредиенты используются для повышения питательной ценности, удлинения срока хранения, изменения консистенции и усиления вкуса и аромата продуктов. Используемые производителями пищевые ингредиенты, как правило, имеют растительное или бактериальное происхождение. Многие аминокислотные добавки, усилители вкуса и витамины, добавляемые в пищевые продукты, производятся с помощью бактериальной ферментации. В результате реализации комплекса мероприятий биотехнология должна обеспечить производителям пищевых продуктов возможность синтеза большого количества пищевых добавок, которые в настоящее время слишком дороги либо малодоступны из-за ограниченности природных источников этих соединений.

"Глубокая переработка пищевого сырья"

Биотехнология предоставляет множество возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления.

Сельскохозяйственная биотехнология


Прим.: Здесь актуальным для ООО "Пропионикс" являются направления Сельскохозяйственной биотехнологии, отмеченные в программе под пп 5.7. и 5.9 (кормовой белок и биологические компоненты кормов и премиксов):

"Кормовой белок"

Согласно терминологии указанной программы, кормовой микробиологический белок (кормовые дрожжи)* - это сухая концентрированная биомасса дрожжевых клеток, специально выращиваемая на корм сельскохозяйственным животным, птице, пушным зверям, рыбе. Добавление кормового белка в корма резко улучшает их качество и способствует повышению производительности в животноводстве. Комплексом мероприятий будет предусмотрено развитие производства кормового белка в России и создание новых научно-технических заделов, совершенствующих технологии его производства и виды использования.

*Прим.: Однако здесь следует отметить, что использование бактерий в качестве продуцента белкового корма является более эффективным, так как бактерии образуют до 75% белка по массе, в то время как дрожжи - не более 60%. Например, использование различных штаммов пропионовокислых бактерий (Propionibacterium freudenreichii subsp. shermanii), позволяет получать кормовой белок со значительными технологическими и качественными преимуществами.

"Биологические компоненты кормов и премиксов"

Современный уровень технологий кормления сельскохозяйственных животных опирается на широкое применение биологичских компонентов (ферменты, аминокислоты, БВК, пробиотики и другие). В результате развития животноводства в России, которое в основном опирается на импорт технологий и поголовья, сформировался емкий рынок этих продуктов биотехнологии. Однако формирование рынка не привело пока к развитию производственной и технологической базы, появлению новых продуктов, созданных на основе научных достижений российских ученых.

В 2010 году в животноводстве в качестве кормов было использовано 45 млн. т зерна, что говорит о крайне низкой эффективности кормопроизводства в стране. Доля зерна в комбикормах составляет 70% (в странах Европейского Союза - 40-45%), кроме того, в непереработанном виде было использовано более половины из общего количества зерна предназначенного для кормов.

Важно отметить, что производство комбикормов и премиксов в значительной степени ведется без использования биопрепаратов (ферментов, ветеринарных и кормовых антибиотиков, пробиотиков и так далее). При таком кормлении конверсия корма в получение животноводческой продукции существенно отстает от мировых показателей, что снижает конкурентоспособность российского животноводства. Комплексом мероприятий будут созданы условия для развития производственной и технологической базы биотехнологических компонентов кормов и премиксов.

Реализация указанных комплексов мероприятий позволит решить вопросы создания высокоэффективного сельского хозяйства и обеспечения населения полноценным сбалансированным питанием.

См. также:

  • Пробиотики в животноводстве (птицеводстве)

«Если без науки не может быть современной промышленности, то без нее не может быть и современной науки»

Дмитрий Иванович Менделеев

Биотехнология - это уникальная наука, которая использует живые организмы и биологические процессы в практических интересах человека.

Биотехнология позволяет улучшить качество, питательную ценность и безопасность как сельскохозяйственных культур, так и продуктов животного происхождения, составляющих основу используемого пищевой промышленностью сырья.

Кроме того, биотехнология предоставляет массу возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления; и даже биоразрушаемую пластиковую упаковку, уничтожающую бактерии.

Возделывание трансгенных культур первого поколения уже принесло фермерам неплохие доходы. Польза, которую при этом получил потребитель, не так очевидна, но не учитывать ее нельзя. Например, исследования показали, что кукуруза устойчивых к насекомым сортов (содержащих ген Bt-токсина) практически не повреждается насекомыми и, соответственно, менее подвержена грибковым заболеваниям, чем кукуруза обычных сортов. Таким образом, содержание синтезируемых этими возбудителями микотоксинов, некоторые из которых могут вызывать гибель скота и хроническое отравление людей, в растениях Bt-сортов гораздо ниже.

Полезные свойства следующего поколения генетически модифицированных культур гораздо более очевидны для потребителя. Кроме улучшения качества и безопасности пищи в целом, в будущем должны появиться специализированные продукты, отличающиеся повышенной питательностью и способствующие сохранению и укреплению здоровья.

На современном рынке представлено большое количество полезных для здоровья растительных масел, получаемых с помощью биотехнологии. Биотехнология позволила ученым снизить содержание насыщенных жирных кислот в некоторых растительных маслах. Им также удалось осуществить трансформацию омега-6 полиненасыщенной линолевой жирной кислоты в омега-3 полиненасыщенную линоленовую, встречающуюся в основном в рыбе и способствующую снижению уровня холестерина в крови.

Другим вопросом, касающимся питательных свойств растительных масел, является отрицательное влияние на состояние здоровья транс-изомеров жирных кислот, образующихся при гидрогенизации жиров. Этот процесс применяется для повышения жаростойкости (для жарки) или изменения консистенции (для изготовления маргарина) растительных масел. Процесс гидрогенизации приводит к образованию вредных транс-изомеров жирных кислот.

Специалисты биотехнологических компаний разработали метод придания соевому маслу необходимых качеств не за счет гидрогенизации, а за счет повышения содержания в нем стеариновой кислоты.

Биотехнологи, работающие с животными, тоже занимаются поисками путей повышения качества продуктов питания. Уже создана говядина с пониженным содержанием жира и свинина с повышенным соотношением мясо/сало.

Повышение питательной ценности продуктов имеет особенно большое значение для развивающихся стран. Исследователи университета Неру (Нью-Дели) использовали ген южноафриканского растения амаранта для повышения содержания белка в клубнях картофеля. Трансгенный картофель также содержит большое количество незаменимых аминокислот, не входящих в состав клубней обычного картофеля. В качестве примеров можно также упомянуть «золотой рис» и масло канолы, обогащенные витамином А. Дальнейшее усовершенствование «золотого риса» привело к повышению содержания в зернах легкоусваиваемых форм железа.

Биотехнология подает большие надежды и в улучшении показателей продуктов функционального питания. Программы разработки и внедрения на рынок нутрицевтиков - продуктов-лекарств, систематическое употребление которых оказывает регулирующее действие на определенные системы и органы организма, улучшая здоровье человека, приняты во многих странах. Такие продукты содержат повышенное по сравнению с обычными количество незаменимых аминокислот, витаминов, минералов и других биологически активных веществ. Знакомые всем нутрицевтики - чеснок и лук, содержащие вещества, снижающие уровень холестерина и усиливающие иммунитет; богатый антиоксидантами зеленый чай; брокколи и кочанная капуста, в состав которой входят глюкозинолаты, стимулирующие активность противоопухолевых ферментов.

Биотехнология используется для повышения содержания этих и других полезных соединений в продуктах функционального питания. Например, исследователи университета Пердью (г. Лафейетт, штат Индиана) и Министерства сельского хозяйства США (USDA) создали сорт томатов, содержащий в три раза более высокий по сравнению с обычными сортами уровень антиоксиданта ликопена. Употребление ликопена снижает риск возникновения рака простаты и молочной железы, а также снижает содержание в крови «плохого» холестерина. Другая группа специалистов USDA работает над увеличением содержания в клубнике эллаговой кислоты, обладающей противоопухолевыми свойствами.

Биотехнологи занимаются улучшением качества растительного сырья также с точки зрения его привлекательности для покупателя и легкости приготовления. Ученые удлиняют срок хранения фруктов и овощей; делают морковь, паприку и сельдерей более хрустящими; создают не содержащие семян сорта дынь и винограда; продлевают длительность сезонно-географической доступности томатов, клубники и малины; улучшают вкусовые качества томатов, салата-латука, перца, зеленого горошка и картофеля; создают не содержащие кофеина сорта кофе и чая.

Японские ученые идентифицировали фермент, заставляющий нас плакать во время резки лука, и таким образом уже сделали первый шаг на пути к созданию лука, от которого не плачут.

Большая часть работы по улучшению способности продуктов переносить тепловую обработку заключается в изменении соотношения содержания в них воды и крахмала. Например, богатый крахмалом картофель полезней, так как во время жарки он впитывает меньше жира. Другим полезным свойством крахмалистой картошки является то, что для ее приготовления требуется меньше энергии и, соответственно, меньше финансовых затрат. Большинство изготовителей томатных паст и кетчупов в настоящее время используют в качестве сырья созданные с помощью метода клеточных культур сорта томатов. Мякоть таких помидоров содержит на 30% меньше воды, и их переработка экономит пищевой промышленности США 35 миллионов долларов ежегодно.

Другой областью пищевой промышленности, экономически выигрывающей от повышения качества сырья, является производство молочных продуктов. Биотехнологические методы позволили новозеландским ученым добиться повышения содержания в молоке белка казеина - важного компонента процесса сыроварения - на 13%.

Биотехнология также обеспечивает возможность получения продуктов, производство которые при традиционном подходе оказывается экономически невыгодным. Например, промышленное изготовление используемых в качестве подсластителей полимеров фруктозы давно перестало быть прерогативой обычных методов пищевого процессинга. Полимеры фруктозы представляют собой короткие цепочки, состоящие из молекул фруктозы, по вкусу напоминающие сахар, но не содержащие калорий. Исследователи обнаружили ген, превращающий 90% сахара сахарной свеклы в полимеры фруктозы. Они составляют 40% веса такой трансгенной свеклы, что делает ее весьма привлекательным сырьем для изготовления подсластителей.

Наиболее значимой проблемой безопасности сырья для производителей продуктов питания является микробное заражение, которое может возникнуть на любом этапе движения продукта от фермы до стола потребителя. Любой биотехнологический продукт, снижающий количество микроорганизмов на продуктах животного и растительного происхождения, существенно повышает безопасность сырья пищевой промышленности. Повышение безопасности продуктов за счет снижения микробной контаминации начинается с фермы. Устойчивые к вредителям и заболеваниям трансгенные сорта растений в значительно меньшей степени подвержены бактериальному заражению. Новые биотехнологические методы диагностики позволяют выявлять характер бактериальных заболеваний на ранних этапах и с высокой степенью точности, что позволяет изымать и уничтожать заболевших животных или инфицированные растения до того, как болезнь распространилась.

Биотехнология способствует повышению качества сырья еще и за счет выявления и удаления аллергенных белков, содержащихся в таких продуктах, как арахис, соя и молоко. Хотя 95% аллергенов могут быть отнесены к одной из восьми пищевых групп, в большинстве случаев мы не знаем, какой из тысяч пищевых белков послужил причиной запуска аллергической реакции. Использование биотехнологических методик привело к значительному прогрессу в этой области. Кроме того, биотехнологи разработали методы блокирования или удаления генов аллергенности из геномов арахиса, сои и креветок.

И, наконец, биотехнология помогает в повышении качества сельскохозяйственного сырья путем снижения содержания натуральных растительных токсинов, обнаруженных в некоторых культурах, в том числе в картофеле и маниоке.

Биологические методы включают:

микробиологический синтез

генетическую инженерию

клеточную и белковую инженерию

инженерную энзимологию

культивирование клеток растений, животных и бактерий

методы слияния клеток

Биотехнология как наука возникла на стыке слияния биологических, химических и технических наук.

Основные разделы биотехнологии.

Микробная биотехнология - основная часть биотехнологии.

Связана с поисками новых природных продуцентов. Это генетика и селекция известных микроорганизмов и получение штаммов с высокой продуктивностью.

Методы - индуцированный мутагенез или ступенчатый отбор лучших форм или генная инженерия.

Связана с производством различных пищевых продуктов: вино, хлеб, молочные продукты и прочее.

1) Инженерная инзимология

Цель - создание технологических процессов с использованием ферментов.

Решает конкретные задачи:

Создание нового продукта или улучшение его качества;

Использование нетрадиционных видов сырья;

Разработка безотходных технологий.

Очень перспективно исследование иммобилизированных ферментов и клеток на носителе.

Этот метод применяется в медицине для лечения и диагностики различных заболеваний. Иммобилизированные клетки применяют при биологической очистке сточных вод.

Тканевые ферменты животных и растений способствуют формированию химических предшественников вкуса и аромата, консистенции за счет специфической деструкции биополимерных систем пищевого сырья, т.е. осуществляют созревание.

3) Генная инженерия.

Цель - направленное создание организмов с заданными свойствами на основе изменения (рекомбинации) их генотипа.

Генная инженерия позволяет изолировать или изменять отдельные гены, модифицируя молекулу ДНК и перенося ее из одного организма в другой.

Амплификация нужных генов.

4) Клеточная инженерия.

Объект - культуры клеток высших животных или растительных организмов.

Получают культивированием на различных средах отдельно выделенных из организмов клеток.

Задача - конструирование новых клеток и клеточных систем.

Передача - прием рисков в перестрахование между двумя конкрет­ными страховыми компаниями может быть разовой операцией (что ис­торически появилось раньше), а может осуществляться на регулярной основе. В силу чего перестрахование бывает необязатель­ным(факультативным) и обязательным (облигаторным).

Факультативный метод перестрахования отличается полной свободой возможных участников перестраховочной цессии. Необяза­тельность здесь заключается в том, что договор перестрахования может быть заключен, а может быть нет, соответственно, условия той и другой стороны могут быть приняты, а могут быть отвергнуты. Вопрос о за­ключении сделки такого рода с тем или иным перестраховщиком пере­страхователь решает в течение времени с момента подачи страховате­лем заявления на страхование до момента заключения договора прямого страхования. Перестрахователь передает потенциальным перестрахов­щиком информацию о риске, условиях прямого страхования, размере собственного удержания. Перестраховщики могут принять предложение перестрахователя, могут отказаться в силу каких-либо причин, а могут, проанализировав полученную информацию, предложить внести изме­нения в договор прямого страхования (в страховое покрытие, размер страхового тарифа, оговорки) или в размер собственного удержания це­дента. Перестрахователь, получив условия перестраховщиков, выбирает наиболее приемлемый для себя вариант и заключает договор.

Специфической особенностью данной формы перестрахования яв­ляется то, что размер страховой премии по такому договору зависит от спроса и предложения на цедируемый риск на перестраховочном рынке. По более востребованным рискам (с меньшей степенью реализации) страховая премия (цена страхования) будет меньше, по менее востребо­ванным - больше. Причем возможна ситуация, когда страховая премия по договору перестрахования может оказаться больше, чем страховая премия по договору прямого страхования.

Договор облигаторного перестрахования предполагает обяза­тельную уступку перестрахователем заранее согласованной части риска по всем заключаемым договорам прямого страхования. Перестрахов­щик, соответственно, обязан принять эти части риска.

Договоры перестрахования бывают пропорциональными и не­пропорциональными . Суть пропорционального страхования состоит в том, что риск, возмещение и страховая премия распределяются между перестрахователем и перестраховщиком в оговоренной договором про­порции.

К основным видами договоров пропорционального перестрахо­вания относятся квотные и эксцедентные договоры. Рассмотрим их суть в упрощенном варианте.

Поквотному договору перестрахователь передает перестрахов­щику в перестрахование согласно заранее установленному проценту (квоте) часть всех принятых на страхование рисков по определенному виду или группе видов страхования.

По эксцедентым договорам рассчитывается собственное удержа­ние цедента, а превышение над ним - эксцедент отдается в перестрахо­вание.

Непропорциональное перестрахование появилось позже пропор­ционального. Расчеты в этом случае строятся либо на основании окончательного финансового результата, либо на основе только очень крупного убытка. К непропорциональным видам договоров перестра­хования относятся договоры эксцедента убытка и договоры эксцедента убыточности.

По договорам эксцедента убытка перестраховщик участвует в возмещении убытков от страхового случая только при превышении ими обусловленной перестраховочным договором суммы.

Договор эксцедента убыточности отличается от предыдущего вида договоров тем, что перестраховщик участвует в покрытии убыточ­ности страховой суммы (представляющий собой отношение величины фактических страховых выплат к совокупной страховой сумме по дого­ворам данного вида страхования за определенный период), если убы­точность превысит установленный перестраховочным договором уро­вень.

Надо сказать, что имеется также множество видоизмененных и комбинированных договоров на основе перечисленных выше форм ор­ганизации отношений и видов договоров перестрахования.

Классификация продуктов биотехнологии.

I. В зависимости от количества.

1. Продукты тонкого биологического синтеза – от 100 кг до 1000 т в год – вакцины, витамины, антибиотики для медицины. основная стоимость связана с очисткой и анализом.

2. Продукты маломасштабного биосинтеза – до 20 тыс. тонн в год – аминокислоты для пищевой промышленности, напитки, продукты получаемые ферментацией, антибиотики для с/х.

3. Крупномасштабный биологический синтез – сточные воды после биологической очистки, биополимеры для отдельных отраслей промышленности – полисахариды для извлечения остатков нефти, выщелачивания Ме из руд. Основное условие - дешевизна. Более 20 тыс. тонн в год.

II. По товарным формам.

1. Биопрепараты – основной компонент – жизнеспособные клетки м/о или др. организмы закваски, бактериальные удобрения.

2. Инактивированная биомасса м/о – белок одноклеточных организмов.

3. Биопрепараты на основе очищенных метаболитов – ферменты, витамины, гормоны, антибиотики.

III. Образование биотехнологических продуктов в зависимости от стадии роста биологических объектов.

1. Первичные метаболиты.

2. Вторичные метаболиты.

Биотехнология наиболее развита в Японии (аминокислоты), США (1-я крупная биотехнологическая компания). В XXI в. ок. 20% продуктов станут продукцией биотехнологии. В РБ биотехнология отнесена к новым высоким технологиям. Это связано с ограниченностью ресурсов, никой энерго- и материалоемкостью биотехнологических производств. Возможностью использования местного сырья, экологичность биотехнологических проектов на фоне радиационного и химического загрязнения.

Основные потребители биотехнологической продукции:

Сельское хозяйство (ветеринария);

Пищевая промышленность;

Химическая промышленность.

Для развития ветеринарии требуется ок. 500 препаратов, ок. 100 получат методами биотехнологии.

Схема биотехнологического производства

Исходное сырье культивирование конечный продукт постеферментативная стадия

(ферментация) (целевой) (конечному продукту придается товарный вид,

(предферментация) ↓ утилизируются отходы производства)

(подогрев, размельчение аппаратура биологические объекты сырья и др.).

Характеристика биологических объектов биотехнологии

Клетки м/о – прокариоты и одноклеточные эукариоты (дрожжи, простейшие, водоросли);

Высшие растения;

Животные;

Трансгены;

Многокомпонентные системы, представленные клетками или определенными компонентами клеток.

Источники получения биологических объектов:

Коллекции культур;

Образцы природного материала. В этом случае необходимо получить чистую культуру м/о.

Традиционная биотехнология зародилась десять-двенадцать тысяч лет назад, когда закончилось последнее оледенение. Веками человек использовал микроорганизмы для выпечки хлеба, приготовления пива, сыра, выращивания сои, производства вина, витаминов. Интерес к производству пищевых продуктов не ослабевает и в наше время, но эти производства перешли на новый уровень с использованием всех новейших достижений современной биологии.

Разрабатываются биотехнологии получения экологически чистой пищи для обеспечения сбалансированного питания как на основе высших растений, так и с помощью микробиологического синтеза.

Продукты биотехнологического производства

Продукты биотехнологии являются результатом функционирования биологических систем для технических и промышленных процессов. Сюда относятся как традиционные организмы, так и организмы, явившиеся результатом генной инженерии.

Растения являются наиболее дешевым продуцентом белков и других продуктов питания. Стоимость белка, полученного путем сельскохозяйственного культивирования сои или кукурузы, составляет менее 1 дол./кг. В то время как использование в настоящее время микробных клеток в закрытых системах (ферментерах) и особенно культивируемых клеток животных в качестве продуцентов фармацевтических белков обходится в сотни и тысячи раз дороже. Поэтому исследования последних лет имели целью, с одной стороны, показать возможность получения биологически эквивалентных форм того или иного белка в трансгенных растениях, а с другой, - повысить содержание белка и облегчить и удешевить его последующую очистку.

К настоящему времени уже показано, что растения могут производить белки животного происхождения, такие как энкефалин, моноклональные антитела, специфичные для бактерий, вызывающих зубной кариес. Предполагается, что на основе таких моноклональных антител, продуцируемых трансгенными растениями, удастся создать действительно антикариесную зубную пасту.

Из других белков животного происхождения, которые представляют интерес для медицины, показана продукция в растениях человеческого в-интерферона. Получен картофель, экспрессирующий олигомеры нетоксичной субъединицы В-токсина холеры. Эти трансгенные растения могут быть использованы для получения дешевой вакцины против такого заболевания, как холера. Причем в случае холеры иммунизация вполне эффективно происходит при пероральном приеме вакцины.

Генетическая инженерия метаболизма растительных жиров уже привела к новым коммерческим продуктам. Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты - основной компонент растительного масла. В 1995 г. была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45 % 12-членной жирной кислоты - лауриновой. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.

Дальнейшее изучение специфики биохимического синтеза жирных кислот, по-видимому, приведет к возможности управлять этим синтезом с целью получения жирных кислот различной длины и различной степени насыщения, что позволит значительно изменить производство детергентов, косметики, кондитерских изделий, затвердителей, смазочных материалов, лекарств, полимеров, дизельного топлива и многого другого, что связано с использованием углеводородного сырья.

Однако одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства, с одной стороны, и микробного синтеза, с другой, в формировании продовольственной базы человечества.

Львиную долю продуктов, созданных на основе современных биотехнологий (генетической инженерии), составили фармацевтические белки, прежде всего инсулин, альфа-интерферон, антиген вируса гепатита В, эритропоэтин, фактор стимулирования гранулоцитов и многие другие вещества. В этих молекулах заключена такая мощь, что у множества разнообразных заболеваний, еще пять лет назад бывших неизлечимыми, появляется совершенно иной прогноз.

Например, достигнут существенный прогресс в борьбе с раком и возрастной слепотой - заболеваниями прежде неизлечимыми. Несколько лет назад в стадии клинических испытаний находилось менее 10 противораковых препаратов, большинство из которых представляли собой высокотоксичные средства химиотерапии. Сегодня испытания с участием людей проходят более 400 противораковых лекарств, и почти все они - целевого действия, на основе биотехнологий и с минимальными побочными эффектами.

На основе биотехнологий создано 230 лекарственных препаратов и сопутствующих продуктов, включая лекарства от бессонницы, множественного склероза, острой боли, хронической болезни почек, недержания, язв полости рта и рака.

Ни для одного раздела медицины биотехнология не сделала так много, как для онкологии. С появлением новых лекарств, которые уничтожают только клетки опухоли, почти не повреждая здоровые ткани, изменилась вся парадигма лечения рака.

Теперь медицина рассматривает рак как хроническое, поддающееся лечению заболевание. Только в 2004 г. FDA одобрила четыре целевых препарата против рака - Avastin, Tarceva, Iressa и Erbitux. Применение Avastin от компании Genentech позволяет продлить жизнь пациентов с раком легких, груди и кишечника - первейшая задача для всякого препарата от рака.

Создано и выпущено на рынок множество новых биотехнологических продуктов, повышающих урожайность сельскохозяйственных культур и продуктивность сельскохозяйственных животных.

Продуктами биотехнологии являются возобновляемые источники энергии - различные виды биотоплива. Налажено производство этанола из сырья, содержащего сахарозу, глюкозу, фруктозу, другие моно- или олигосахариды, крахмал или целлюлозу, с помощью дрожжей или бактерий. В настоящее время этанол все в большей мере применяется в качестве экологически чистого моторного топлива. Поставлено производство бутанола и ацетона с использованием бактерий-бродильщиков рода Clostridia. Технология производство водорода испытана пока только в масштабе лаборатории.

Получение метана, или биогаза, осуществляемое смешанной микробной культурой, устраняет отходы, угрожающие планете, и производит ценное газообразное топливо, заменитель природного газа. Перспективно производство длинноцепочечных углеводородов (бионефти) из биомассы углеводородсинтезирующих одноклеточных водорослей. Эти водоросли могут быть выращены в биореакторе в виде чистой культуры. Их можно также культивировать в составе природных экосистем в озерах, прудах или лагунах.

Продолжают развиваться процессы получения традиционных биотехнологических продуктов, к которым можно отнести антибиотики, алкалоиды, гормоны роста растений, ферменты, аминокислоты, витамины и т.д. Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.

Микроорганизмы способны осуществлять реакции трансформации, в которых те или другие соединения превращаются в новые продукты. Условия протекания этих реакций мягкие, и во многих случаях микробиологические трансформации предпочтительнее химических. Пример существующих крупномасштабных промышленных биоконверсий - производство уксуса из этанола, глюконовой кислоты из глюкозы. Широко используется микробная модификация стероидов, которые являются сложными полициклическими липидами. Теперь с использованием биоконверсии получают кортизон, гидрокортизон, преднизолон и целый ряд других стероидов, что в сотни раз снижает себестоимость производства стероидов.

Пока получение ферментов с помощью микроорганизмов более выгодно, чем из растительных и животных источников. Микробные клетки продуцируют более 2 тысяч ферментов, катализирующих биохимические реакции, связанные с ростом, дыханием и образованием продуктов. Многие из этих ферментов могут быть выделены и проявляют свою активность независимо от клетки. В мире производится около 20 ферментов в объеме 65 тыс. т (а существует, как предполагают 25 000 ферментов).

Например, промышленным способом производят такие ферменты, как амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза, липаза, целлюлаза, оксидаза и др. Использование иммобилизованной глюкозоизомеразы для непрерывного получения глюкозы является наиболее крупным процессом такого рода в мире.

Микробные ферменты активно используют в клинической диагностике при определении уровня холестерина в крови и мочевой кислоты. Ферменты предлагают использовать для очистки канализационных и водопроводных труб и во многих других сферах человеческой деятельности. Ферменты для медицинских или аналитических целей должны быть высокоочищенными.

Производство аминокислот относится к одной из наиболее передовых областей биотехнологии. Аминокислоты получают путем химического синтеза или экстракцией из белковых гидролизатов. Незаменимые аминокислоты могут получаться микробиологическим путем более эффективно, чем путем химического синтеза. За рубежом 60 % мощностей по производству аминокислот занимает глутаминовая кислота, далее идут метионин, лизин и глицин. С помощью микроорганизмов можно получить до 60 органических кислот. Многие из них получают в промышленном масштабе - итаконовая, молочная, уксусная, лимонная.

Витамины синтезируют в основном химическим путем или получают из естественных источников. Однако рибофлавин (В2), витамин В12 и аскорбиновую кислоту получают микробиологическим путем. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроорганизмы являются также ценным источником получения никотиновой кислоты (витамин РР).

Микроорганизмы являются источником получения липидов специального назначения с заранее определенными свойствами. Микробные жиры заменяют растительные (а в ряде случаев и превосходят) и могут использоваться в разных отраслях промышленности, сельского хозяйства, медицине.

Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoc. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и других молекулярных сит. Одним из перспективных биодеградируемых полимеров, синтезируемых бактериями, являются полигидроксиалканоаты. Область использования этого класса полимеров широка - от сельского хозяйства до медицины.

С молекулярной биотехнологией человечество связывают самые большие надежды и по возможности точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний, и по значительному повышению урожайности сельскохозяйственных культур, и по многим другим до сих пор нерешенным проблемам.

К сожалению, львиную долю стоимости производства зачастую составляет не наращивание биомассы, а последующие процессы выделения и очистки продукта. Стоимость очистки тем выше, чем ниже концентрация вещества в клетках. Это особенно важно в случае фармацевтических препаратов, требующих высокой степени чистоты.

В данной главе будет рассматриваться последняя стадия получения целевого продукта - его выделение. Эта стадия существенно различается в зависимости от локализации продукта и его химической природы. Если продукт находится в культуральной жидкости, то он, как правило, образует очень разбавленные растворы и суспензии, содержащие, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, поэтому необходимо использовать методы, позволяющие провести разделение, например, тот или иной вид хроматографии.

Если целевой продукт локализуется в клетке, то необходимо использовать более сложный подход к его извлечению из клетки.

Н.А. Воинов, Т.Г. Волова