Приращение функции как решать. Open Library - открытая библиотека учебной информации

по медицинской и биологической физике

ЛЕКЦИЯ №1

ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

ЧАСТНЫЕ ПРОИЗВОДНЫЕ.

1. Понятие производной, ее механический и геометрический смысл.

а) Приращение аргумента и функции.

Пусть дана функция y=f(х), где х– значение аргумента из области определения функции. Если выбрать два значения аргумента х о и х из определенного интервала области определения функции, то разность между двумя значениями аргумента называется приращением аргумента: х - х о =∆х.

Значение аргумента x можно определить через x 0 и его приращение: х = х о + ∆х.

Разность между двумя значениями функции называется приращением функции: ∆y =∆f = f(х о +∆х) – f(х о).

Приращение аргументаи функции можно представить графически (рис.1). Приращение аргумента и приращение функции может быть как положительным, так и отрицательным. Как следует из рис.1 геометрически приращение аргумента ∆х изображается приращением абсциссы, а приращение функции ∆у – приращением ординаты. Вычисление приращения функции следует проводить в следующем порядке:

    даем аргументу приращение ∆х и получаем значение – x+Δx;

2) находим значение функции для значения аргумента (х+∆х) – f(х+∆х);

3) находим приращение функции ∆f=f(х + ∆х) - f(х).

Пример: Определить приращение функции y=х 2 , если аргумент изменился от х о =1 до х=3. Для точки х о значение функции f(х о)=х² о; для точки (х о +∆х) значение функции f(х о +∆х) = (х о +∆х) 2 = х² о +2х о ∆х+∆х 2 , откуда ∆f = f(х о +∆х)–f(х о) = (х о +∆х) 2 –х² о = х² о +2х о ∆х+∆х 2 –х² о = 2х о ∆х+∆х 2 ; ∆f = 2х о ∆х+∆х 2 ; ∆х = 3–1 = 2; ∆f =2·1·2+4 = 8.

б) Задачи, приводящие к понятию производной. Определение производной, ее физический смысл.

Понятие приращения аргумента и функции необходимы для введения понятия производной, которое исторически возникло исходя из необходимости определения скорости тех или иных процессов.

Рассмотрим, каким образом можно определить скорость прямолинейного движения. Пусть тело движется прямолинейно по закону: ∆Ѕ= ·∆t. Дляравномерного движения:= ∆Ѕ/∆t.

Для переменного движения значение ∆Ѕ/∆tопределяет значение ср. , т.е. ср. =∆Ѕ/∆t.Но средняя скорость не дает возможности отразить особенности движения тела и дать представление об истинной скорости в момент времени t. При уменьшении промежутка времени, т.е. при ∆t→0 средняя скоростьстремится к своему пределу – мгновенной скорости:

 мгн. =
 ср. =
∆Ѕ/∆t.

Таким же образом определяется и мгновенная скорость химической реакции:

 мгн. =
 ср. =
∆х/∆t,

где х – количество вещества, образовавшееся при химической реакции за время t. Подобные задачи по определению скорости различных процессов привели к введению в математике понятия производной функции.

Пусть дана непрерывная функция f(х),определенная на интервале ]а,в[иее приращение ∆f=f(х+∆х)–f(х).Отношение
является функцией ∆х и выражает среднюю скорость изменения функции.

Предел отношения , когда ∆х→0,при условии, что этот предел существует, называется производной функции:

y" x =

.

Производная обозначается:
– (игрек штрих по икс);f" (х) – (эф штрих по икс); y" – (игрек штрих); dy/dх(дэ игрек по дэ икс); - (игрек с точкой).

Исходя из определения производной, можно сказать, что мгновенная скорость прямолинейного движения есть производная от пути по времени:

 мгн. = S" t = f" (t).

Таким образом, можно сделать вывод, что производная функции по аргументу х есть мгновенная скорость изменения функции f(х):

у" x =f" (х)= мгн.

В этом и заключается физический смысл производной. Процесс нахождения производной называется дифференцированием, поэтому выражение «продифференцировать функцию» равносильно выражению «найти производную функции».

в) Геометрический смысл производной.

П
роизводная функции у = f(х)имеет простой геометрический смысл, связанный с понятием касательной к кривой линии в некоторой точкеM. При этом, касательную, т.е. прямую линию аналитически выражают в виде у = кх = tg· х, гдеугол наклона касательной (прямой) к оси Х. Представим непрерывную кривую как функцию у= f(х), возьмем на кривой точкуMи близкую к ней точку М 1 и приведем через них секущую. Ее угловой коэффициент к сек =tg β =.Если приближать точку М 1 к M, то приращение аргумента ∆х будет стремиться к нулю, а секущая при β=α займет положение касательной. Из рис.2 следует:tgα =
tgβ =
=у" x . Но tgαравен угловому коэффициенту касательной к графику функции:

к = tgα =
=у" x = f" (х). Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом и состоит геометрический смысл производной.

г) Общее правило нахождения производной.

Исходя из определения производной, процесс дифференцирования функции можно представить следующим образом:

f(х+∆х) = f(х)+∆f;

    находят приращение функции: ∆f= f(х + ∆х) - f(х);

    составляют отношение приращения функции к приращению аргумента:

;

Пример: f(х)=х 2 ; f" (х)=?.

Однако, как видно даже из этого простого примера, применение указанной последовательности при взятии производных – процесс трудоемкий и сложный. Поэтому для различных функций вводятся общие формулы дифференцирования, которые представлены в виде таблицы «Основных формул дифференцирования функций».

В координатной плоскости хОу рассмотрим график функции y=f (x) . Зафиксируем точку М(х 0 ; f (x 0)) . Придадим абсциссе х 0 приращение Δх . Мы получим новую абсциссу х 0 +Δх . Это абсцисса точки N , а ордината будет равна f (х 0 +Δх ). Изменение абсциссы повлекло за собой изменение ординаты. Это изменение называют приращение функции и обозначают Δy .

Δy=f (х 0 +Δх) — f (x 0). Через точки M и N проведем секущую MN , которая образует угол φ с положительным направлением оси Ох . Определим тангенс угла φ из прямоугольного треугольника MPN .

Пусть Δх стремится к нулю. Тогда секущая MN будет стремиться занять положение касательной МТ , а угол φ станет углом α . Значит, тангенс угла α есть предельное значение тангенса угла φ :

Предел отношения приращения функции к приращению аргумента, при стремлении последнего к нулю, называют производной функции в данной точке:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох :

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1

Пусть х – аргумент (независимая переменная); y=y(x) – функция.

Возьмем фиксированное значение аргументах=х 0 и вычислим значение функции y 0 =y(x 0 ) . Теперь произвольным образом зададим приращение (изменение) аргумента и обозначим его х ( х может быть любого знака).

Аргумент с приращением – это точка х 0 + х . Допустим, в ней также существует значение функции y=y(x 0 + х) (см. рисунок).

Таким образом, при произвольном изменении значения аргумента получено изменение функции, которое называется приращением значения функции:

и не является произвольным, а зависит от вида функции и величины
.

Приращения аргумента и функции могут быть конечными , т.е. выражаться постоянными числами, в этом случае их иногда называют конечными разностями.

В экономике конечные приращения рассматриваются весьма часто. Например, в таблице приведены данные о длине железнодорожной сети некоторого государства. Очевидно, приращение длины сети вычисляется путем вычитания предыдущего значения из последующего.

Будем рассматривать длину ж/д сети как функцию, аргументом которой будет время (годы).

Длина ж/д на 31.12, тыс.км.

Приращение

Среднегодовой прирост

Само по себе приращение функции (в данном случае длины ж/д) сети) плохо характеризует изменение функции. В нашем примере из того, что 2,5>0,9 нельзя заключить, что сеть росла быстрее в 2000-2003 годах, чем в 2004 г., потому что приращение 2,5 относится к трехлетнему периоду, а 0,9 – всего к одному году. Поэтому вполне естественно, что приращение функции приводят к единице изменения аргумента. Приращение аргумента здесь – периоды: 1996-1993=3; 2000-1996=4; 2003-2000=3; 2004-2003=1 .

Получим то, что в экономической литературе называют среднегодовым приростом .

Можно избежать операции приведения приращения к единице изменения аргумента, если взять значения функции для значений аргумента, отличающихся на единицу, что не всегда возможно.

В математическом анализе, в частности, в дифференциальном исчислении, рассматривают бесконечно малые (БМ) приращения аргумента и функции.

Дифференцирование функции одной переменной (производная и дифференциал) Производная функции

Приращения аргумента и функции в точке х 0 можно рассматривать как сравнимые бесконечно малые величины (см. тему 4, сравнение БМ), т.е. БМ одного порядка.

Тогда их отношение будет иметь конечный предел, который определяется как производная функции в т х 0 .

    Предел отношения приращения функции к БМ приращению аргумента в точке х=х 0 называется производной функции в данной точке.

Символическое обозначение производной штрихом (а, вернее, римской цифрой I) введено Ньютоном. Можно использовать еще нижний индекс, который показывает, по какой переменной вычисляется производная, например, . Широко используется также другое обозначение, предложенное основоположником исчисления производных, немецким математиком Лейбницем:
. С происхождением этого обозначения вы подробнее познакомитесь в разделеДифференциал функции и дифференциал аргумента.


Данное число оценивает скорость изменения функции, проходящей через точку
.

Установим геометрический смысл производной функции в точке. С этой целью построим график функции y=y(x) и отметим на нем точки, определяющие изменение y(x) в промежутке

Касательной к графику функции в точке М 0
будем считать предельное положение секущейМ 0 М при условии
(точкаМ скользит по графику функции к точкеМ 0 ).

Рассмотрим
. Очевидно,
.

Если точку М устремить вдоль графика функции по направлению к точке М 0 , то значение
будет стремиться к некоторому пределу, который обозначим
. При этом.

Предельный угол совпадает с углом наклона касательной, проведенной к графику функции в т. М 0 , поэтому производная
численно равнаугловому коэффициенту касательной в указанной точке.

-

геометрический смысл производной функции в точке .

Таким образом, можно записать уравнения касательной и нормали (нормаль – это прямая, перпендикулярная касательной) к графику функции в некоторой точке х 0 :

Касательная - .

Нормаль -
.

Представляют интерес случаи, когда эти прямые расположены горизонтально или вертикально (см. тему 3, частные случаи положения прямой на плоскости). Тогда,

если
;

если
.

Определение производной называется дифференцированием функции.

 Если функция в точке х 0 имеет конечную производную, то она называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках некоторого интервала, называется дифференцируемой на этом интервале.

Теорема . Если функция y=y(x) дифференцируема в т. х 0 , то она в этой точке непрерывна.

Таким образом, непрерывность – необходимое (но не достаточное) условие дифференцируемости функции.

Начальный уровень

Производная функции. Исчерпывающее руководство (2019)

Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает. Если ось направить вдоль дороги горизонтально, а - вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:

Ось - это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря.

Двигаясь вперед по такой дороге, мы также движемся вверх или вниз. Также можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат). А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина? Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние. Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).

Продвижение вперед обозначим (читается «дельта икс»).

Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение». То есть - это изменение величины, - изменение; тогда что такое? Правильно, изменение величины.

Важно: выражение - это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы! То есть, например, .

Итак, мы продвинулись вперед, по горизонтали, на. Если линию дороги мы сравниваем с графиком функции, то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на.

Величину посчитать легко: если в начале мы находились на высоте, а после перемещения оказались на высоте, то. Если конечная точка оказалась ниже начальной, будет отрицательной - это означает, что мы не поднимаемся, а спускаемся.

Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:

Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна. А если дорога при продвижении на м опустилась на км? Тогда крутизна равна.

А теперь рассмотрим вершину какого-нибудь холма. Если взять начало участка за полкилометра до вершины, а конец - через полкилометра после него, видно, что высота практически одинаковая.

То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности. Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны. Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно - ведь если посреди дороги стоит столб, мы его можем просто проскочить. Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!

В реальной жизни измерять расстояние с точностью до милиметра - более чем достаточно. Но математики всегда стремятся к совершенству. Поэтому было придумано понятие бесконечно малого , то есть величина по модулю меньше любого числа, которое только можем назвать. Например, ты скажешь: одна триллионная! Куда уж меньше? А ты подели это число на - и будет еще меньше. И так далее. Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»). Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.

Понятие, противоположное бесконечно малому - бесконечно большое (). Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать. Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится. Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при, и наоборот: при.

Теперь вернемся к нашей дороге. Идеально посчитанная крутизна - это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:

Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало. Но напомню, бесконечно малое - не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число, например, . То есть одна малая величина может быть ровно в раза больше другой.

К чему все это? Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.

Понятие производной

Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.

Приращением в математике называют изменение. То, насколько изменился аргумент () при продвижении вдоль оси, называется приращением аргумента и обозначается То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние, называется приращением функции и обозначается.

Итак, производная функции - это отношение к при. Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто. Итак, запишем формулу производной, используя эти обозначения:

Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании - отрицательна.

А бывает ли производная равна нулю? Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:

так как приращение такой функции равно нулю при любом.

Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси:

Но большие отрезки - признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.

В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой. Но при этом он остался параллелен оси, то есть разность высот на его концах равна нулю (не стремится, а именно равна). Значит, производная

Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.

Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее - убывает. Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании - отрицательна. Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко). Поэтому между отрицательными и положительными значениями обязательно должен быть. Он и будет там, где функция ни возрастает, ни убывает - в точке вершины.

То же самое справедливо и для впадины (область, где функция слева убывает, а справа - возрастает):

Немного подробнее о приращениях.

Итак, мы меняем аргумент на величину. Меняем от какого значения? Каким он (аргумент) теперь стал? Можем выбрать любую точку, и сейчас будем от нее плясать.

Рассмотрим точку с координатой. Значение функции в ней равно. Затем делаем то самое приращение: увеличиваем координату на. Чему теперь равен аргумент? Очень легко: . А чему теперь равно значение функции? Куда аргумент, туда и функция: . А что с приращением функции? Ничего нового: это по-прежнему величина, на которую изменилась функция:

Потренируйся находить приращения:

  1. Найди приращение функции в точке при приращении аргумента, равном.
  2. То же самое для функции в точке.

Решения:

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале - крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:

Степенная функция.

Степенной называют функцию, где аргумент в какой-то степени (логично, да?).

Причем - в любой степени: .

Простейший случай - это когда показатель степени:

Найдем ее производную в точке. Вспоминаем определение производной:

Итак, аргумент меняется с до. Каково приращение функции?

Приращение - это. Но функция в любой точке равна своему аргументу. Поэтому:

Производная равна:

Производная от равна:

b) Теперь рассмотрим квадратичную функцию (): .

А теперь вспомним, что. Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:

Итак, у нас родилось очередное правило:

c) Продолжаем логический ряд: .

Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.

Итак, у меня получилось следующее:

И снова вспомним, что. Это значит, что можно пренебречь всеми слагаемыми, содержащими:

Получаем: .

d) Аналогичные правила можно получить и для больших степеней:

e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:

(2)

Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».

Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:

  1. (двумя способами: по формуле и используя определение производной - посчитав приращение функции);
  1. . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему « »!
    Да-да, корень - это тоже степень, только дробная: .
    Значит, наш квадратный корень - это всего лишь степень с показателем:
    .
    Производную ищем по недавно выученной формуле:

    Если в этом месте снова стало непонятно, повторяй тему « »!!! (про степень с отрицательным показателем)

  2. . Теперь показатель степени:

    А теперь через определение (не забыл еще?):
    ;
    .
    Теперь, как обычно, пренебрегаем слагаемым, содержащим:
    .

  3. . Комбинация предыдущих случаев: .

Тригонометрические функции.

Здесь будем использовать один факт из высшей математики:

При выражение.

Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:

Видим, что при функция не существует - точка на графике выколота. Но чем ближе к значению, тем ближе функция к. Это и есть то самое «стремится».

Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.

Итак, пробуем: ;

Не забудь перевести калькулятор в режим «Радианы»!

и т.д. Видим, что чем меньше, тем ближе значение отношения к.

a) Рассмотрим функцию. Как обычно, найдем ее приращение:

Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему « »): .

Теперь производная:

Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:

А теперь вспоминаем, что при выражение. А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при).

Итак, получаем следующее правило: производная синуса равна косинусу :

Это базовые («табличные») производные. Вот они одним списком:

Позже мы к ним добавим еще несколько, но эти - самые важные, так как используются чаще всего.

Потренируйся:

  1. Найди производную функции в точке;
  2. Найди производную функции.

Решения:

  1. Сперва найдем производную в общем виде, а затем подставим вместо его значение:
    ;
    .
  2. Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
    нормальному виду:
    .
    Отлично, теперь можно использовать формулу:
    .
    .
  3. . Ээээээ….. Что это????

Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:

Экспонента и натуральный логарифм.

Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же. Называется она «экспонента», и является показательной функцией

Основание этой функции - константа - это бесконечная десятичная дробь, то есть число иррациональное (такое как). Его называют «число Эйлера», поэтому и обозначают буквой.

Итак, правило:

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для первого примера, .

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы все просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трехуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Цель: Ввести понятия «приращение аргумента», «приращение функции» и научить учащихся находить приращение функции.

Методы: рассказ.

Оборудование: Доска, карточки с заданиями, компьютер (возможно).

Определения : Приращение аргумента, приращение функции.

План проведения урока :

1. Организационный момент (1 минута).

2. Введение нового материала (10 минут).

3. Решение упражнений (10 минут).

4. Самостоятельная работа (20 минуты).

5. Подведение итогов урока (3 минуты).

6. Домашнее задание (1 минута).

Скачать:


Предварительный просмотр:

Тема: Приращение функции

Цель: Ввести понятия «приращение аргумента», «приращение функции» и научить учащихся находить приращение функции.

Методы: рассказ.

Оборудование: Доска, карточки с заданиями, компьютер (возможно).

Определения : Приращение аргумента, приращение функции.

План проведения урока :

1. Организационный момент (1 минута).

2. Введение нового материала (10 минут).

3. Решение упражнений (10 минут).

4. Самостоятельная работа (20 минуты).

5. Подведение итогов урока (3 минуты).

6. Домашнее задание (1 минута).

Ход урока:

  1. Организационный момент.

Добиться дисциплины в классе. Проверить готовность учеников к уроку, мобилизовать внимание.

  1. Введение нового материала.

Пусть y=f(x) - функция , х и х 0 - два значения независимой переменной из D(f) ; тогда разность х - х о называется приращением независимой переменной (или приращением аргумента) и обозначается ∆ x (читается «дельта икс»). Таким образом, ∆ x = х - х о (1).

Из равенства (1) следует, что х = х о + ∆x (2), т.е. первоначальное значение переменной получило приращение ∆ x . Соответственно значение функции изменится на величину

f (х) - f (х 0 ) = f (х 0 + ∆x ) - f (х 0 ). (3)

Разность между новым значением функции f (х 0 + ∆x ) и первоначальным ее значением f (х 0 ) называется приращением функции в точке х 0 и обозначается символом ∆ f (х 0 ) (читается «дельта эф в точке х 0 »), т. е. ∆ f (х 0 ) = f (х 0 + ∆x ) - f (х 0 ). (4)

Приращение функции f в данной точке х 0 кратко обозначают через ∆ f или ∆y.

Пример Для функции у=х 2 найти ∆y , если x = 2,5, х 0 = 2 .

Решение . Имеем ∆ y = y (х 0 + ∆x ) - y (х 0 ) = у(2,5 ) - у(2 ) = 6,25 - 4 = 2,25.

  1. Решение упражнений

1. Найти приращения ∆ х и ∆y в точке х 0 , если у=х 2 , х 0 = 2 и

а) x = 1,9; б) х = 2,1. (Ответ: а) -0,39; б) 0,41)

2. Дана функция у = х 2 + 2х – 4. Найти приращение ∆y при х = 2 и ∆x = 0,5. (Ответ: 3,25)

3. Дана функция у = 1/х . Найти приращение ∆y при х = 1 и ∆x = 0,2. (Ответ: -1/6)

4. Стороны прямоугольника равны 15 м и 20 м. Найдите приращения его периметра и площади, если: 1) меньшую его сторону увеличили на 0,11 м; 2) большую его сторону увеличили на 0,2 м.

  1. Самостоятельная работа.

Самостоятельная работа выполняется учащимися в рабочих тетрадях в одном варианте, задание выдаётся на карточках.

  1. Дана функция у=2х+5 , найдите:

1) x и ∆y , если х 0 = 3 и ∆x = 0,2 ; 2) x и ∆y, если х 0 = 4 и ∆x = 0,06; 3) ∆y, если х 0 = 4 и ∆x = 0,1; 4) ∆y, если х 0 = 7 и ∆x = 0,01.

Ответы:

1.1)3,2; 0,4; 3) 0,2.

2.1) 0,5; 2,25; 2) 0,15; 1,1475; 4) -0,2; 1,04.

3.1) 3/7; -1/14; 3) -33/35.

4. 1) 0,135; 2) 0,06.

  1. Подведение итогов урока.

Ученики меняются тетрадями с соседями по парте и проверяют решения и сверяют ответ с учителем. Учителем, может быть, уже вынесены на доску верные ответы, но временно закрыты от учащихся, возможно, ответы обнародованы с помощью мультимедийных средств (компьютера).

Учитель с учениками обсуждают полученные результаты.

Вопросы для самопроверки :

1)Что называется приращением аргумента?

2)Что называется приращение функции?

Отметить учащихся, активно работавших на уроке.

  1. Домашнее задание.

1. Найти приращение аргумента и функции, если 1) , х 0 = , x = ;

2) , х 0 = 2,5, x = 2,6.

2 . а) Радиус круга равен 2 см. Найдите погрешность, допущенную при вычислении его площади, если погрешность при измерении длины радиуса равна: 1) 0,2 см; 2) ∆R ; 3) 0,1 см; 4) h.

б) Ребро куба х получило приращение ∆ х. Найдите приращение площади полной поверхности куба.

2) Придумать самостоятельно и решить по два примера на эту тему в тетрадях для домашних работ, а условия примеров выписать на листочек.

3) Тренажер № 1 (см. Приложение к уроку )

Приложение к уроку

Тренажёр №1 ВЫЧИСЛЕНИЕ ПРИРАЩЕНИЙ ФУНКЦИИ

  1. Вычислить приращение функции y=f(x) на промежутке :
  1. Вычислить приращение функции y=f(x) на промежутке [ х; х + ∆ х ]: