Площадь прямолинейной трапеции интеграл. Определенный интеграл (интеграл Римана) Площадь криволинейной трапеции

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой: $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Требуется вычислить площадь криволинейной трапеции, ограниченной прямыми ,
,
и кривой
.

Разобьем отрезок
точкаминаэлементарных отрезков, длина
го отрезка
. Восстановим перпендикуляры из точек разбиения отрезка до пересечения с кривой
, пусть
. В результате получаемэлементарных трапеций, сумма их площадей, очевидно, равна сумме заданной криволинейной трапеции.

Определим на каждом элементарном интервале наибольшее и наименьшее значения функции, на первом интервале это
, на втором
и так далее. Вычислим суммы

Первая сумма представляет собой площадь всех описанных, вторая – есть площадь всех вписанных в криволинейную трапецию прямоугольников.

Ясно, что первая сумма дает приближенное значение площади трапеции "с избытком", вторая – "с недостатком". Первую сумму называют верхней суммой Дарбу, вторую – соответственно нижней суммой Дарбу. Таким образом, площадь криволинейной трапеции удовлетворяет неравенству
. Выясним, как ведут себя суммы Дарбу с увеличением числа точек разбиения отрезка
. Пусть число точек разбиения увеличилось на одну, и она находится на середине интервала
. Теперь число как

вписанных, так и описанных прямоугольников увеличилось на единицу. Рассмотрим, как изменилась при этом нижняя сумма Дарбу. Вместо площади
го вписанного прямоугольника, равной
получаем сумму площадей двух прямоугольников
, поскольку длина
не может быть меньше
наименьшего значения функции на
. С другой стороны,
, поскольку
не может быть больше
наибольшего значения функции на интервале
. Итак, добавление новых точек разбиения отрезка увеличивает значение нижней суммы Дарбу и уменьшает верхнюю сумму Дарбу. При этом нижняя сумма Дарбу при каком угодно увеличении количества точек разбиения не может превысить значения любой верхней суммы, так как сумма площадей описанных прямоугольников всегда больше суммы площадей вписанных в криволинейную трапецию прямоугольников.

Таким образом, последовательность нижних сумм Дарбу возрастает с увеличением числа точек разбиения отрезка и ограничена сверху, по известной теореме она имеет предел. Этим пределом является площадь заданной криволинейной трапеции.

Аналогично последовательность верхних сумм Дарбу уменьшается с увеличением числа точек разбиения интервала и ограничена снизу любой нижней суммой Дарбу, значит, она также имеет предел, и он тоже равен площади криволинейной трапеции.

Следовательно, для вычисления площади криволинейной трапеции достаточно для разбиений интервала определить либо нижнюю, либо верхнюю сумму Дарбу, а затем вычислить
, или
.

Однако такое решение задачи предполагает при любом, сколь угодно большом числе разбиений
, нахождение на каждом элементарном интервале наибольшего или наименьшего значения функции, что является весьма трудоемкой задачей.

Более простое решение получается при помощи интегральной суммы Римана, которая представляет собой

где
некоторая точка каждого элементарного интервала, то есть
. Следовательно, интегральная сумма Римана представляет собой сумму площадей всевозможных прямоугольников, причем
. Как было показано выше, пределы верхней и нижней сумм Дарбу одинаковы и равны площади криволинейной трапеции. Используя одно из свойств предела функции (правило двух полицейских), получаем, что при любом разбиении отрезка
и выборе точекплощадь криволинейной трапеции может быть вычислена с помощью формулы
.

Пусть функция неотрицательна и непрерывна на отрезке. Тогда, согласно геометрическому смыслу определенного интеграла, площадь криволинейной трапеции, ограниченной сверху графиком этой функции, снизу - осью, слева и справа - прямыми и (см. рис. 2) вычисляется по формуле

Пример 9. Найти площадь фигуры, ограниченной линией и осью.

Решение. Графиком функции является парабола, ветви которой направлены вниз. Построим ее (рис. 3). Чтобы определить пределы интегрирования, найдем точки пересечения линии (параболы) с осью (прямой). Для этого решаем систему уравнений

Получаем: , откуда, ; следовательно, .

Рис. 3

Площадь фигуры находим по формуле (5):

Если функция неположительна и непрерывна на отрезке, то площадь криволинейной трапеции, ограниченной снизу графиком данной функции, сверху - осью, слева и справа - прямыми и, вычисляется по формуле

В случае если функция непрерывна на отрезке и меняет знак в конечном числе точек, то площадь заштрихованной фигуры (рис. 4) равна алгебраической сумме соответствующих определенных интегралов:

Рис. 4

Пример 10. Вычислить площадь фигуры, ограниченной осью и графиком функции при.

Рис. 5

Решение. Сделаем чертеж (рис. 5). Искомая площадь представляет собой сумму площадей и. Найдем каждую из этих площадей. Вначале определим пределы интегрирования, решив систему Получим, . Следовательно:

Таким образом, площадь заштрихованной фигуры равна

Рис. 6

Пусть, наконец, криволинейная трапеция ограничена сверху и снизу графиками непрерывных на отрезке функций и, а слева и справа - прямыми и (рис. 6). Тогда ее площадь вычисляется по формуле

Пример 11. Найти площадь фигуры, ограниченной линиями и.

Решение. Данная фигура изображена на рис. 7. Площадь ее вычислим по формуле (8). Решая систему уравнений находим, ; следовательно, . На отрезке имеем: . Значит, в формуле (8) в качестве возьмем x, а в качестве - . Получим:

Более сложные задачи на вычисление площадей решают путем разбиения фигуры на непересекающиеся части и вычисления площади всей фигуры как суммы площадей этих частей.