Общая сумма углов в треугольнике. Теорема о сумме углов треугольника

Эта теорема сформулирована и в учебнике Атанасяна Л.С. , и в учебнике Погорелова А.В. . Доказательства этой теоремы в этих учебниках существенно не отличаются, а поэтому приведем ее доказательство, например, из учебника Погорелова А.В.

Теорема: Сумма углов треугольника равна 180°

Доказательство. Пусть АВС - данный треугольник. Проведем через вершину В прямую, параллельную прямой АС. Отметим на ней точку D так, чтобы точки А и D лежали по разные стороны от прямой ВС (рис.6).

Углы DВС и АСВ равны как внутренние накрест лежащие, образованные секущей ВС с параллельными прямыми АС и ВD. Поэтому сумма углов треугольника при вершинах В и С равна углу АВD. А сумма всех трех углов треугольника равна сумме углов АВD и ВАС. Так как эти углы внутренние односторонние для параллельных АС и ВD и секущей АВ, то их сумма равна 180°. Теорема доказана.

Идея этого доказательства состоит в проведение параллельной линии и обозначении равенства нужных углов. Реконструируем идею такого дополнительного построения, доказав эту теорему с использованием понятия о мысленном эксперименте. Доказательство теоремы с использованием мысленного эксперимента. Итак, предмет мысли нашего мысленного эксперимента - углы треугольника. Поместим его мысленно в такие условия, в которых его сущность может раскрыться с особой определенностью(1этап).

Такими условиями будут являться такое расположение углов треугольника, при котором все их три вершины будут совмещены в одной точке. Такое совмещение возможно, если допустить возможность «перемещения» углов, посредством движения сторон треугольника не меняя при этом угол наклона (рис.1). Такие перемещения по сути есть последующие мысленные трансформации (2 этап).

Производя обозначение углов и сторон треугольника (рис.2), углов получаемых при «перемещении», мы тем самым мысленно формируем ту среду, ту систему связей, в которую помещаем наш предмет мысли (3 этап).

Линия АВ «перемещаясь» по линии ВС и не меняя к ней угла наклона, переводит угол 1 в угол 5, а «перемещаясь» по линии АС, переводит угол 2 в угол 4. Поскольку при таком «перемещении» линия АВ не меняет угла наклона к линиям АС и ВС, то очевиден вывод: лучи а и а1 параллельны АВ и переходят друг в друга, а лучи в и в1 являются продолжением соответственно сторон ВС и АС. Так как угол 3 и угол между лучами в и в1 - вертикальные, то они равны. Сумма этих углов равна развернутому углу аа1 - а значит 180°.

ЗАКЛЮЧЕНИЕ

В дипломной работе проведены «сконструированные» доказательства некоторых школьных геометрических теорем, с использованием структуры мысленного эксперимента, что явилось подтверждением сформулированной гипотезы.

Излагаемые доказательства, опирались на такие наглядно-чувственные идеализации: «сжатие», «растягивание», «скольжение», которые позволили особым образом трансформировать исходный геометрический объект и выделить его существенные характеристики, что характерно для мысленного эксперимента. При этом мысленный эксперимент выступает в роли определенного «креативного инструмента», способствующего появлению геометрического знания (например, о средней линии трапеции или об углах треугольника). Такие идеализации позволяют схватить в целом идею доказательства, идею проведения «дополнительного построения», что позволяет говорить о возможности более осознанного понимания школьниками процесса формально-дедуктивного доказательства геометрических теорем.

Мысленный эксперимент является одним из базовых методов получения и открытия геометрических теорем. Необходимо разработать методику передачи метода ученику. Остается открытым вопрос о приемлемом для «принятия» метода возрасте ученика, о «побочных эффектах» излагаемых таким образом доказательств.

Эти вопросы требуют дополнительного изучения. Но в любом случаи, несомненно, одно: мысленный эксперимент развивает у школьников теоретическое мышление, является его базой и, поэтому, способности к мысленному экспериментированию нужно развивать.

>>Геометрия: Сумма углов треугольника. Полные уроки

ТЕМА УРОКА: Сумма углов треугольника.

Цели урока:

  • Закрепление и проверка знаний учащихся по теме: «Сумма углов треугольника»;
  • Доказательство свойства углов треугольника;
  • Применение этого свойства при решении простейших задач;
  • Использование исторического материала для развития познавательной активности учащихся;
  • Привитие навыка аккуратности при построении чертежей.

Задачи урока:

  • Проверить умение учащихся решать задачи.

План урока:

  1. Треугольник;
  2. Теорема о сумме углов треугольника;
  3. Пример задач.

Треугольник.

Файл:O.gif Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, и тремя отрезками, попарно соединяющими эти точки.
Трём точкам пространства, не лежащим на одной прямой, соответствует одна и только одна плоскость.
Любой многоугольник можно разбить на треугольники - этот процесс называется триангуляция .
Существует раздел математики, целиком посвящённый изучению закономерностей треугольников - Тригонометрия .

Теорема о сумме углов треугольника.

Файл:T.gif Теорема о сумме углов треугольника - классическая теорема евклидовой геометрии, утверждает что cумма углов треугольника равна 180°.

Доказательство":

Пусть дан Δ ABC. Проведем через вершину B прямую, параллельную (AC) и отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Тогда угол (DBC) и угол (ACB) равны как внутренние накрест лежащие при параллельных прямых BD и AC и секущей (BC). Тогда сумма углов треугольника при вершинах B и C равна углу (ABD). Но угол (ABD) и угол (BAC) при вершине A треугольника ABC являются внутренними односторонними при параллельных прямых BD и AC и секущей (AB), и их сумма равна 180°. Следовательно, сумма углов треугольника равна 180°. Теорема доказана.


Следствия.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Доказательство:

Пусть дан Δ ABC. Точка D лежит на прямой AC так, что A лежит между C и D. Тогда BAD – внешний к углу треугольника при вершине A и A + BAD = 180°. Но A + B + C = 180°, и, следовательно, B + C = 180° – A. Отсюда BAD = B + C. Следствие доказано.


Следствия.

Внешний угол треугольника больше любого угла треугольника, не смежного с ним.

Задача.

Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
(Рис.1)

Решение:

Пусть в Δ АВС ∠DАС – внешний (Рис.1). Тогда ∠DАС=180°-∠ВАС (по свойству смежных углов), по теореме о сумме углов треугольника ∠В+∠С =180°-∠ВАС. Из этих равенств получим ∠DАС=∠В+∠С

Интересный факт:

Сумма углов треугольника":

В геометрии Лобачевского сумма углов треугольника всегда меньше 180. В геометрии Эвклида она всегда равна 180 . В геометрии Римана сумма углов треугольника всегда больше 180.

Из истории математики:

Евклид (III в до н.э) в труде «Начала» приводит такое определение: «Параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются».
Посидоний (I в до н.э) «Две прямые, лежащие в одной плоскости, равноотстоящие друг от друга»
Древнегреческий учёный Папп (III в до н.э) ввёл символ параллельных прямых- знак =. Впоследствии английский экономист Рикардо (1720-1823) этот символ использовал как знак равенства.
Только в XVIII веке стали использовать символ параллельности прямых - знак ||.
Ни на миг не прерывается живая связь между поколениями, ежедневно мы усваиваем опыт, накопленный нашими предками. Древние греки на основе наблюдений и из практического опыта делали выводы, высказывали гипотезы, а затем, на встречах учёных – симпозиумах (буквально « пиршество») – эти гипотезы пытались обосновать и доказать. В то время и сложилось утверждение: « В споре рождается истина».

Вопросы:

  1. Что такое треугольник?
  2. Что гласит теорема о сумме углов треугольника?
  3. Чему равен внешний угол треугольника?

Материалы, расположенные на этой странице, являются авторскими. Копирование для размешения на других сайтах допускается только с явного согласия автора и администрации сайта.

Сумма углов треугольника.

Смирнова И. Н., учитель математики.
Информационный проспект открытого урока.

Цель методического занятия: познакомить учителей с современными методами и приемами использования средств ИКТ в различных видах учебной деятельности.
Тема урока: Сумма углов треугольника.
Имя урока: «Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью». Л. Н Толстой.
Методические новшества, которые будут положены в основу урока.
На уроке будут показаны методы научного исследования с использованием ИКТ (использование математических экспериментов, как одной из форм получения новых знаний; экспериментальная проверка гипотез).
Обзорное описание модели урока.
  1. Мотивация изучения теоремы.
  2. Раскрытие содержания теоремы в ходе математического эксперимента с использованием учебно-методического комплекта «Живая математика».
  3. Мотивация необходимости доказательства теоремы.
  4. Работа над структурой теоремы.
  5. Поиск доказательства теоремы.
  6. Доказательство теоремы.
  7. Закрепление формулировки теоремы и ее доказательства.
  8. Применение теоремы.

Урок по геометрии в 7 классе
по учебнику «Геометрия 7-9»
на тему: «Сумма углов треугольника».

Тип урока: урок изучения нового материала.
Цели урока:
Образовательные: доказать теорему о сумме углов треугольника; получить навыки работы с программой «Живая математика», развитие межпредметных связей.
Развивающие: совершенствование умений осознанно проводить такие приемы мышления как сравнение, обобщение и систематизация.
Воспитательные: воспитание самостоятельности и умения работать в соответствии с намеченным планом.
Оборудование: мультимедийный кабинет, интерактивная доска, карточки с планом практической работы, программа «Живая математика».

Структура урока.

  1. Актуализация знаний.
    1. Мобилизующее начало урока.
    2. Постановка проблемной задачи с целью мотивации изучения нового ма-териала.
    3. Постановка учебной задачи.
    1. Практическая работа «Сумма углов треугольника».
    2. Доказательство теоремы о сумме углов треугольника.
    1. Решение проблемной задачи.
    2. Решение задач по готовым чертежам.
    3. Подведение итогов урока.
    4. Постановка домашнего задания.

Ход урока.

  1. Актуализация знаний.

    План урока:

    1. Экспериментальным путем установить и выдвинуть гипотезу о сумме углов любого треугольника.
    2. Доказать это предположение.
    3. Закрепить установленный факт.
  2. Формирование новых знаний и способов действий.
    1. Практическая работа «Сумма углов треугольника».

      Учащиеся садятся за компьютеры и им раздаются карточки с планом практической работы.

      Практическая работа по теме «Сумма углов треугольника» (образец карточки)

      Распечатать карточку

      Учащиеся сдают результаты практической работы и садятся за парты.
      После обсуждения результатов практической работы выдвигается гипотеза о том, что сумма углов треугольника равна 180°.
      Учитель: Почему мы пока не можем утверждать, что сумма углов абсолютно любого треугольника равна 180°.
      Ученик: Нельзя выполнить ни абсолютно точных построений, ни произвести абсолютно точного измерения, даже на компьютере.
      Утверждение, что сумма углов треугольника равна 180°, относится только к рассмотренным нами треугольникам. Мы ничего не можем сказать о других треугольниках, так как их углы мы не измеряли.
      Учитель: Правильнее было бы сказать: рассмотренные нами треугольники имеют сумму углов приблизительно равную 180°. Чтобы убедиться в том, что сумма углов треугольника точно равна 180° и при том для любых треугольников, нам надо еще провести соответствующие рассуждения, то есть доказать справедливость утверждения, подсказанного нам опытом.

    2. Доказательство теоремы о сумме углов треугольника.

      Учащиеся открывают тетради и записывают тему урока «Сумма углов треугольника».

      Работа над структурой теоремы.

      Чтобы сформулировать теорему, ответьте на следующие вопросы:
      • Какие треугольники использовались в процессе проведения измерений?
      • Что входит в условие теоремы (что дано)?
      • Что мы обнаружили при измерении?
      • В чем состоит заключение теоремы (что надо доказать)?
      • Попробуйте сформулировать теорему о сумме углов треугольника.

      Построение чертежа и краткая запись теоремы

      На этом этапе учащимся предлагается сделать чертеж и записать, что дано и что требуется доказать.

      Построение чертежа и краткая запись теоремы.

      Дано: Треугольник ABC.
      Доказать:
      டA + டB + டC = 180°.

      Поиск доказательства теоремы

      При поиске доказательства следует попытаться развернуть условие или заключение теоремы. В теореме о сумме углов треугольника попытки развернуть условие безнадежны, поэтому разумно заняться с учениками развертыванием заключения.
      Учитель: В каких утверждениях говорится об углах, сумма величин которых равна 180°.
      Ученик: Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.
      Сумма смежных углов равна 180°.
      Учитель: Попробуем для доказательства использовать первое утверждение. В связи с этим необходимо построить две параллельные прямые и секущую, но необходимо это сделать так, чтобы наибольшее количество углов треугольника стали внутренними или входили в них. Как можно этого добиться?

      Поиск доказательства теоремы.

      Ученик: Провести через одну из вершин треугольника прямую параллельную другой стороне, тогда боковая сторона будет являться секущей. Например, через вершину В.
      Учитель: Назовите образовавшиеся при этих прямых и секущей внутренние односторонние углы.
      Ученик: Углы DBA и ВАС.
      Учитель: Сумма каких углов будет равна 180°?
      Ученик: டDBA и டBAC.
      Учитель: Что можно сказать о величине угла ABD?
      Ученик: Его величина равна сумме величин углов ABC и СВК.
      Учитель: Какого утверждения нам не хватает, чтобы доказать теорему?
      Ученик: டDBC = டACB.
      Учитель: Какие это углы?
      Ученик: Внутренние накрест лежащие.
      Учитель: На основании чего мы можем утверждать, что они равны?
      Ученик: По свойству внутренних накрест лежащих углов при параллельных прямых и секущей.

      В результате поиска доказательства составляется план доказательства теоремы:

      План доказательства теоремы.

      1. Через одну из вершин треугольника провести прямую, параллельную противолежащей стороне.
      2. Доказать равенство внутренних накрест лежащих углов.
      3. Записать сумму внутренних односторонних углов и выразить их через углы треугольника.

      Доказательство и его запись.

      1. Проведем BD || АС (аксиома параллельных прямых).
      2. ட3 = ட4 (так как это накрест лежащие углы при BD || АС и секущей ВС).
      3. டА + டАВD = 180° (так как это односторонние углы при BD || АС и секущей АВ).
      4. டА + டАВD = ட1 + (ட2 + ட4) = ட1 + ட2 + ட3 = 180°, что и требовалось доказать.

      Закрепление формулировки теоремы и ее доказательства.

      Для усвоения формулировки теоремы учащимся предлагается выполнить следующие задания:

      1. Сформулируйте теорему, которую мы только что доказали.
      2. Выделите условие и заключение теоремы.
      3. К каким фигурам применима теорема?
      4. Сформулируйте теорему со словами «если …, то…».
  3. Применение знаний, формирование умений и навыков.

1) Сумма углов треугольника равна 180°.

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.

Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3)
Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4)
тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6)
6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7)
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9)
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10)
Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11)
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть