Можно получить уравнение плоскости по трем точкам. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М 1 (x 1 ,y 1 ,z 1),M 2 (x 2 ,y 2 ,z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам,

коллинеарным плоскости.

Пусть заданы два вектора
и
, коллинеарные плоскости. Тогда для произвольной точки М(х, у,z), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали .

Теорема. Если в пространстве задана точка М 0 0 , у 0 , z 0 ), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A , B , C ) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0

Таким образом, получаем уравнение плоскости

Теорема доказана.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив
, получим уравнение плоскости в отрезках:

Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

Единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcos + ycos + zcos - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и

Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 +D= 0;D= -21.

Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А 1 (1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1),

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

    Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 как векторное произведение векторов
и
.

= (2-1; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором
.

-4 – 4 = -8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 - .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

При использовании компьютерной версии “Курса высшей математики ” можно запустить программу, которая решит рассмотренный выше пример для любых координат вершин пирамиды.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите координаты вершин пирамиды и, нажимитеEnter. Таким образом, поочередно могут быть получены все пункты решения.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple ( Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Yandex.RTB R-A-339285-1

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Определение 1

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 (x 1 , y 1 , z 1) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Определение N

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) а M 1 M 3 → = x 3 - x 1 , y 3 - y 1 , z 3 - z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M (x , y , z) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) только в том случае, когда векторы M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) будут компланарными.

На схеме это будет выглядеть так:

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) .

Запишем полученное уравнение в координатной форме:

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Пример 1

Есть три точки, не лежащие на одной прямой, с координатами M 1 (- 3 , 2 , - 1) , M 2 (- 1 , 2 , 4) , M 3 (3 , 3 , - 1) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = - 1 - - 3 , 2 - 2 , 4 - - 1 ⇔ M 1 M 2 → = (2 , 0 , 5) M 1 M 3 → = 3 - - 3 , 3 - 2 , - 1 - - 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = - 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = (- 5 , 30 , 2) . Далее нам нужно взять одну из точек, например, M 1 (- 3 , 2 , - 1) , и записать уравнение для плоскости с вектором n → = (- 5 , 30 , 2) . Мы получим, что: - 5 · (x - (- 3)) + 30 · (y - 2) + 2 · (z - (- 1)) = 0 ⇔ - 5 x + 30 y + 2 z - 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) в следующем виде:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = - 3 , y 1 = 2 , z 1 = - 1 , x 2 = - 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = - 1 , в итоге мы получим:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = x - (- 3) y - 2 z - (- 1) - 1 - (- 3) 2 - 2 4 - (- 1) 3 - (- 3) 3 - 2 - 1 - (- 1) = = x + 3 y - 2 z + 1 2 0 5 6 1 0 = - 5 x + 30 y + 2 z - 73

Мы получили нужное нам уравнение.

Ответ: - 5 x + 30 y + 2 z - 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

Пример 2

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = (- 4 , 6 , 2) , M 1 M 3 → = - 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → - 4 6 2 - 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0 ⇔ x - 5 y - (- 8) z - (- 2) 1 - 5 - 2 - (- 8) 0 - (- 2) - 1 - 5 1 - (- 8) 1 - (- 2) = 0 ⇔ ⇔ x - 5 y + 8 z + 2 - 4 6 2 - 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 (x 4 , y 4 , z 4) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Можно задавать разными способами (одной точкой и вектором, двумя точками и вектором, тремя точками и др.). Именно с учетом этого уравнение плоскости может иметь различные виды. Также при соблюдении определенных условий плоскости могут быть параллельными, перпендикулярными, пересекающимися и т.д. Об этом и поговорим в данной статье. Мы научимся составлять общее уравнение плоскости и не только.

Нормальный вид уравнения

Допустим, есть пространство R 3 , которое имеет прямоугольную координатную систему XYZ. Зададим вектор α, который будет выпущен из начальной точки О. Через конец вектора α проведем плоскость П, которая будет ему перпендикулярна.

Обозначим на П произвольную точку Q=(х,у,z). Радиус-вектор точки Q подпишем буквой р. При этом длина вектора α равняется р=IαI и Ʋ=(cosα,cosβ,cosγ).

Это единичный вектор, который направлен в сторону, как и вектор α. α, β и γ - это углы, которые образуются между вектором Ʋ и положительными направлениями осей пространства х, у, z соответственно. Проекция какой-либо точки QϵП на вектор Ʋ является постоянной величиной, которая равна р: (р,Ʋ) = р(р≥0).

Указанное уравнение имеет смысл, когда р=0. Единственное, плоскость П в этом случае будет пересекать точку О (α=0), которая является началом координат, и единичный вектор Ʋ, выпущенный из точки О, будет перпендикулярен к П, несмотря на его направление, что означает, что вектор Ʋ определяется с точностью до знака. Предыдущее уравнение является уравнением нашей плоскости П, выраженным в векторной форме. А вот в координатах его вид будет таким:

Р здесь больше или равно 0. Мы нашли уравнение плоскости в пространстве в нормальном виде.

Общее уравнение

Если уравнение в координатах умножим на любое число, которое не равно нулю, получим уравнение, эквивалентное данному, определяющее ту самую плоскость. Оно будет иметь такой вид:

Здесь А, В, С - это числа, одновременно отличные от нуля. Это уравнение именуется как уравнение плоскости общего вида.

Уравнения плоскостей. Частные случаи

Уравнение в общем виде может видоизменяться при наличии дополнительных условий. Рассмотрим некоторые из них.

Предположим, что коэффициент А равен 0. Это означает, что данная плоскость параллельна заданной оси Ох. В этом случае вид уравнения изменится: Ву+Cz+D=0.

Аналогично вид уравнения будет изменяться и при следующих условиях:

  • Во-первых, если В=0, то уравнение изменится на Ах+Cz+D=0, что будет свидетельствовать о параллельности к оси Оу.
  • Во-вторых, если С=0, то уравнение преобразуется в Ах+Ву+D=0, что будет говорить о параллельности к заданной оси Oz.
  • В-третьих, если D=0, уравнение будет выглядеть как Ах+Ву+Cz=0, что будет означать, что плоскость пересекает О (начало координат).
  • В-четвертых, если A=B=0, то уравнение изменится на Cz+D=0, что будет доказывать параллельность к Oxy.
  • В-пятых, если B=C=0, то уравнение станет Ах+D=0, а это означает, что плоскость к Oyz параллельна.
  • В-шестых, если A=C=0, то уравнение приобретет вид Ву+D=0, то есть будет сообщать о параллельности к Oxz.

Вид уравнения в отрезках

В случае когда числа А, В, С, D отличны от нуля, вид уравнения (0) может быть следующим:

х/а + у/b + z/с = 1,

в котором а = -D/А, b = -D/В, с = -D/С.

Получаем в итоге Стоит отметить, что данная плоскость будет пересекать ось Ох в точке с координатами (а,0,0), Оу - (0,b,0), а Oz - (0,0,с).

С учетом уравнения х/а + у/b + z/с = 1 нетрудно визуально представить размещение плоскости относительно заданной координатной системы.

Координаты нормального вектора

Нормальный вектор n к плоскости П имеет координаты, которые являются коэффициентами общего уравнения данной плоскости, то есть n (А,В,С).

Для того чтобы определить координаты нормали n, достаточно знать общее уравнение заданной плоскости.

При использовании уравнения в отрезках, которое имеет вид х/а + у/b + z/с = 1, как и при использовании общего уравнения, можно записать координаты любого нормального вектора заданной плоскости: (1/а + 1/b + 1/с).

Стоит отметить, что нормальный вектор помогает решить разнообразные задачи. К самым распространенным относятся задачи, заключающиеся в доказательстве перпендикулярности или параллельности плоскостей, задачи по нахождению углов между плоскостями или углов между плоскостями и прямыми.

Вид уравнения плоскости согласно координатам точки и нормального вектора

Ненулевой вектор n, перпендикулярный заданной плоскости, называют нормальным (нормалью) для заданной плоскости.

Предположим, что в координатном пространстве (прямоугольной координатной системе) Oxyz заданы:

  • точка Мₒ с координатами (хₒ,уₒ,zₒ);
  • нулевой вектор n=А*i+В*j+С*k.

Нужно составить уравнение плоскости, которая будет проходить через точку Мₒ перпендикулярно нормали n.

В пространстве выберем любую произвольную точку и обозначим ее М (х у,z). Пускай радиус-вектор всякой точки М (х,у,z) будет r=х*i+у*j+z*k, а радиус-вектор точки Мₒ (хₒ,уₒ,zₒ) - rₒ=хₒ*i+уₒ*j+zₒ*k. Точка М будет принадлежать заданной плоскости, если вектор МₒМ будет перпендикулярен вектору n. Запишем условие ортогональности при помощи скалярного произведения:

[МₒМ, n] = 0.

Поскольку МₒМ = r-rₒ, векторное уравнение плоскости выглядеть будет так:

Данное уравнение может иметь и другую форму. Для этого используются свойства скалярного произведения, а преобразовывается левая сторона уравнения. = - . Если обозначить как с, то получится следующее уравнение: - с = 0 или = с, которое выражает постоянство проекций на нормальный вектор радиус-векторов заданных точек, которые принадлежат плоскости.

Теперь можно получить координатный вид записи векторного уравнения нашей плоскости = 0. Поскольку r-rₒ = (х-хₒ)*i + (у-уₒ)*j + (z-zₒ)*k, а n = А*i+В*j+С*k, мы имеем:

Выходит, у нас образовывается уравнение плоскости, проходящей через точку перпендикулярно нормали n:

А*(х- хₒ)+В*(у- уₒ)С*(z-zₒ)=0.

Вид уравнения плоскости согласно координатам двух точек и вектора, коллинеарного плоскости

Зададим две произвольные точки М′ (х′,у′,z′) и М″ (х″,у″,z″), а также вектор а (а′,а″,а‴).

Теперь мы сможем составить уравнение заданной плоскости, которая будет проходить через имеющиеся точки М′ и М″, а также всякую точку М с координатами (х,у,z) параллельно заданному вектору а.

При этом векторы М′М={х-х′;у-у′;z-z′} и М″М={х″-х′;у″-у′;z″-z′} должны быть компланарными с вектором а=(а′,а″,а‴), а это значит, что (М′М, М″М, а)=0.

Итак, наше уравнение плоскости в пространстве будет выглядеть так:

Вид уравнения плоскости, пересекающей три точки

Допустим, у нас есть три точки: (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴), которые не принадлежат одной прямой. Необходимо написать уравнение плоскости, проходящей через заданные три точки. Теория геометрии утверждает, что такого рода плоскость действительно существует, вот только она единственная и неповторимая. Поскольку эта плоскость пересекает точку (х′,у′,z′), вид ее уравнения будет следующим:

Здесь А, В, С отличные от нуля одновременно. Также заданная плоскость пересекает еще две точки: (х″,у″,z″) и (х‴,у‴,z‴). В связи с этим должны выполняться такого рода условия:

Сейчас мы можем составить однородную систему с неизвестными u, v, w:

В нашем случае х,у или z выступает произвольной точкой, которая удовлетворяет уравнение (1). Учитывая уравнение (1) и систему из уравнений (2) и (3), системе уравнений, указанной на рисунке выше, удовлетворяет вектор N (А,В,С), который является нетривиальным. Именно потому определитель данной системы равняется нулю.

Уравнение (1), которое у нас получилось, это и есть уравнение плоскости. Через 3 точки она точно проходит, и это легко проверить. Для этого нужно разложить наш определитель по элементам, находящимся в первой строке. Из существующих свойств определителя вытекает, что наша плоскость одновременно пересекает три изначально заданные точки (х′,у′,z′), (х″,у″,z″), (х‴,у‴,z‴). То есть мы решили поставленную перед нами задачу.

Двухгранный угол между плоскостями

Двухгранный угол представляет собой пространственную геометрическую фигуру, образованную двумя полуплоскостями, которые исходят из одной прямой. Иными словами, это часть пространства, которая ограничивается данными полуплоскостями.

Допустим, у нас имеются две плоскости со следующими уравнениями:

Нам известно, что векторы N=(А,В,С) и N¹=(А¹,В¹,С¹) перпендикулярны согласно заданным плоскостям. В связи с этим угол φ меж векторами N и N¹ равняется углу (двухгранному), который находится между этими плоскостями. Скалярное произведение имеет вид:

NN¹=|N||N¹|cos φ,

именно потому

cosφ= NN¹/|N||N¹|=(АА¹+ВВ¹+СС¹)/((√(А²+В²+С²))*(√(А¹)²+(В¹)²+(С¹)²)).

Достаточно учесть, что 0≤φ≤π.

На самом деле две плоскости, которые пересекаются, образуют два угла (двухгранных): φ 1 и φ 2 . Сумма их равна π (φ 1 + φ 2 = π). Что касается их косинусов, то их абсолютные величины равны, но различаются они знаками, то есть cos φ 1 =-cos φ 2 . Если в уравнении (0) заменить А, В и С на числа -А, -В и -С соответственно, то уравнение, которое мы получим, будет определять эту же плоскость, единственное, угол φ в уравнении cos φ= NN 1 /|N||N 1 | будет заменен на π-φ.

Уравнение перпендикулярной плоскости

Перпендикулярными называются плоскости, между которыми угол равен 90 градусов. Используя материал, изложенный выше, мы можем найти уравнение плоскости, перпендикулярной другой. Допустим, у нас имеются две плоскости: Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D=0. Мы можем утверждать, что перпендикулярными они будут, если cosφ=0. Это значит, что NN¹=АА¹+ВВ¹+СС¹=0.

Уравнение параллельной плоскости

Параллельными называются две плоскости, которые не содержат общих точек.

Условие (их уравнения те же, что и в предыдущем пункте) заключается в том, что векторы N и N¹, которые к ним перпендикулярны, коллинеарные. А это значит, что выполняются следующие условия пропорциональности:

А/А¹=В/В¹=С/С¹.

Если условия пропорциональности являются расширенными - А/А¹=В/В¹=С/С¹=DD¹,

это свидетельствует о том, что данные плоскости совпадают. А это значит, что уравнения Ах+Ву+Cz+D=0 и А¹х+В¹у+С¹z+D¹=0 описывают одну плоскость.

Расстояние до плоскости от точки

Допустим, у нас есть плоскость П, которая задана уравнением (0). Необходимо найти до нее расстояние от точки с координатами (хₒ,уₒ,zₒ)=Qₒ. Чтобы это сделать, нужно привести уравнение плоскости П в нормальный вид:

(ρ,v)=р (р≥0).

В данном случае ρ (х,у,z) является радиус-вектором нашей точки Q, расположенной на П, р - это длина перпендикуляра П, который был выпущен из нулевой точки, v - это единичный вектор, который расположен в направлении а.

Разница ρ-ρº радиус-вектора какой-нибудь точки Q=(х,у,z), принадлежащий П, а также радиус-вектора заданной точки Q 0 =(хₒ,уₒ,zₒ) является таким вектором, абсолютная величина проекции которого на v равняется расстоянию d, которое нужно найти от Q 0 =(хₒ,уₒ,zₒ) до П:

D=|(ρ-ρ 0 ,v)|, но

(ρ-ρ 0 ,v)= (ρ,v)-(ρ 0 ,v) =р-(ρ 0 ,v).

Вот и получается,

d=|(ρ 0 ,v)-р|.

Таким образом, мы найдем абсолютное значение полученного выражения, то есть искомое d.

Используя язык параметров, получаем очевидное:

d=|Ахₒ+Вуₒ+Czₒ|/√(А²+В²+С²).

Если заданная точка Q 0 находится по другую сторону от плоскости П, как и начало координат, то между вектором ρ-ρ 0 и v находится следовательно:

d=-(ρ-ρ 0 ,v)=(ρ 0 ,v)-р>0.

В случае когда точка Q 0 совместно с началом координат располагается по одну и ту же сторону от П, то создаваемый угол острый, то есть:

d=(ρ-ρ 0 ,v)=р - (ρ 0 , v)>0.

В итоге получается, что в первом случае (ρ 0 ,v)>р, во втором (ρ 0 ,v)<р.

Касательная плоскость и ее уравнение

Касающаяся плоскость к поверхности в точке касания Мº - это плоскость, содержащая все возможные касательные к кривым, проведенным через эту точку на поверхности.

При таком виде уравнения поверхности F(х,у,z)=0 уравнение касательной плоскости в касательной точке Мº(хº,уº,zº) будет выглядеть так:

F х (хº,уº,zº)(х- хº)+ F х (хº, уº, zº)(у- уº)+ F х (хº, уº,zº)(z-zº)=0.

Если задать поверхность в явной форме z=f (х,у), то касательная плоскость будет описана уравнением:

z-zº =f(хº, уº)(х- хº)+f(хº, уº)(у- уº).

Пересечение двух плоскостей

В расположена система координат (прямоугольная) Oxyz, даны две плоскости П′ и П″, которые пересекаются и не совпадают. Поскольку любая плоскость, находящаяся в прямоугольной координатной системе, определяется общим уравнением, будем полагать, что П′ и П″ задаются уравнениями А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. В таком случае имеем нормаль n′ (А′,В′,С′) плоскости П′ и нормаль n″ (А″,В″,С″) плоскости П″. Поскольку наши плоскости не параллельны и не совпадают, то эти векторы являются не коллинеарными. Используя язык математики, мы данное условие можем записать так: n′≠ n″ ↔ (А′,В′,С′) ≠ (λ*А″,λ*В″,λ*С″), λϵR. Пускай прямая, которая лежит на пересечении П′ и П″, будет обозначаться буквой а, в этом случае а = П′ ∩ П″.

а - это прямая, состоящая из множества всех точек (общих) плоскостей П′ и П″. Это значит, что координаты любой точки, принадлежащей прямой а, должны одновременно удовлетворять уравнения А′х+В′у+С′z+D′=0 и А″х+В″у+С″z+D″=0. Значит, координаты точки будут частным решением следующей системы уравнений:

В итоге получается, что решение (общее) этой системы уравнений будет определять координаты каждой из точек прямой, которая будет выступать точкой пересечения П′ и П″, и определять прямую а в координатной системе Oxyz (прямоугольной) в пространстве.