Основные понятия и определения дифференциальных уравнений

Дифференциальным уравнением называется уравнение, связывающее независимую переменную x , искомую функцию y=f(x) и её производные y",y"",\ldots,y^{(n)} , т. е. уравнение вида

F(x,y,y",y"",\ldots,y^{(n)})=0.

Если искомая функция y=y(x) есть функция одной независимой переменной x , дифференциальное уравнение называется обыкновенным ; например,

\mathsf{1)}~\frac{dy}{dx}+xy=0, \quad \mathsf{2)}~y""+y"+x=\cos{x}, \quad \mathsf{3)}~(x^2-y^2)\,dx-(x+y)\,dy=0.

Когда искомая функция y есть функция двух и более независимых переменных, например, если y=y(x,t) , то уравнение вида

F\!\left(x,t,y,\frac{\partial{y}}{\partial{x}},\frac{\partial{y}}{\partial{t}},\ldots,\frac{\partial^m{y}}{\partial{x^k}\partial{t^l}}\right)=0


называется уравнением в частных производных. Здесь k,l - неотрицательные целые числа, такие, что k+l=m ; например

\frac{\partial{y}}{\partial{t}}-\frac{\partial{y}}{\partial{x}}=0, \quad \frac{\partial{y}}{\partial{t}}=\frac{\partial^2y}{\partial{x^2}}.

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение y"+xy=e^x - уравнение первого порядка, дифференциальное уравнение y""+p(x)y=0 , где p(x) - известная функция, - уравнение второго порядка; дифференциальное уравнение y^{(9)}-xy""=x^2 - уравнение 9-го порядка.

Решением дифференциального уравнения n-го порядка на интервале (a,b) называется функция y=\varphi(x) , определенная на интервале (a,b) вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции y=\varphi(x) в дифференциальное уравнение превращает последнее в тождество по x на (a,b) . Например, функция y=\sin{x}+\cos{x} является решением уравнения y""+y=0 на интервале (-\infty,+\infty) . В самом деле, дифференцируя функцию дважды, будем иметь

Y"=\cos{x}-\sin{x}, \quad y""=-\sin{x}-\cos{x}.

Подставляя выражения y"" и y в дифференциальное уравнение, получим тождество

-\sin{x}-\cos{x}+\sin{x}+\cos{x}\equiv0

График решения дифференциального уравнения называется интегральной кривой этого уравнения.

Общий вид уравнения первого порядка

F(x,y,y")=0.


Если уравнение (1) удается разрешить относительно y" , то получится уравнение первого порядка, разрешенное относительно производной.

Y"=f(x,y).

Задачей Коши называют задачу нахождения решения y=y(x) уравнения y"=f(x,y) , удовлетворяющего начальному условию y(x_0)=y_0 (другая запись y|_{x=x_0}=y_0 ).

Геометрически это означает, что ищется интегральная кривая, проходящая через заданную
точку M_0(x_0,y_0) плоскости xOy (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение y"=f(x,y) , где функция f(x,y) определена в некоторой области D плоскости xOy , содержащей точку (x_0,y_0) . Если функция f(x,y) удовлетворяет условиям

а) f(x,y) есть непрерывная функция двух переменных x и y в области D ;

б) f(x,y) имеет частную производную , ограниченную в области D , то найдется интервал (x_0-h,x_0+h) , на котором существует единственное решение y=\varphi(x) данного уравнения, удовлетворяющее условию y(x_0)=y_0 .

Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения y"=f(x,y) , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения y"=f(x,y) , удовлетворяющее условию y(x_0)=y_0 , хотя в точке (x_0,y_0) не выполняются условия а) или б) или оба вместе.

Рассмотрим примеры.

1. y"=\frac{1}{y^2} . Здесь f(x,y)=\frac{1}{y^2},~\frac{\partial{f}}{\partial{y}}=-\frac{2}{y^3} . В точках (x_0,0) оси Ox условия а) и б) не выполняются (функция f(x,y) и её частная производная \frac{\partial{f}}{\partial{y}} разрывны на оси Ox и неограниченны при y\to0 ), но через каждую точку оси Ox проходит единственная интегральная кривая y=\sqrt{3(x-x_0)} (рис. 2).

2. y"=xy+e^{-y} . Правая часть уравнения f(x,y)=xy+e^{-y} и ее частная производная \frac{\partial{f}}{\partial{y}}=x-e^{-y} непрерывны по x и y во всех точках плоскости xOy . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость xOy .

3. y"=\frac{3}{2}\sqrt{y^2} . Правая часть уравнения f(x,y)=\frac{3}{2}\sqrt{y^2} определена и непрерывна во всех точках плоскости xOy . Частная производная \frac{\partial{f}}{\partial{y}}=\frac{1}{\sqrt{y}} обращается в бесконечность при y=0 , т.е. на оси Ox , так что при y=0 нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси Ox возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение y\equiv0 . Таким образом, через каждую точку оси Ox проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).

Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол y=\frac{(x+c)^3}{8} и отрезков оси Ox , например, ABOC_1, ABB_2C_2, A_2B_2x и др., так что через каждую точку оси Ox проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной \partial{f}/\partial{y} , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .

Говорят, что функция f(x,y) , определенная в некоторой области D , удовлетворяет в D условию Липшица по y , если существует такая постоянная L (постоянная Липшица ), что для любых y_1,y_2 из D и любого x из D справедливо неравенство

|f(x,y_2)-f(x,y_1)| \leqslant L|y_2-y_1|.

Существование в области D ограниченной производной \frac{\partial{f}}{\partial{y}} достаточно для того, чтобы функция f(x,y) удовлетворяла в D условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности \frac{\partial{f}}{\partial{y}} ; последняя может даже не существовать. Например, для уравнения y"=2|y|\cos{x} функция f(x,y)=2|y|\cos{x} не дифференцируема по y в точке (x_0,0),x_0\ne\frac{\pi}{2}+k\pi,k\in\mathbb{Z} , но условие Липшица в окрестности этой точки выполняется. В самом деле,

{|f(x,y_2)-f(x,y_1)|=L|2|y_2|\cos{x}-2|y_1|\cos{x}|=2|\cos{x}|\,||y_2|-|y_1||\leqslant2|y_2-y_1|.}

поскольку |\cos{x}|\leqslant1, а ||y_2|-|y_1||\leqslant|y_2-y_1| . Таким образом, условие Липшица выполняется с постоянной L=2 .

Теорема. Если функция f(x,y) непрерывна и удовлетворяет условию Липшица по y в области D , то задача Коши

\frac{dy}{dx}=f(x,y), \quad y|_{x=x_0}=y_0, \quad (x_0,y_0)\in{D}.


имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение

\frac{dy}{dx}=\begin{cases}\dfrac{4x^3y}{x^4+y^4},&x^2+y^2>0,\\0,&x=y=0.\end{cases}

Нетрудно видеть, что функция f(x,y) непрерывна; с другой стороны,

F(x,Y)-f(x,y)=\frac{4x^3(x^4+yY)}{(x^4+y^2)(x^4+Y^2)}(Y-y).

Если y=\alpha x^2,~Y=\beta x^2, то

|f(x,Y)-f(x,y)|=\frac{4}{|x|}\frac{1-\alpha\beta}{(1+\alpha^2)(1+\beta^2)}|Y-y|,


и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат O(0,0) , так как множитель при |Y-y| оказывается неограниченным при x\to0 .

Данное дифференциальное уравнение допускает решение y=C^2-\sqrt{x^4+C^4}, где C - произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию y(0)=0.

Общим решением дифференциального уравнения (2) называется функция

Y=\varphi(x,C),


зависящая от одной произвольной постоянной C , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной C;

2) каково бы ни было начальное условие

\Bigl.{y}\Bigr|_{x=x_0}=y_0,


можно подобрать такое значение C_0 постоянной C , что решение y=\varphi(x,C_0) будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка (x_0,y_0) принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной C .


Пример 1. Проверить, что функция y=x+C есть общее решение дифференциального уравнения y"=1 и найти частное решение, удовлетворяющее начальному условию y|_{x=0}=0 . Дать геометрическое истолкование результата.

Решение. Функция y=x+C удовлетворяет данному уравнению при любых значениях произвольной постоянной C . В самом деле, y"=(x+C)"=1.

Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Полагая x=x_0 и y=y_0 в равенстве y=x+C , найдем, что C=y_0-x_0 . Подставив это значение C в данную функцию, будем иметь y=x+y_0-x_0 . Эта функция удовлетворяет заданному начальному условию: положив x=x_0 , получим y=x_0+y_0-x_0=y_0 . Итак, функция y=x+C является общим решением данного уравнения.

В частности, полагая x_0=0 и y_0=0 , получим частное решение y=x .

Общее решение данного уравнения, т.е. функция y=x+C , определяет в плоскости xOy семейство параллельных прямых с угловым коэффициентом k=1 . Через каждую точку M_0(x_0,y_0) плоскости xOy проходит единственная интегральная линия y=x+y_0-x_0 . Частное решение y=x определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция y=Ce^x есть общее решение уравнения y"-y=0 и найти частное решение, удовлетворяющее начальному условию y|_{x=1}=-1. .


Решение. Имеем y=Ce^x,~y"=Ce^x . Подставляя в данное уравнение выражения y и y" , получаем Ce^x-Ce^x\equiv0 , т. е. функция y=Ce^x удовлетворяет данному уравнению при любых значениях постоянной C .

Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Подставив x_0 и y_0 вместо x и y в функцию y=Ce^x , будем иметь y_0=Ce^{x_0} , откуда C=y_0e^{-x_0} . Функция y=y_0e^{x-x_0} удовлетворяет начальному условию. Действительно, полагая x=x_0 , получим y=y_0e^{x_0-x_0}=y_0 . Функция y=Ce^x есть общее решение данного уравнения.

При x_0=1 и y_0=-1 получим частное решение y=-e^{x-1} .

С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку M_0(1;-1) (рис.5).

Соотношение вида \Phi(x,y,C)=0 , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.

Соотношение, получаемое из общего интеграла при конкретном значении постоянной C , называется частным интегралом дифференциального уравнения.

Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.

Так как с геометрической точки зрения координаты x и y равноправны, то наряду с уравнением \frac{dx}{dy}=f(x,y) мы будем рассматривать уравнение \frac{dx}{dy}=\frac{1}{f(x,y)} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Уравнения, связывающие независимую переменную, искомую функцию и ее производные, называются дифференциальными .

Общий вид дифференциальных уравнений: F (x , y , y ’, y ’’.. y ’’’) = 0

Решением дифференциального уравнения называется функция, которая при подстановке в уравнение обращает его в тождество.

Наивысший порядок производной, входящей в ДУ, называется порядком этого уравнения.

Процесс отыскания решения ДУ называется его интегрированием .

Дифференциальные уравнения первого порядка

Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида F (x, y, y ")=0, где F - известная функция трех переменных, x - независимая переменная, y (x ) - искомая функция, y "(x ) - ее производная. Если уравнение F (x, y, y ")=0 можно разрешить относительно y ", то его записывают в виде y "=f (x, y )

Уравнение y "=f (x, y ) устанавливает связь между координатами точки (x, y) и угловым коэффициентом y " касательной к интегральной кривой, проходящей через эту точку.

Дифференциальное уравнение первого порядка, разрешенное относительно производной, можно записать в дифференциальной форме :

P (x ; y ) dx + Q (x ; y ) dy =0,

Где P (x ; y ) и Q (x ; y ) – известные функции. Уравнение P (x ; y ) dx + Q (x ; y ) dy =0 удобно тем, что переменные в нем равноправны, т.е. любую из них можно рассматривать как функцию другой.

Если дифференциальное уравнение первого порядка y "=f (x, y ), имеет решение, то решений у него, вообще говоря, бесконечно много и эти решения могут быть записаны в виде y=φ (x,C ), где C - произвольная константа.

Функция y=φ (x,C ) называется общим решением дифференциального уравнения 1-го порядка. Она содержит одну произвольную постоянную и удовлетворяет условиям:

    Функция y=φ (x,C ) является решением ДУ при каждом фиксированном значении С .

    Каково бы ни было начальное условие y (x 0 )= y 0 , можно найти такое значение постоянной С=С 0 , что функция y=φ (x,C 0 ) удовлетворяет данному начальному условию.

Частным решением ДУ первого порядка называется любая функция y=φ (x,C 0 ), полученная из общего решения y=φ (x,C ) при конкретном значении постоянной С=С 0 .

Задача отыскания решения ДУ первого порядка P (x ; y ) dx + Q (x ; y ) dy =0 , удовлетворяющего заданному начальному условию y (x 0 )= y 0 , называется задачей Коши .

Теорема (существования и единственности решения задачи Коши).

Если в уравнении y "=f (x, y ) функция f (x, y ) и ее частная производная f " y (x, y ) непрерывны в некоторой области D , содержащей точку (x 0 ; y 0 ), то существует единственное решение y=φ (x) этого уравнения, удовлетворяющее начальному условию y (x 0 )= y 0 . (без доказательства)

Уравнения с разделяющимися переменными

Наиболее простым ДУ первого порядка является уравнение вида

P (x ) dx + Q (y ) dy =0.

В нем одно слагаемое зависит только от x , а другое - от y . Иногда такие ДУ называют уравнениями с разделенными переменными . Проинтегрировав почленно это уравнение, получаем:

P (x ) dx + Q (y ) dy =с – его общий интеграл.

Более общий случай описывают уравнения с разделяющимися переменными, которые имеют вид:

P 1 (x) . Q 1 (y) . dx+ P 2 (x) . Q 2 (y) . dy=0.

Особенность этого уравнения в том, что коэффициенты представляют собой произведения двух функций, одна из которых зависит только от х другая – только от у.

Уравнение P 1 (x ) . Q 1 (y ) . dx + P 2 (x ) . Q 2 (y ) . dy =0 легко сводится к уравнению P (x ) dx + Q (y ) dy =0. путем почленного деления его на Q 1 (y ) . P 2 (x )≠0. Получаем.

Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

В свою очередь ускорение a является производной по времени t от скорости V , которая также является производной по времени t от перемещения S . Т.е.

Тогда получаем:
- уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением , если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения .

Пример.

- обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается
.

- обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

- дифференциальное уравнение в частных производных первого порядка.

Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = (x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество

Свойства общего решения.

1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

2) При каких- либо начальных условиях х = х 0 , у(х 0) = у 0 существует такое значение С = С 0 , при котором решением дифференциального уравнения является функция у = (х, С 0).

Определение. Решение вида у = (х, С 0) называется частным решением дифференциального уравнения.

Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = (х, С 0), удовлетворяющего начальным условиям у(х 0) = у 0 .

Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

Если функция f (x , y ) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную
, то какова бы не была точка (х
0 , у 0 ) в области D , существует единственное решение
уравнения
, определенное в некотором интервале, содержащем точку х
0 , принимающее при х = х 0 значение 0 ) = у 0 , т.е. существует единственное решение дифференциального уравнения.

Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

Пример. Найти общее решение дифференциального уравнения
.

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

Теперь интегрируем:

- это общее решение исходного дифференциального уравнения.

Допустим, заданы некоторые начальные условия: x 0 = 1; y 0 = 2, тогда имеем

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

Определение. Интегральной кривой называется график y = (x) решения дифференциального уравнения на плоскости ХОY.

Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши (см. Теорема Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое дифференциальное уравнение имеет особые решения.

Пример. Найти общее решение дифференциального уравнения:
Найти особое решение, если оно существует.

Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0 можно получить из общего решения при С 1 = 0 ошибочно, ведь C 1 = e C 0.


Дифференциальным уравнением называется уравнение, связывающее независимую переменную x , искомую функцию y=f(x) и её производные y",y"",\ldots,y^{(n)} , т. е. уравнение вида


F(x,y,y",y"",\ldots,y^{(n)})=0.


Если искомая функция y=y(x) есть функция одной независимой переменной x , дифференциальное уравнение называется обыкновенным ; например,


\mathsf{1)}~\frac{dy}{dx}+xy=0, \quad \mathsf{2)}~y""+y"+x=\cos{x}, \quad \mathsf{3)}~(x^2-y^2)\,dx-(x+y)\,dy=0.


Когда искомая функция y есть функция двух и более независимых переменных, например, если y=y(x,t) , то уравнение вида


F\!\left(x,t,y,\frac{\partial{y}}{\partial{x}},\frac{\partial{y}}{\partial{t}},\ldots,\frac{\partial^m{y}}{\partial{x^k}\partial{t^l}}\right)=0


называется уравнением в частных производных. Здесь k,l - неотрицательные целые числа, такие, что k+l=m ; например

\frac{\partial{y}}{\partial{t}}-\frac{\partial{y}}{\partial{x}}=0, \quad \frac{\partial{y}}{\partial{t}}=\frac{\partial^2y}{\partial{x^2}}.


Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение. Например, дифференциальное уравнение y"+xy=e^x - уравнение первого порядка, дифференциальное уравнение y""+p(x)y=0 , где p(x) - известная функция, - уравнение второго порядка; дифференциальное уравнение y^{(9)}-xy""=x^2 - уравнение 9-го порядка.


Решением дифференциального уравнения n-го порядка на интервале (a,b) называется функция y=\varphi(x) , определенная на интервале (a,b) вместе со своими производными до n-го порядка включительно, и такая, что подстановка функции y=\varphi(x) в дифференциальное уравнение превращает последнее в тождество по x на (a,b) . Например, функция y=\sin{x}+\cos{x} является решением уравнения y""+y=0 на интервале (-\infty,+\infty) . В самом деле, дифференцируя функцию дважды, будем иметь


y"=\cos{x}-\sin{x}, \quad y""=-\sin{x}-\cos{x}.


Подставляя выражения y"" и y в дифференциальное уравнение, получим тождество


-\sin{x}-\cos{x}+\sin{x}+\cos{x}\equiv0


График решения дифференциального уравнения называется интегральной кривой этого уравнения.


Общий вид уравнения первого порядка


F(x,y,y")=0.


Если уравнение (1) удается разрешить относительно y" , то получится уравнение первого порядка, разрешенное относительно производной.


y"=f(x,y).


Задачей Коши называют задачу нахождения решения y=y(x) уравнения y"=f(x,y) , удовлетворяющего начальному условию y(x_0)=y_0 (другая запись y|_{x=x_0}=y_0 ).


Геометрически это означает, что ищется интегральная кривая, проходящая через заданную
точку M_0(x_0,y_0) плоскости xOy (рис. 1).

Теорема существования и единственности решения задачи Коши

Пусть дано дифференциальное уравнение y"=f(x,y) , где функция f(x,y) определена в некоторой области D плоскости xOy , содержащей точку (x_0,y_0) . Если функция f(x,y) удовлетворяет условиям


а) f(x,y) есть непрерывная функция двух переменных x и y в области D ;


б) f(x,y) имеет частную производную , ограниченную в области D , то найдется интервал (x_0-h,x_0+h) , на котором существует единственное решение y=\varphi(x) данного уравнения, удовлетворяющее условию y(x_0)=y_0 .


Теорема дает достаточные условия существования единственного решения задачи Коши для уравнения y"=f(x,y) , но эти условия не являются необходимыми . Именно, может существовать единственное решение уравнения y"=f(x,y) , удовлетворяющее условию y(x_0)=y_0 , хотя в точке (x_0,y_0) не выполняются условия а) или б) или оба вместе.


Рассмотрим примеры.


1. y"=\frac{1}{y^2} . Здесь f(x,y)=\frac{1}{y^2},~\frac{\partial{f}}{\partial{y}}=-\frac{2}{y^3} . В точках (x_0,0) оси Ox условия а) и б) не выполняются (функция f(x,y) и её частная производная \frac{\partial{f}}{\partial{y}} разрывны на оси Ox и неограниченны при y\to0 ), но через каждую точку оси Ox проходит единственная интегральная кривая y=\sqrt{3(x-x_0)} (рис. 2).


2. y"=xy+e^{-y} . Правая часть уравнения f(x,y)=xy+e^{-y} и ее частная производная \frac{\partial{f}}{\partial{y}}=x-e^{-y} непрерывны по x и y во всех точках плоскости xOy . В силу теоремы существования и единственности областью, в которой данное уравнение имеет единственное решение
является вся плоскость xOy .



3. y"=\frac{3}{2}\sqrt{y^2} . Правая часть уравнения f(x,y)=\frac{3}{2}\sqrt{y^2} определена и непрерывна во всех точках плоскости xOy . Частная производная \frac{\partial{f}}{\partial{y}}=\frac{1}{\sqrt{y}} обращается в бесконечность при y=0 , т.е. на оси Ox , так что при y=0 нарушается условие б) теоремы существования и единственности. Следовательно, в точках оси Ox возможно нарушение единственности. Легко проверить, что функция есть решение данного уравнения. Кроме этого, уравнение имеет очевидное решение y\equiv0 . Таким образом, через каждую точку оси Ox проходит по крайней мере две интегральные линии и, следовательно, действительно в точках этой оси нарушается единственность (рис. 3).


Интегральными линиями данного уравнения будут также линии, составленные из кусков кубических парабол y=\frac{(x+c)^3}{8} и отрезков оси Ox , например, ABOC_1, ABB_2C_2, A_2B_2x и др., так что через каждую точку оси Ox проходит бесконечное множество интегральных линий.

Условие Липшица

Замечание. Условие ограниченности производной \partial{f}/\partial{y} , фигурирующее в теореме существования и единственности решения задачи Коши, может быть несколько ослаблено и заменено так называемым условием Липшица .


Говорят, что функция f(x,y) , определенная в некоторой области D , удовлетворяет в D условию Липшица по y , если существует такая постоянная L (постоянная Липшица ), что для любых y_1,y_2 из D и любого x из D справедливо неравенство


|f(x,y_2)-f(x,y_1)| \leqslant L|y_2-y_1|.


Существование в области D ограниченной производной \frac{\partial{f}}{\partial{y}} достаточно для того, чтобы функция f(x,y) удовлетворяла в D условию Липшица. Напротив, из условия Липшица не вытекает условие ограниченности \frac{\partial{f}}{\partial{y}} ; последняя может даже не существовать. Например, для уравнения y"=2|y|\cos{x} функция f(x,y)=2|y|\cos{x} не дифференцируема по y в точке (x_0,0),x_0\ne\frac{\pi}{2}+k\pi,k\in\mathbb{Z} , но условие Липшица в окрестности этой точки выполняется. В самом деле,


{|f(x,y_2)-f(x,y_1)|=L|2|y_2|\cos{x}-2|y_1|\cos{x}|=2|\cos{x}|\,||y_2|-|y_1||\leqslant2|y_2-y_1|.}


поскольку |\cos{x}|\leqslant1, а ||y_2|-|y_1||\leqslant|y_2-y_1| . Таким образом, условие Липшица выполняется с постоянной L=2 .

Теорема. Если функция f(x,y) непрерывна и удовлетворяет условию Липшица по y в области D , то задача Коши


\frac{dy}{dx}=f(x,y), \quad y|_{x=x_0}=y_0, \quad (x_0,y_0)\in{D}.


имеет единственное решение.

Условие Липшица является существенным для единственности решения задачи Коши. В качестве примера рассмотрим уравнение


\frac{dy}{dx}=\begin{cases}\dfrac{4x^3y}{x^4+y^4},&x^2+y^2>0,\\0,&x=y=0.\end{cases}


Нетрудно видеть, что функция f(x,y) непрерывна; с другой стороны,


f(x,Y)-f(x,y)=\frac{4x^3(x^4+yY)}{(x^4+y^2)(x^4+Y^2)}(Y-y).


Если y=\alpha x^2,~Y=\beta x^2, то


|f(x,Y)-f(x,y)|=\frac{4}{|x|}\frac{1-\alpha\beta}{(1+\alpha^2)(1+\beta^2)}|Y-y|,


и условие Липшица не удовлетворяется ни в одной области, содержащей начало координат O(0,0) , так как множитель при |Y-y| оказывается неограниченным при x\to0 .

Данное дифференциальное уравнение допускает решение y=C^2-\sqrt{x^4+C^4}, где C - произвольная постоянная. Отсюда видно, что существует бесконечное множество решений, удовлетворяющих начальному условию y(0)=0.


Общим решением дифференциального уравнения (2) называется функция


y=\varphi(x,C),


зависящая от одной произвольной постоянной C , и такая, что

1) она удовлетворяет уравнению (2) при любых допустимых значениях постоянной C;

2) каково бы ни было начальное условие


\Bigl.{y}\Bigr|_{x=x_0}=y_0,


можно подобрать такое значение C_0 постоянной C , что решение y=\varphi(x,C_0) будет удовлетворять заданному начальному условию (4). При этом предполагается, что точка (x_0,y_0) принадлежит области, где выполняются условия существования и единственности решения.

Частным решением дифференциального уравнения (2) называется решение, получаемое из общего решения (3) при каком-либо определенном значении произвольной постоянной C .

Пример 1. Проверить, что функция y=x+C есть общее решение дифференциального уравнения y"=1 и найти частное решение, удовлетворяющее начальному условию y|_{x=0}=0 . Дать геометрическое истолкование результата.


Решение. Функция y=x+C удовлетворяет данному уравнению при любых значениях произвольной постоянной C . В самом деле, y"=(x+C)"=1.


Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Полагая x=x_0 и y=y_0 в равенстве y=x+C , найдем, что C=y_0-x_0 . Подставив это значение C в данную функцию, будем иметь y=x+y_0-x_0 . Эта функция удовлетворяет заданному начальному условию: положив x=x_0 , получим y=x_0+y_0-x_0=y_0 . Итак, функция y=x+C является общим решением данного уравнения.


В частности, полагая x_0=0 и y_0=0 , получим частное решение y=x .


Общее решение данного уравнения, т.е. функция y=x+C , определяет в плоскости xOy семейство параллельных прямых с угловым коэффициентом k=1 . Через каждую точку M_0(x_0,y_0) плоскости xOy проходит единственная интегральная линия y=x+y_0-x_0 . Частное решение y=x определяет одну из интегральных кривых, а именно прямую, проходящую через начало координат (рис.4).

Пример 2. Проверить, что функция y=Ce^x есть общее решение уравнения y"-y=0 и найти частное решение, удовлетворяющее начальному условию y|_{x=1}=-1. .


Решение. Имеем y=Ce^x,~y"=Ce^x . Подставляя в данное уравнение выражения y и y" , получаем Ce^x-Ce^x\equiv0 , т. е. функция y=Ce^x удовлетворяет данному уравнению при любых значениях постоянной C .


Зададим произвольное начальное условие y|_{x=x_0}=y_0 . Подставив x_0 и y_0 вместо x и y в функцию y=Ce^x , будем иметь y_0=Ce^{x_0} , откуда C=y_0e^{-x_0} . Функция y=y_0e^{x-x_0} удовлетворяет начальному условию. Действительно, полагая x=x_0 , получим y=y_0e^{x_0-x_0}=y_0 . Функция y=Ce^x есть общее решение данного уравнения.


При x_0=1 и y_0=-1 получим частное решение y=-e^{x-1} .


С геометрической точки зрения общее решение определяет семейство интегральных кривых, которыми являются графики показательных функций; частное решение есть интегральная кривая, проходящая через точку M_0(1;-1) (рис.5).


Соотношение вида \Phi(x,y,C)=0 , неявно определяющее общее решение, называется общим интегралом дифференциального уравнения первого порядка.


Соотношение, получаемое из общего интеграла при конкретном значении постоянной C , называется частным интегралом дифференциального уравнения.


Задача решения или интегрирования дифференциального уравнения состоит в нахождении общего решения или общего интеграла данного дифференциального уравнения. Если дополнительно задано начальное условие, то требуется выделить частное решение или частный интеграл, удовлетворяющие поставленному начальному условию.


Так как с геометрической точки зрения координаты x и y равноправны, то наряду с уравнением \frac{dx}{dy}=f(x,y) мы будем рассматривать уравнение \frac{dx}{dy}=\frac{1}{f(x,y)} .


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.