Механическое движение и его виды. Относительность движения. Система отсчета. Скорость. Ускорение…. Механическое движение - реферат

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется .

Основные виды механического движения :

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения – самые простые виды механического движения.

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения .

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта .

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки , и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат , которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Механика – раздел физики, в котором изучают механическое движение.

Механику подразделяют на кинематику, динамику и статику.

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения. Кинематика изучает способы описания движения и связь между величинами, характеризующими эти движения.

Задача кинематики: определение кинематических характеристик движения (траектории движения, перемещения, пройденного пути, координаты, скорости и ускорения тела), а также получение уравнений зависимости этих характеристик от времени.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно , выражение «тело движется» лишено всякого смысла, пока не определено, относительно чего рассматривается движение. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета . Покой тоже относителен (примеры: пассажир в покоящемся поезде смотрит на проходящий мимо поезд)

Главная задача механики уметь вычислять координаты точек тела в любой момент времени.

Чтобы решить эту надо иметь тело, от которого ведется отсчет координат, связать с ним систему координат и иметь прибор для измерения промежутков времени.

Система координат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют систему отсчета , относительно которой и рассматривается движение тела.

Системы координат бывают:

1. одномерная – положение тела на прямой определяется одной координатой x.

2. двумерная – положение точки на плоскости определяется двумя координатами x и y.

3. трехмерная – положение точки в пространстве определяется тремя координатами x, y и z.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным.

Поступательно движутся, например, кабины в аттракционе «Гигантское колесо», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь .

Понятие материальной точки играет важную роль в механике. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.

Пример. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись.

Характеристики механического движения: перемещение, скорость, ускорение.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Линия, по которой движется точка тела, называется траекторией движения.

Длина траектории называется пройденным путем.

Обозначается l, измеряется в метрах . (траектория – след, путь – расстояние)

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь скалярная величина .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Обозначается S , измеряется в метрах.(перемещение – вектор, модуль перемещения – скаляр)

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Обозначается v

Формула скорости: или

Единица измерения в СИ – м/с .

На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Измеряют скорость спидометром .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Ускорение измеряют акселерометром

Единица измерения в СИ м/с 2

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение, скорость и ускорение. Путь l является скалярной величиной. Перемещение, скорость и ускорение – величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

Со школьной скамьи, наверное, все помнят, что называется механическим движением тела. Если нет, то в этой статье постараемся не только вспомнить этот термин, но и обновить базовые знания из курса физики, а точнее из раздела "Классической механики". Также будут показаны примеры того, что это понятие употребляется не только в определенной дисциплине, но и в иных науках.

Механика

Для начала разберем, что обозначает это понятие. Механика - это раздел в физике, изучающий движение различных тел, взаимодействие между ними, а так же влияние на эти тела третьих сил и явлений. Движение автомобиля по шоссе, пущенный ударом ноги в ворота футбольный мяч, идущий на - все это изучается именно этой дисциплиной. Обычно, употребляя термин "Механика", имеют в виду "Классическую механику". Что это такое, мы разберем с вами ниже.

Классическую механику делят на три больших раздела.

  1. Кинематика - она изучает движение тел, не рассматривая вопроса, почему они движутся? Здесь интересуют такие величины, как путь, траектория, перемещение, скорость.
  2. Второй раздел - это динамика. Она изучает причины возникновения движения, оперируя такими понятиями, как работа, сила, масса, давление, импульс, энергия.
  3. И третий раздел, самый небольшой - изучающая такое состояние, как равновесие. Она делится на две части. Одна освещает равновесие твердых тел, а вторая - жидкостей и газов.

Очень часто классическую механику называют ньютоновой, ибо основывается она на трех законах Ньютона.

Три закона Ньютона

Впервые они были изложены Исааком Ньютоном в 1687 году.

  1. Первый закон гласит об инерции тела. Это свойство, при котором сохраняется направление и скорость движения материальной точки, если на него не действует никаких внешних сил.
  2. Второй закон утверждает, что тело, приобретая ускорение, совпадает с этим ускорением по направлению, но становится зависимым от своей массы.
  3. Третий закон утверждает, что сила действия всегда равна силе противодействия.

Все три закона являются аксиомами. Иными словами, это постулаты, которые не требуют доказательств.

Что называется механическим движением

Это изменение положения какого-либо тела в пространстве, относительно других тел с течением времени. Материальные точки при этом взаимодействуют по законам механики.

Подразделяется на несколько видов:

  • Движение материальной точки измеряется с помощью нахождения ее координат и отслеживания изменений координат со временем. Найти эти показатели, значит вычислить значения по осям абсцисс и ординат. Изучением этого занимается кинематика точки, которая оперирует такими понятиями, как траектория, перемещение, ускорение, скорость. Движение объекта при этом может быть прямолинейное и криволинейное.
  • Движение твердого тела складывается из перемещения какой-то точки, взятой за основу, и вращательного движения вокруг нее. Изучается кинематикой твердых тел. Перемещение может быть поступательным, то есть вращения вокруг заданной точки не происходит, и все тело движется равномерно, а также плоским - если все тело перемещается параллельно плоскости.
  • Существует так же движение сплошной среды. Это перемещение большого количества точек, связанных только каким-либо полем или областью. Ввиду множества движущихся тел (или материальных точек) одной системы координат здесь недостаточно. Поэтому сколько тел, столько и систем координат. Примером тому может служить волна на море. Она - непрерывна, но состоит из большого количества отдельно взятых точек на множестве систем координат. Вот и получается, что движение волны - перемещение сплошной среды.

Относительность движения

Есть еще такое понятие в механике, как относительность движения. Это влияние какой-либо системы отсчета на механическое движение. Как это понимать? Система отсчета - это система координат плюс часы для Проще говоря, это оси абсцисс и ординат в сочетании с минутами. Посредством такой системы определяется, за какой промежуток времени материальная точка проделала заданное расстояние. Иными словами, переместилось относительно оси координат или других тел.

Системы отсчета могут быть: сопутствующая, инерциальная и неинерциальная. Поясним:

  • Инерциальная СО - это система, где тела, производя то, что называется механическим движением материальной точки, совершают это прямолинейно и равномерно либо вообще находятся в состоянии покоя.
  • Соответственно, неинерциальная СО - система, движущаяся с ускорением или поворачивающаяся по отношению к первой СО.
  • Сопутствующая же СО - это система, которая совместно с материальной точкой, совершает то, что называется механическим движением тела. Иными словами, куда и с какой скоростью перемещается объект, вместе с ним перемещается и данная СО.

Материальная точка

Почему иногда употребляется понятие "тело", а иногда - "материальная точка"? Второй случай указывается, когда размерами самого объекта можно пренебречь. То есть такие параметры, как масса, объем и прочее, не имеют значения для решения возникшей задачи. Например, если цель состоит в том, чтобы узнать, с какой скоростью движется пешеход относительно планеты Земля, то ростом и весом пешехода можно пренебречь. Он является материальной точкой. Механическое движение этого объекта не зависит от его параметров.

Используемые понятия и величины механического движения

В механике оперируют различными величинами, с помощью которых задаются параметры, пишется условие задач и находится решение. Перечислим их.

  • Изменение местоположения тела (или материальной точки) относительно пространства (или системы координат) с течением времени называется перемещение. Механическое движение тела (материальной точки), по сути дела, - это синоним к понятию "перемещение". Просто второе понятие используют в кинематике, а первое - в динамике. Разница между этими подразделами была пояснена выше.
  • Траектория - это линия, по которой тело (материальная точка) совершает то, что называется механическим движением. Ее длина называется путь.
  • Скорость - перемещения какой-либо материальной точки (тела), относительно заданной системы отчета. Определение системы отчета так же давалось выше.

Неизвестные величины, используемые для определения механического движения, в задачах находятся с помощью формулы: S=U*T, где "S" - расстояние, "U" - скорость, а "T" - время.

Из истории

Само понятие "классической механики" появилось еще в древности, и подтолкнуло к этому развивающееся быстрыми темпами строительство. Архимед сформулировал и описал теорему о сложении параллельных сил, ввел понятие "центр тяжести". Так зачиналась статика.

Благодаря Галилею, в 17 веке стала развиваться "Динамика". Закон инерции и принцип относительности - это его заслуга.

Исаак Ньютон, как уже говорилось выше, ввел три закона, которые легли в основу ньютоновой механики. Также он открыл закон всемирного тяготения. Так были заложены основы классической механики.

Неклассическая механика

С развитием физики, как науки, и с появлением больших возможностей в сферах астрономии, химии, математики и прочего классическая механика постепенно стала не основной, но одной из многих восстребованных наук. Когда активно стали вводить и оперировать такими понятиями, как скорость света, квантовая теория поля и так далее, законов, лежащих в основе "Механики", стало не хватать.

Квантовая механика - это раздел физика, который занимается изучением сверхмалых тел (материальных точек) в виде атомов, молекул, электронов и фотонов. Эта дисциплина очень хорошо описывает свойства сверхмалых частиц. Помимо этого, она предсказывает их поведение в той или иной ситуации, а также в зависимости от воздействия. Предсказания, выполненные квантовой механикой, могут очень существенно отличаться от предположений классической механики, так как вторая не способна описать все явления и процессы, протекающие на уровне молекул, атомов и прочего - очень маленького и невидимого невооруженным глазом.

Релятивистская механика - это раздел физики, занимающийся изучением процессов, явлений, а так же законов при скоростях, сопоставимых со скоростью света. Все события, изучаемые этой дисциплиной, происходят в четырехмерном пространстве, в отличие от "классического" - трехмерного. То есть к высоте, ширине и длине мы прибавляем еще один показатель - время.

Какое еще бывает определение механического движения

Мы рассмотрели только базовые понятия, связанные с физикой. Но сам термин употребляется не только в механике, будь то классическая или неклассическая.

В науке под названием "Социально-экономическая статистика" определение механического движения населения дается, как миграция. Иными словами, это перемещение людей на большие расстояния, например, в соседние страны или на соседние континенты с целью смены места жительства. Причинами такого перемещения могут быть, как невозможность продолжать жить на своей территории из-за природных катаклизмов, например, постоянные наводнения или засуха, экономических и социальных проблем в своем государстве, так и вмешательство внешних сил, например, война.

В этой статье рассмотрено то, что называется механическим движением. Примеры приведены не только из физики, но и из других наук. Это указывает на то, что термин является многозначным.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КИЕВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ)

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РЕФЕРАТ

НА ТЕМУ: Механическое движение

Выполнила: студентка ІV курса

Группа 105 А

Запевайлова Диана

§ 1. Механическое движение

Когда шар или тележка, находящиеся на столе, изменяют свое положение по отношению к столу, то мы говорим, что они движутся. Точно так же мы говорим, что автомобиль движется, если он изменяет свое положение по отношению к дороге.

Изменение положения данного тела по отношению к каким-либо другим телам называется механическим движением.

В мировом пространстве механические движения совершают Земля, Луна и другие планеты, кометы, Солнце, звезды, туманности. На Земле мы наблюдаем механические движения облаков, воды в реках и океанах, животных и птиц; механические движения совершают и построенные человеком корабли, автомобили, поезда и самолеты; части машин, станков и приборов; пули, снаряды, авиабомбы и мины, и т. д. и т. д.

Изучением механических движений занимается раздел физики, называемый механикой. Слово «механика» произошло от греческого слова «механз», что значит машина, приспособление. Известно, что уже древние египтяне, а затем греки, римляне и другие народы строили различные машины, употреблявшиеся для транспорта, в строительном и военном деле (рис, 1); во время действия этих машин в них происходило движение (перемещение) различных частей: рычагов, колес, грузов и т.д. Изучение перемещения частей этих машин привело к созданию науки о движениях тел - механики.

Движение данного тела может носить совершенно различный характер в зависимости от того, по отношению к каким телам наблюдается изменение его положения.

Например, яблоко, лежащее на столике движущегося вагона, находится в покое по отношению к столику и всем другим предметам в вагоне; но оно находится в движении по отношению к предметам, расположенным на земле, вне вагона поезда. В безветренную погоду струи дождя представляются вертикальными, если за ними следить из окна вагона, стоящего на станции; при этом капли оставляют на оконном стекле вертикальные следы. Но по отношению к движущемуся вагону струи дождя представятся косыми: дождевые капли будут оставлять на стекле наклонные следы, причем наклон будет тем больше, чем больше скорость вагона.

Зависимость характера движения от выбора тел, к которым движение относится, называется относительностью движения. Всякое движение и, в частности, покой являются относительными.

Таким образом, давая ответ на вопрос, покоится ли тело или движется и как оно движется, мы должны указать, относительно каких тел рассматривается движение интересующего нас тела. В тех случаях, когда это не указывается прямо, мы всегда подразумеваем такие тела. Так, говоря просто опадении камня, движении автомобиля или самолета, мы всегда подразумеваем, что дело идет о движении по отношению к Земле; говоря о движении Земли в целом, мы обычно имеем в виду движение относительно Солнца или звезд, и т. д.

Приступая к изучению движения отдельных тел, мы можем сначала не задавать себе вопроса о тех причинах, которыми вызываются эти движения. Например, мы можем следить за движением облака, совсем не обращая внимания на ветер, который его гонит; мы видим, как движется автомобиль по шоссе, и, описывая его движение, можем не обращать внимания на работу его мотора.

Отдел механики, в котором описываются и изучаются движения без исследования причин, их вызывающих, называется кинематикой.

Для описания движения тела нужно, вообще говоря, указать, как изменяется положение различных точек тела со временем. При движении тела всякая его точка описывает некоторую линию, которая называется траекторией движения этой точки.

Проводя мелом по доске, мы оставляем на ней след - траекторию движения кончика мела относительно доски. Светящийся след метеора представляет собой траекторию его движения (рис. 2). Светящийся след трассирующей пули показывает стрелку ее траекторию и облегчает пристрелку (рис. 3).

Траектории движения разных точек тела могут быть, вообще говоря, совершено различны. Это можно показать, например, быстро двигая в темной комнате тлеющую с двух концов лучнику. Благодаря свойству глаза сохранять зрительное впечатление мы увидим траектории тлеющих концов и сможем легко сравнить обе траектории (рис. 4).

Итак, траектории разных точек движущегося тела могут быть различны, Поэтому для описания движения тела необходимо указать, как движутся различные его точки. Указав, например, что один конец лучины движется по прямой линии, мы не дадим полного описания движения, потому что еще не известно, как движутся другие ее точки, например второй конец лучины.

Наиболее простым является такое движение тела, при котором все его ТОЧКИ движутся одинаково - описывают одинаковые траектории. Такое движение называется поступательным. Легко воспроизвести этот тип движения.

Будем двигать нашу лучинку так, чтобы она все время оставалась параллельной самой себе.

Мы увидим, что при этом ее концы опишут одинаковые траектории. Это могут быть прямые или кривые линии (рис. 5). Можно доказать, что при поступательном движении любая п рямая, проведенная в теле, остается параллельной самой себе.

Этим признаком удобно пользоваться, чтобы ответить на вопрос, является ли движение данного тела поступательным. Например, при скатывании цилиндра по наклонной плоскости прямые, пересекающие ось, не остаются параллельными сами себе, следовательно, качение цилиндра- не есть поступательное движение (рис. 6, а). Но при соскальзывании по плоскости бруска с плоскими гранями любая прямая, проведенная в нем, останется параллельной самой себе,- соскальзывание бруска есть поступательное движение (рис. 6, б). Поступательным движением является движение иглы в швейной машине, движение поршня в цилиндре паровой машины или в цилиндре мотора, движение гвоздя, забиваемого в стенку, движение кабинок «чертова колеса» (рис. 141 на стр. 142), Приблизительно поступательным является движение напильника при опиловке плоскости (рис. 7), движение кузова автомашины (но не колес!) при езде по прямой и т. д.

Другим распространенным типом движения является вращательное движение тела. При вращательная движении все точки тела описывают окружности, центры которых лежат на прямой (прямая 00", рис. 8), называемой осью вращения. Окружности эти расположены в параллельных плоскостях, перпендикулярных к оси вращения. Точки оси остаются при этом неподвижными. Всякая прямая, проходящая под углом к оси вращения, не остается при движении параллельной самой себе. Таким образом, вращение не является поступательным движением. Вращательное движение весьма широко применяется в технике; движения колес, блоков, валов и осей различных механизмов, пропеллера и т. п. являются примерами вращательного движения. Суточное движение Земли есть также вращательное движение.

Мы видели, что для описания движения тела нужно, вообще говоря, знать, как движутся различные точки тела. Но если тело движется поступательно, то все точки его движутся одинаково. Поэтому для описания поступательного движения тела достаточно описать движение какой-нибудь одной точки тела. Например, описывая поступательное не движение автомобиля, достаточно указать, как движется конец флажка на радиаторе или любая другая точка на его кузове.

Таким образом, в ряде случаев описание движения тела сводится к описанию движения точки. Поэтому мы начнем изучение движений с изучения движения отдельной точки.

Движения точки, прежде всего, различаются по виду описываемой ею траектории. Если траектория, которую описывает точка, представляет собой прямую линию, то ее движение называется прямолинейным. Если траектория движения есть кривая, то движение называется криволинейным.

Поскольку разные точки тела могут двигаться по-разному, понятие прямолинейного (или криволинейного) движения относится к движению отдельных точек, а не всего тела в целом. Так, прямолинейность движения одной или нескольких точек тела вовсе не означает прямолинейного движения всех других точек тела. Например, при скатывании цилиндра (рис. 6, а) все точки, лежащие на оси цилиндра, движутся прямолинейно, тогда как другие точки цилиндра описывают криволинейные траектории. Только при поступательном движении тела, когда все его точки движутся одинаково, можно говорить о прямолинейности движения тела в целом и вообще о траектории всего тела.

Описанием движения одной точки тела часто можно ограничиться и в том случае, когда тело совершает поступательное, й вращательное движение, если при этом расстояние до оси вращения очень велико по сравнению с размерами тела. Таково, например, движение самолета, описывающего вираж, или движение поезда на закруглении пути, или движение Луны относительно Земли. В этом случае окружности, описываемые различными точками тела, очень мало отличаются друг от друга. Траектории движения этих точек оказываются почти одинаковыми, и если нас не интересует поворот тела как целого, то для описания движения его точек также достаточно указать, как движется какая-либо одна точка тела.

Описание движения тела должно дать возможность определить положение тела в любой момент времени. Что же нам нужно знать для этого?

Допустим, что мы хотим определить положение, которое в известный момент времени занимает идущий поезд. Мы должны для этого знать следующее:

    Траекторию движения поезда. Если, например, поезд идет из Москвы в Ленинград, то железнодорожный путь Москва-Ленинград и представляет собой эту траекторию.

    Положение, поезда на этой траектории в какой-либо определенный момент времени. Например, известно, что в 0 ч. 30 м. ночи поезд вышел из Москвы. В нашей задаче Москва - это начал ь-ное положение поезда, или начало отсчета пут и, и соответственно 0ч. 30 м. - это начальный момент, или начало отсчета времени.

    Промежуток времени, который отделяет интересующий нас момент времени от начального. Пусть этот промежуток равен 5 часам, т. е. мы ищем положение поезда к 5 ч. 30 м. утра.

4) Путь, пройденный поездом за этот промежуток времени. Допустим, что этот путь равен 330 км.

На основании этих данных мы можем ответить на интересующий нас вопрос. Взяв карту (рис.9) и отложив вдоль линии, изображающей дорогу Москва-Ленинград, расстояние в 330 км от. Москвы в сторону Ленинграда, мы найдем, что в 5 ч. 30 м. утра поезд находился на станции Бологое.

Начало отсчета пути и начало отсчета времени не должны обязательно совпадать с началом рассматриваемого движения. Начальным моментом и начальным положением называют этот момент и это положение не потому, что они соответствуют началу движения, а потому, что они являются начальными (исходными) данными нашей задачи. В качестве начальных данных можно указать положение поезда в любой, но определенный момент времени. Достаточно, например, было бы указать, что, Положим, в 1 ч, 15 м. ночи поезд проходил мимо станции Крюково. Тогда станция Крюково была бы началом отсчета пути, а 1 ч. 15 м, ночи - началом отсчета времени. Интересующий нас момент времени (5 ч. 30 м. утра) отделен от начального момента промежутком в 4 ч. 15 м.; если нам известно, что за 4 ч. 15 м. поезд прошел 290 км, то мы найдем, так же как и в первом случае, что в 5 ч. 30 м. утра поезд окажется на станции Бологое (рис. 9).

Итак, для описания движения необходимо знать траекторию движения тела, установить положение тела на траектории в различные моменты времени и определить длину пути, проходимого телом за те или иные промежутки времени. Но для того, чтобы определить путь, проходимый телом за тот или иной промежуток времени, мы должны уметь измерять эти величины - длину пути и промежуток времени. Таким образом, в основе всякого описания движения лежат измерения длины и промежутков времени.

В дальнейшем мы будем обозначать длину пути, пройденного телом за некоторый промежуток времени, иначе говоря, перемещение тела, буквой 5, а величину промежутка времени - буквой t. При этом рядом с буквами мы будем иногда ставить обозначение тех единиц, в которых данная величина измерена. Например, S M , t сек будет означать, что длину пути мы измерили в метрах, а промежуток времени - в секундах.

Основной единицей измерения длины пути (как и вообще длины) служит метр. В качестве образца метра принято расстояние между двумя штрихами на платиновоиридиевом стержне, хранящемся в Международном бюро мер и [ весов в Париже (рис. 10). Кроме этой основной единицы, в физике применяются и другие единицы - кратные метра и доли метра:

Нониус представляет собой добавочную шкалу, могущую передвигаться вдоль основной. Деления нониуса меньше делений основной шкалы на 0,1 их величины (например, если деления основной шкалы равны 1 мм, то деления нониуса равны 0,9 мм). На рисунке видно, что длина измеряемого тела Л больше 3 мм, но меньше 4 мм. Чтобы найти, сколько десятых долей миллиметра составляет излишек длины против 3 мм, смотрят, какой из штрихов нониуса совпадает с каким-нибудь из штрихов основной шкалы. На нашем рисунке седьмой штрих нониуса совпадает с десятым штрихом основной шкалы. Значит, шестой штрих нониуса отступает от девятого штриха основной шкалы на 0,1 мм, пятый от восьмого - на 0,2 мм и т. д.; начальный от третьего - на 0,7 мм. Отсюда следует, что длина предмета А равна стольким целым миллиметрам, сколько их находится до начала нониуса (3 мм), и стольким десятым долям миллиметра, сколько делений нониуСа находится от начала до совпадающих штрихов (0,7 мм). Итак, длина предмета Л равна 3,7 мм.

1 километр (1000 метров), 1 сантиметр (1/100 метра), 1 миллиметр (1/1000 метра), 1 микрон (1/1000000 метра, обозначается мк или - греческая буква «мю»).

На практике для измерения длины применяют копии этого метра, т. с. проволоки, стержни, линейки или ленты с делениями, длина которых равна длине образцового метра или его части (сантиметры и миллиметры). При измерении один конец измеряемой длины совмещают с началом измерительной линейки и отмечают на ней положение второго конца. Для более точного отсчета применяются вспомогательные приспособления. Одно из них - н он и-у с - изображено на рис. 11. Рис, 12 показывает ходовой измерительный прибор - штангенциркуль) снабженный нониусом.

С 1963 г. в СССР принята в качестве рекомендованной во всех областях науки и техники система единиц СИ (от слов что значит Международная система). Согласно этой системе, метр определен как длина, равная 1650763,73 длины волны красного света, излучаемого специальной лампой, в которой светящимся веществом является газ криптон. Практически эта единица длины совпадает с парижским образцом метра, но ее можно воспроизводить оптическим путем с большей точностью, чем образец. называется изменение положения предмета... . Простейшим объектом для изучения механического движения может служить материальная точка-тело... .... tn), называется траекторией движения . При движении точки конец ее радиус-вектора...

  • Механическое и естественное движение населения

    Курсовая работа >> Экономика

    Стандарт для сравнения. Показатели механического движения населения Механическое изменение – изменение численности... показатель движения населения – В. Число прибывших – П. Абсолютный механический прирост – Пмех.=П-В. Интенсивность механического движения ...

  • Механическая ,электромагнитная и квантово-релятивистская научная картина мира

    Закон >> Биология

    Лтература……………………………………………………………....14 Раздел 1 . Механическая научная картина мира. В... релятивистской и квантово-механической в 20-м веке. Механическая картина мира складывалась под... механицизм. Само становление механической картины справедливо связывают с...

  • Механическая картина мира (2)

    Контрольная работа >> Физика

    Картиной мира появляется идея относительности механического движения . Сам Коперник мало успел сделать... , установленных Галилеем (законы равноускоренного движения принцип относительности механического движения ), началось развитие науки механики...