Определение гиперболы. Гипербола и ее каноническое уравнение

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a) , меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними - фокусным расстоянием, середина O отрезка F_1F_2 - центром гиперболы, число 2a - длиной действительной оси гиперболы (соответственно, a - действительной полуосью гиперболы). Отрезки F_1M и F_2M , соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=\frac{c}{a} , где c=\sqrt{a^2+b^2} , называется эксцентриситетом гиперболы . Из определения (2a<2c) следует, что e>1 .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей гиперболе, имеем:

\left||\overrightarrow{F_1M}|-|\overrightarrow{F_2M}|\right|=2a.

Записывая это уравнение в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\,

где b=\sqrt{c^2-a^2} , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2\!\!\not{\phantom{|}}\,c от нее (рис.3.41,а). При a=0 , когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы ). Здесь F и d - один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\left(x-\frac{a^2}{c}\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~c^2-a^2=b^2 , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1 :

\frac{r_1}{\rho_1}=e \quad \Leftrightarrow \quad \sqrt{(x+c)^2+y^2}= e\left(x+\frac{a^2}{c} \right).

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2r\varphi (рис.3.41,б) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi} , где p=\frac{p^2}{a} - фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси - луч с началом в точке F_2 , принадлежащий прямой F_1F_2 , но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,\varphi) , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a . Выражаем расстояние между точками M(r,\varphi) и F_1(2c,\pi) (см. пункт 2 замечаний 2.8):

F_1M=\sqrt{(2c)^2+r^2-2\cdot(2c)^2\cdot r\cdot\cos(\varphi-\pi)}=\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2+4cr\cdot\cos\varphi+4c^2=4a^2+4ar+r^2 \quad \Leftrightarrow \quad a\left(1-\frac{c}{a}\cos\varphi\right)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=\frac{c}{a},~b^2=c^2-a^2,~p=\frac{b^2}{a} :

R=\frac{c^2-a^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( e>1 для гиперболы, 0\leqslant e<1 для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0 , находим абсциссы точек пересечения: x=\pm a . Следовательно, вершины имеют координаты (-a,0),\,(a,0) . Длина отрезка, соединяющего вершины, равна 2a . Этот отрезок называется действительной осью гиперболы, а число a - действительной полуосью гиперболы. Подставляя x=0 , получаем y=\pm ib . Длина отрезка оси ординат, соединяющего точки (0,-b),\,(0,b) , равна 2b . Этот отрезок называется мнимой осью гиперболы, а число b - мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при a=b ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox"y" (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y"=\frac{a^2}{2x"} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол \varphi=-\frac{\pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

\left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y",\\ y&=-\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y"\end{aligned}\right. \quad \Leftrightarrow \quad \left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot(x"+y"),\\ y&=\frac{\sqrt{2}}{2}\cdot(y"-x")\end{aligned}\right.

Подставляя эти выражения в уравнение \frac{x^2}{a^2}-\frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

\frac{\frac{1}{2}(x"+y")^2}{a^2}-\frac{\frac{1}{2}(y"-x")^2}{a^2}=1 \quad \Leftrightarrow \quad 2\cdot x"\cdot y"=a^2 \quad \Leftrightarrow \quad y"=\frac{a^2}{2\cdot x"}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе . то и точки M"(x,y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=\frac{p}{1-e\cos\varphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e , тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина \gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: \operatorname{tg}\frac{\gamma}{2}=\frac{b}{2} . Учитывая, что e=\frac{c}{a} и c^2=a^2+b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2+b^2}{a^2}=1+{\left(\frac{b}{a}\right)\!}^2=1+\operatorname{tg}^2\frac{\gamma}{2}.

Чем больше e , тем больше угол \gamma . Для равносторонней гиперболы (a=b) имеем e=\sqrt{2} и \gamma=\frac{\pi}{2} . Для e>\sqrt{2} угол \gamma тупой, а для 1

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O"(x_0,y_0) , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O"(x_0,y_0) .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

\begin{cases}x=a\cdot\operatorname{ch}t,\\y=b\cdot\operatorname{sh}t,\end{cases}t\in\mathbb{R},

где \operatorname{ch}t=\frac{e^t+e^{-t}}{2} - гиперболический косинус, a \operatorname{sh}t=\frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству \operatorname{ch}^2t-\operatorname{sh}^2t=1 .


Пример 3.21. Изобразить гиперболу \frac{x^2}{2^2}-\frac{y^2}{3^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - действительная полуось, b=3 - мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

\frac{4^2}{2^2}-\frac{y^2}{3^2}=1 \quad \Leftrightarrow \quad y^2=27 \quad \Leftrightarrow \quad y=\pm3\sqrt{3}.

Следовательно, точки с координатами (4;3\sqrt{3}) и (4;-3\sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2\cdot c=2\cdot\sqrt{a^2+b^2}=2\cdot\sqrt{2^2+3^2}=2\sqrt{13}

эксцентриситет e=\frac{c}{a}=\frac{\sqrt{13}}{2} ; фокальныи параметр p=\frac{b^2}{a}=\frac{3^2}{2}=4,\!5 . Составляем уравнения асимптот y=\pm\frac{b}{a}\,x , то есть y=\pm\frac{3}{2}\,x , и уравнения директрис: x=\pm\frac{a^2}{c}=\frac{4}{\sqrt{13}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .


Здравствуйте, дорогие студенты вуза Аргемоны! Приветствую вас на очередной лекции по магии функций и интегралов.

Сегодня мы поговорим о гиперболе. Начнём от простого. Самый простой вид гиперболы:

Эта функция, в отличии от прямой в её стандарных видах, имеет особенность. Как мы знаем, знаменатель дроби не может равняться нулю, потому что на ноль делить нельзя.
x ≠ 0
Отсюда делаем вывод, что областью определения является вся числовая прямая, кроме точки 0: (-∞; 0) ∪ (0; +∞).

Если х стремится к 0 справа (записывается вот так: х->0+), т.е. становится очень-очень маленьким, но при этом остаётся положительным, то у становится очень-очень большим положительным (y->+∞).
Если же х стремится к 0 слева (x->0-), т.е. становится по модулю тоже очень-очень маленьким, но остаётся при этом отрицательным, то у также будет отрицательным, но по модулю будет очень большим (y->-∞).
Если же х стремится в плюс бесконечность (x->+∞), т.е. становится очень большим положительным числом, то у будет становиться всё более и более меньшим положительным числом, т.е. будет стремиться к 0, оставаясь всё время положительным (y->0+).
Если же х стремится в минус бесконечность (x->-∞), т.е. становится большим по модулю, но отрицательным числом, то у будет тоже отрицательным всегда числом, но маленьким по модулю (y->0-).

У, как и х, не может принимать значения 0. Он только к нулю стремится. Поэтому множество значений такое же, как и область определения: (-∞; 0) ∪ (0; +∞).

Исходя из этих рассуждений, можно схематически нарисовать график функции

Видно, что гипербола состоит из двух частей: одна находится в 1-м координатном углу, где значения х и у положительные, а вторая часть — в третьем координатном углу, где значения х и у отрицательные.
Если двигаться от -∞ к +∞, то мы видим, что функция наша убывает от 0 до -∞, потом происходит резкий скачок (от -∞ до +∞) и начинается вторая ветка функции, которая тоже убывает, но от +∞ до 0. То есть, эта гипербола убывающая.

Если совсем чуть-чуть изменить функцию: воспользоваться магией минуса,

(1")

То функция чудесным образом переместится из 1 и 3 координатных четвертей во 2-ю и 4-ю четверти и станет возрастающей.

Напомню, что функция является возрастающей , если для двух значений х 1 и х 2 ,таких, что х 1 <х 2 , значения функции находятся в том же отношении f(х 1) < f(х 2).
И функция будет убывающей , если f(х 1) > f(х 2) для тех же значений х.

Ветви гиперболы приближаются к осям, но никогда их не пересекают. Такие линии, к которым приближается график функции, но никогда их не пересекает, называются ассимптотой данной функции.
Для нашей функции (1) ассимптотами являются прямые х=0 (ось OY, вертикальная ассимптота) и у=0 (ось OX, горизонтальная ассимптота).

А теперь давайте немного усложним простейшую гиперболу и посмотрим, что произойдёт с графиком функции.

(2)

Всего-то добавили константу "а" в знаменатель. Добавление какого-то числа в знаменатель в качестве слагаемого к х означает перенос всей "гиперболической конструкции" (вместе с вертикальной ассимптотой) на (-a) позиций вправо, если а — отрицательное число, и на (-а) позиций влево, если а — положительное число.

На левом графике к х добавляется отрицательная константа (а<0, значит, -a>0), что вызывает перенос графика вправо, а на правом графике — положительная константа (a>0), благодаря которой график переносится влево.

А какая магия может повлиять на перенос "гиперболической конструкции" вверх или вниз? Добавление константы-слагаемой к дроби.

(3)

Вот теперь вся наша функция (обе веточки и горизонтальная ассимптота) поднимется на b позиций вверх, если b — положительное число, и опустится на b позиций вниз, если b — отрицательное число.

Обратите внимание, что ассимптоты передвигаются вместе с гиперболой, т.е. гиперболу (обе её ветки) и обе её ассимптоты надо обязательно рассматривать как неразрывную конструкцию, которая едино передвигается влево, вправо, вверх или вниз. Очень приятное ощущение, когда одним добавлением какого-то числа можно заставлять функцию целиком двигаться в любую сторону. Чем не магия, овладеть которой можно очень легко и направлять её по своему усмотрению в нужную сторону?
Кстати, так управлять можно движением любой функции. На следующих уроках мы это умение будем закреплять.

Перед тем как задать вам домашнее задание, я хочу обратить ваше внимание ещё вот на такую функцию

(4)

Нижняя веточка гиперболы перемещается из 3-го координатного угла вверх — во второй, в тот угол, где значение у положительное, т.е. эта веточка отражается симметрично относительно оси ОХ. И теперь мы получаем чётную функцию.

Что значит "чётная функция"? Функция называется чётной , если выполняется условие: f(-x)=f(x)
Функция называется нечётной , если выполняется условие: f(-x)=-f(x)
В нашем случае

(5)

Всякая чётная функция симметрична относительно оси OY, т.е. пергамент с рисунком графика можно сложить по оси OY, и две части графика точно совпадут друг с другом.

Как видим, эта функция тоже имеет две ассимптоты — горизонтальную и вертикальную. В отличие от рассмотренных выше функций, эта функция является на одной своей части возрастающей, на другой — убывающей.

Попробуем поруководить теперь этим графиком, прибавляя константы.

(6)

Вспомним, что прибавление константы в качестве слагаемого к "х" вызывает перемещение всего графика (вместе с вертикальной ассимптотой) по горизонтали, вдоль горизонтальной ассимптоты (влево или вправо в зависимости от знака этой константы).

(7)

А добавление константы b в качестве слагаемого к дроби вызывает перемещение графика вверх или вниз. Всё очень просто!

А теперь попробуйте сами поэкспериментировать с такой магией.

Домашнее задание 1.

Каждый берёт для своих экспериментов две функции: (3) и (7).
а=первой цифре вашего ЛД
b=второй цифре вашего ЛД
Попробуйте добраться до магии этих функций, начиная с простейшей гиперболы, как я это делала на уроке, и постепенно добавляя свои константы. Функцию (7) уже можете моделировать, исходя из конечного вида функции (3). Укажите области определения, множество значений, ассимптоты. Как ведут себя функции: убывают, возрастают. Чётные — нечётные. В общем, попробуйте провести такое же исследование, как было на уроке. Возможно, вы найдете что-то ещё, о чём я забыла рассказать.

Кстати, обе ветки самой простейшей гиперболы (1) симметричны относительно биссектрисы 2 и 4 координатных углов. А теперь представьте, что гипербола стала вращаться вокруг этой оси. Получим вот такую симпатичную фигуру, которой можно найти применение.

Задание 2 . Где можно использовать данную фигуру? Попробуйте нарисовать фигуру вращения для функции (4) относительно её оси симметрии и порассуждайте, где такая фигура может найти применение.

Помните, как мы в конце прошлого урока получили прямую с выколотой точкой? И вот последнее задание 3 .
Построить график вот такой функции:


(8)

Коэффициенты a, b — такие же, как в задании 1.
с=третьей цифре вашего ЛД или a-b, если ваше ЛД двузначное.
Небольшая подсказка: сначала полученную после подстановки цифр дробь надо упростить, и затем вы получите обычную гиперболу, которую и надо построить, но в конце надо учесть область определения исходного выражения.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое обратная зависимость, и с чем ее едят. Если ты уверен, что знаешь все об обратной зависимости, добро пожаловать. Но если нет, тебе стоит прочитать тему « ».

Также очень советую научиться сперва строить , так как есть некоторые общие принципы для построения графика квадратичной и обратной зависимостей.

Начнем с небольшой проверки:

Что такое обратная пропорциональность?

Как выглядит функция, описывающая обратную зависимость в общем виде (формула)?

Как называется график такой функции?

Какие коэффициенты влияют на график функции, и как?

Если ты сходу смог ответить на эти вопросы, продолжай читать. Если хоть один вопрос вызвал затруднения, перейди по .

Итак, ты уже умеешь обращаться с обратной зависимостью, анализировать ее график и строить график по точкам.

Ну вот и все, ты научился строить любую гиперболу.

Замечу также, что правила построения гиперболы оказались немного проще, чем для параболы, ведь каждое число просто сдвигает график в какую-то одну сторону. И друг с другом коэффициенты не связаны.

ПОСТРОЕНИЕ ГРАФИКА ОБРАТНОЙ ЗАВИСИМОСТИ. КОРОТКО О ГЛАВНОМ

1. Определение

Функция, описывающая обратную зависимость - это функция вида, где.

График обратной зависимости - гипербола.

2. Коэффициенты, и.

Отвечает за «пологость» и направление графика : чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график:

  • если, и смещение вниз, если .

    Следовательно, - это горизонтальная асимптота .

    3. Правило построения графика функции:

    0) Определяем коэффициенты, и.

    1) Строим график функции (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).

    2) График должен быть сдвинут вправо на. Но проще двигать не график, а оси, так что ось сдвигаем влево на .

    3) График должен быть сдвинут вверх на. Но проще двигать не график, а оси, так что ось сдвигаем вниз на .

    4) Старые оси (прямые, которые служили нам осями в пункте 1) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!