Конспект урока "Зависимость давления насыщенного пара от температуры. Кипение". Зависимость давления насыщенного пара от температуры

Давлением (упругостью) насыщенного пара индивидуального вещества или смеси веществ называют давление паровой фазы, находящейся в равновесном состоянии (т. е. в предельном, неизменяющемся состоянии) с жидкой фазой при данной температуре. В нефтепереработке широко применяют стандартный метод с бомбой Рейда (Reid) по ГОСТ 1756-2000, которая имеет две герметично соединенные на резьбе камеры высокого давления, объем паровой камеры в 4 раза больше объема камеры для жидкости. В нижнюю камеру заливают исследуемую жидкость, например бензин, камеры соединяют и нагревают в термостате до стандартной температуры 38 °С. После выдержки для достижения равновесия между паровой фазой (насыщенные пары) и жидкой фазой по манометру на паровой камере определяют давление насыщенного пара. Такой экспериментальный метод является приближенным (так как для достижения равновесного состояния в принципе требуется бесконечно большое время и в паровой камере до опыта присутствуют воздух и водяные пары), но этот метод достаточен для оценки условий транспортировки и хранения, величины потерь от испарения, товарных характеристик бензинов, стабильных газовых конденсатов и сжиженных газов. Например, продукцией ГПЗ являются этан, пропан, бутан, газовый бензин (или их смеси). Газовый бензин - это сжиженные углеводороды, извлеченные из попутного нефтяного и природного газов. Давление насыщенного пара товарного газового бензина должно быть 0,07-0,23 МПа (0,7-2,4 кг/см2), пропана (жидкость) - не более 1,45 МПа (14,8 кг/см2), бутана (жидкость) - не более 0,48 МПа (4,9 кг/см2), а автобензинов и стабильных газовых конденсатов для отгрузки в железнодорожных цистернах - не более 66,7-93,3 кПа (500-700 мм рт.ст.). Таким образом, давление насыщенного пара зависит от состава исходной жидкости и температуры. Давление насыщенного пара углеводородов и их смесей - важнейшая характеристика для расчета разных массообменных процессов (однократное испарение жидких смесей, однократная конденсация газовых смесей, абсорбция углеводородных газов, ректификация жидкого многокомпонентного сырья и др.).

Поэтому в литературе приводятся как справочные данные, так и многочисленные эмпирические формулы для определения давления насыщенного пара для различных температур и давлений. Основные физические свойства некоторых углеводородов и газов приведены в табл. 2.3 и 2.4.

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 12. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 5), а вдали от критической температуры уравнением (IV, 8).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (IV, 8)

(IV, 9)

Представив уравнение (IV, 9) в виде неопределенного интеграла, получим:

(IV, 10),

где С - константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах (в этом случае тангенс наклона прямой равен ). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.13 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Рис. 13. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

Однако уравнение (IV, 10) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур - от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом, т.к. при этом существенно возрастает его давление. Поэтому уравнение, охватывающее зависимость P = f(T) в широком интервале температур, неизбежно становится эмпирическим.

Сверхкритическое состояние – четвертая форма агрегатного состояния вещества, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.



Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С и –147° С), поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем.

Сейчас сложились и продуктивно сосуществуют два самостоятельных направления использования сверхкритических флюидов. Эти два направления различаются конечными целями того, что достигается с помощью этих сверхкритических сред. В первом случае СКФ используются для экстракции необходимых веществ из различных материалов, продуктов или отходов производства. И в этом есть огромная экономическая заинтересованность. Во втором случае СКФ используют непосредственно для осуществления ценных, часто новых химических превращений. Надо подчеркнуть, что достоинства СКФ в качестве экстрагентов обусловлены прежде всего тем, что они оказались способными исключительно эффективно растворять неполярные соединения, в том числе и твердые вещества. Это основное достоинство резко усиливается уже упоминавшейся нами высокой диффузионной способностью СКФ и их исключительно низкой вязкостью. Обе последние особенности приводят к тому, что скорость экстракции становится чрезвычайно высокой. Приведём только некоторые примеры.

Так, деасфальтизация смазочных масел осуществляется с использованием сверхкритического пропана. Сырое масло растворяется в сверхкритическом пропане при давлении, заметно более высоком, чем Р кр . При этом в раствор переходит всё, кроме тяжелых асфальтовых фракций. Из-за огромной разницы в вязкостях сверхкритического раствора и асфальтовой фракции механическое разделение осуществляется очень легко. Затем сверхкритический раствор поступает в расширительные емкости, в которых давление постепенно снижается, оставаясь, однако, выше Р кр вплоть до последней ёмкости. В этих ёмкостях последовательно выделяются из раствора всё более легкие примесные фракции нефтей из-за снижения их растворимости с падением давления. Разделение фаз в каждой из этих ёмкостей опять осуществляется очень легко вследствие резкого различия их вязкостей. В последней ёмкости давление ниже Р кр , пропан при этом испаряется, в результате выделяется очищенное от нежелательных примесей масло.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счёт высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

В настоящее время большое практическое значение имеет высокая растворимость H 2 в сверхкритических средах, поскольку полезные процессы гидрирования очень распространены. Так, например, разработан эффективный процесс каталитического гидрирования CO 2 в сверхкритическом состоянии, приводящий к образованию муравьиной кислоты. Процесс протекает очень быстро и чисто.

И что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержи­мого цилиндра постоянной.

При сжатии пара равновесие нач­нет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжа­ется до тех пор, пока вновь не установится динамическое равно­весие и плотность пара, а значит, и концентрация его молекул не примут прежнее значение. Следова­тельно, концентрация молекул на­сыщенного пара при постоянной температуре не зависит от его объема.

Так как давление пропорциональ­но концентрации молекул (p = nkT ), то из этого определения следует, что давление насыщенного пара не зависит o т занимаемого им объема.

Давление пара , при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

  • Ненасыщенный пар.

Мы много раз употребляли слова газ и пар. Никакой принципиальной разницы между газом и паром нет. Но если при неизменной температуре газ простым сжатием можно превратить в жидкость, то мы называем его паром, точнее, ненасыщенным паром.

  • Зависимость давления насыщен­ного пара от температуры.

Состояние насыщенного пара, как говорит опыт, приближенно описывается уравне­нием состояния идеального газа, а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщен­ ного пара не зависит от объема, оно зависит только от температуры.

Однако эта зависимость ро(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного пара растет быстрее, чем давление идеаль­ного газа (рис. 30, участок кривой АВ). Это становится особенно оче­видным, если провести изохору через точку А (пунктирная прямая) Почему это происходит?

Однако эта зависимость р(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного парабыстрее, чем давление идеаль­ного газа (рис. 30).Почему это происходит?

При нагревании жидкости в за­крытом сосуде часть жидкости превращается в пар. В результате согласно формуле
давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличе­ ния концентрации молекул (плот­ ности) пара . В основном увеличение давления при повышении температуры определяется именно увели­чением концентрации. Главное раз­личие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар или, напротив, пар частично конденсируется. Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорцио­нально абсолютной температуре (см. рис. 30, участок ВС).

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

Возьмем закрытый сосуд, в который нальем воду. Молекулы водорода, обладающие большим запасом энергии, способны выходить с поверхности воды в газовую фазу. Часть из них может возвращаться обратно в воду. С течением времени устанавливается равновесие между числом молекул вышедших в пар и вернувшихся в жидкость.

Пар, находящийся в равновесии с жидкостью, называется насыщенным, а давление, которое он при этом оказывает, называется давлением насыщенного пара ( P° A).

P° A - давление насыщенного пара на чистом растворителе.

Теперь возьмем такой же закрытый сосуд и нальем раствора, содержащего вещества А+В (нелетучие) молекулы растворенного вещества в пер не выходят, выходят молекулы растворителя. Выходит меньшее число молекул растворителя, т.к. их в растворе меньше, чем в чистом растворителе. Поэтому равновесие установится при меньшем давлении.

P A - давление насыщенного пара растворителя над раствором. Это давление всегда меньше, чем давление насыщенного пара на чистом растворителе (P A < P° A ).

На основании этих опытовРауль вывел свой закон, который имеет две формы записи, а следовательно, и две формулировки:

1) давление насыщенного пара растворителя над раствором прямо пропорционально молярной доле растворителя. P A = P° A *N A

2) вместо молярной доли растворителя необходимо ввести молярную долю растворенного вещества

N A =1-N B

P A = P° A *(1-N B)

N B =(P° A -P A)/ P° A

P° A -P A характеризует понижение давления насыщенного пара растворителя над раствором.

Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доли раствора.

2) температура кипения раствора – это та t, при которой давление насыщенного пара растворителя над раствором становится равным внешнему давлению.

АВ характеризует изменение давления насыщенного пара на чистом растворителе с t

СD характеризует изменение давления насыщенного пара растворителя над раствором концентрацией С m 1 ,с t

C’D’ характеризует изменение давления насыщенного пара растворителя над раствором концентрацией C m 2, C m 2 > С m 1

Выводы:

1) все растворы кипят при t более высокой, чем чистый растворитель

2) повышение t кипения прямо пропорциональна моляльной концентрации раствора.

∆T к =Т к р-ра -Т к р-ля

∆T к -повышение температуры кипения

∆T к =Е*С m (E - эбулиоскопическая постоянная)

Физический смысл величины Е:

Эбуллиоскопическая постоянная характеризует то повышение t кипения, которое наблюдалось бы, если С

Если С m =1 моль/кг*H 2 O, то Е=∆T к

Величина Е зависит только от природы растворителя и не зависит от природы реагирующего вещества

Е н2о =0,51 градус*кг/моль


При расчете T к температуры берутся в ºС!!!

3) температура замерзания раствора – это t, при которой давление насыщенного пара растворителя над раствором становится равным давлению насыщенного пара надо льдом.

MN характеризует изменение давления насыщенного пара надо льдом с t.

1) все растворы замерзают при t более низкой, чем чистый растворитель.

2) понижение t замерзания прямо-пропорционально раствора.

∆T з =Т з р-ля - Т з р-ра (∆Т=0)

∆T з = К*С m

К – кристаллоскопическая постоянная

Если С m =1 моль/кг*H 2 O, то К= T з

К н2о =1,86 градус*кг/моль

Практическое использование свойств растворов замерзать при более низкой t:

1) для приготовления охлаждающих смесей

2) в обмен с гололедицей дорогу, лед, посыпают с солью.

3) криоскопический метод определения молярной массы растворенного вещества:

Берут навеску растворителя, охлаждают ее смесью льда с солью и определяют t замерзания по специальному термометру, который называют термометром Бекмана . После этого растворитель расплавляют и добавляют к нему навеску растворенного вещества и также определяют температуру замерзания. Затем рассчитывают

∆T з = Т з р-ля - Т з р-ра

∆T к =(К*m B *1000)/(M B *m A) и из этой формулы рассчитывают M B .

M B =(К*m B *1000)/(∆T к *m A)

4) осмос и осмотическое давление

Рассмотрим устройство простейшего осмометра. В стакан с водой помещается осмометрическая ячейка, которая снизу закрыта полупроницаемой мембраной, чтобы уровень сахара и уровень воды был на одном уровне. Вода поднимается вверх и уровень поднимается

Осмос – это односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией.

Осмотическое давление равно гидростатическому давлению столбика жидкости высотой h, который надо приложить к раствору, чтобы задержать осмос.

Р осм. =С М *R*T

С М =1 моль/м 3

моль/л * 1000 = моль/м 3

П осм. -> Па (Н/м 2)

Т->K

Определение величины, на которую повышается t кипения растворов, называется эбулиометрией.

Определение величины понижения t замерзания чистого растворителя и раствора, называется криометрией .

Закон Вант-Гоффа: осмотическое давление (Р осм ) прямо пропорционально молярной концентрации (с) и абсолютной температуре раствора (Т):

Р осм. =С М *R*T

Растворы, имеющие одинаковое осмотическое давление, называют изотоническими.

Если два раствора имеют разное осмотическое давление, то раствор с большим осмотическим давлением является гипертоническим по отношению ко второму, а второй – гипотоническим по отношению к первому.

У растворов электролитов величины всех коллигативных свойств больше, чем у неэлектролитов.

Коллигативные свойства растворов электролитов:

1) изотонический коэффициент (i) – величина, показывающая во сколько раз свойство раствора электролита больше свойства раствора неэлектролита той же концентрации:

i = c*R*T эл. / c*R*T неэл. =∆Т зам.эл. /∆Т зам.неэл. = ∆Т кип.эл. /∆Т кип.неэл.

Значениеi зависит от степени диссоциации (α ) данного электролита и числа ионов (v), образующихся при диссоциации одной молекулы:

i = 1 + α (v – 1)

2) активностью (а) называют такую величину, подстановка которой вместо концентрации в уравнения, действительные для идеальных систем, делает их применимыми к растворам сильных электролитов. Ее можно представить как произведение концентрации (с) на некоторый переменный фактор (f), называемый коэффициентом активности . т.е. а = f*c

Коэффициент активности, включающий поправку на силы взаимодействия, связан с ионной силой раствора (μ ) следующим соотношением: lg f = -0,5Z*корень квадратный из μ.

где Z – заряд иона.

3) ионная сила раствора электролита равна полусумме произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат их заряда, т.е.

μ=1/2∑C 1 Z 1 2 =1/2(C 1 Z 1 2 + C 2 Z 2 2 +…+ C n Z n 2)

4) константа диссоциации

В растворах слабых электролитов наряду с ионами имеются недиссоциированные молекулы, т.е. наблюдается равновесие: НА↔Н + +А -

Характеристикой силы электролита является константа диссоциации: К дисс. =[А - ]/

Связь константы диссоциации с концентрацией электролита и степенью диссоциации была установлена Оствальдом. Закон разбавления Оствальда: К дисс. = cα 2 /(1-α)

Для слабых электролитов очень мала и ее значением можно пренебречь.

Тогда: К дисс. =α 2 c

2.10,11,12

Диффузия – самопроизвольный процесс выравнивания вещества в растворе.

С точки зрения термодинамики причиной диффузии является перемещение вещества от более высокого химического потенциала к низкому: μ(с 1)> μ(с 2), при с 1 >c 2

Диффузия прекращается, когда концентрация во всех точках раствор становится одинаковой. При этом химический потенциал в разных точках системы становится одинаковым.

Скорость диффузии вещества зависит от массы и формы ее молекул, а также от разности концентраций этого вещества в различных слоях.

В 1855 Фик, изучая диффузные процессы установил закон: скорость диффузии вещества пропорциональна площади поверхности, через которую переносится вещество, и градиенту концентрации этого вещества .

∆n/∆t= -D*S*∆c/∆x

∆n/∆t - скорость диффузии, моль/c

S - площадь поверхности, м 2

∆c/∆x - градиент концентрации, моль/м 2

D - коэффициент пропорциональности или коэффициент диффузии вещества, м 2 /c

Эйнштейн и независимо от него Смолуховский вывели следующее уравнение для коэффициента диффузии: D=(RT/N A)*(1/6πηr)

R - универсальная газовая постоянная, раная 8,31 Дж/(моль К)

T - абсолютная температура, К

N A - постоянная Авогадро, равная 6,02*10 23 1/моль

r - радиус диффундирующих частиц, м

D - коэффициент диффузии, м 2 /c

η - вязкость среды, Н*с/м 2

Белки́ (протеины , полипептиды ) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот.

Различают белки:

1) простой белок рассматривают как продукт поликонденсации аминокислот, т.е. как специфический природный полимер

2) сложные белки состоят из простого белка и небелковых компонентов – углеводов, нуклеиновых кислот, липидов и других соединений.

Значение рН, при котором белок находится в изоэлектрическом состоянии , т.е. в состоянии, при котором число разноименных зарядов в белковой частице одинаково и ее общий заряд равен нулю, называется изоэлектрической точкой данного белка.

Высаливание – это явление выделения в осадок растворенного ВМС под действием большой концентрации электролита.

По своему высаливающему действию все катионы и анионы можно расположить в лиотропные ряды :

Расположение ионов в лиотропных рядах связано не с величиной их заряда, как в случае обычной коагуляции, а со степенью их гидратации. Чем больше ион способен связывать растворитель, тем больше его высаливающее действие. Основная роль в высаливании, как и в набухании, принадлежит анионам, катионы же оказывают меньшее воздействие на высаливание.

2.13,16,18,19,20,21

Свойства полимеров существенно изменяются при добавлении низкомолекулярных соединений. Например, если целлофановую пленку, состоящую из целлюлозы, смочить глицерином, небольшие молекулы глицерина проникают в пространство между молекулами целлюлозы и образуют подобие смазки. При этом ослабляются межмолекулярные связи, и пленка становится более пластичной.

Пластификация полимера - Повышение пластичности полимера при небольшом количестве НМС называется.

Набухание и растворение ВМС . При контакте полимера (ВМС) и растворителя (НМС) происходит набухание, и затем растворение полимера.

1)Набухание - проникновение растворителя в полимерное вещество, сопровождаемое увеличением объема и массы образца. Количественно набухание измеряется степенью набухания:

Степень набухания зависит от жесткости полимерных цепей. У жестких полимеров с большим числом поперечных связей (сшивок) между цепями степень набухания невелика. Так, например, эбониты - сильно вулканизированные резины - практически не набухают в бензоле. Каучуки (резины) ограниченно набухают в бензине. Желатин в холодной воде также характеризуется ограниченным набуханием. Добавление горячей воды к желатину или бензола к натуральному каучуку приводит к неограниченному набуханию этих полимеров.

Влияние различных факторов на степень набухания:

1) Степень набухания полимера зависит от его природы и природы растворителя. Полимер набухает лучше в растворителе, молекулярные взаимодействия которого с макромолекулами велики. Полярные полимеры набухают в полярных жидкостях (белок в воде), неполярные - в неполярных (каучук в бензоле). Ограниченное набухание аналогично ограниченной растворимости. В результате образуются студни (ограниченно набухший полимер).

2) Кроме природы растворителя на набухание ВМС влияют присутствие электролитов

3) рН среды

4) температура.

2) Процесс перехода золя или раствора полимера в студень называется желатинированием или застудневанием .

Факторы, влияющие на это процесс:

1) концентрация (повышение концентрации ускоряет процесс желатинирования)

2) природа веществ (не все гидрофобные золи могут переходить в гели, например, золи благородных металлов: золота, серебра, платины – не способны застудневать, что объясняется своеобразным строением и низкой концентрацией их золей)

3) температура (низкие температуры способствуют застудневанию. Понижение температуры ускоряет агрегацию частиц и понижает растворимость вещества)

4) время процесса (процесс застудневания даже при низкой температуре требует продолжительного времени (от минут до недель) для формирования ячеистой объемной сетки. Время, необходимое для ее образования, называется периодом созревания)

5) форма частиц (особенно хорошо протекают процессы желатинирования в золях, состоящих из палочковидных или лентообразных по форме частиц)

6) электролиты (различно влияют на скорость желатинирования)

7) реакция среды (желатинирование происходит быстрее, когда молекулы белка не имеют электрического заряда и менее гидратированы, т.е. находятся в изоэлектрическом состоянии)

Способность многих гелей под влиянием механических воздействий разжижаться, переходить в золи, а затем в состояние покоя вновь застудневать получила название тиксотропии .

3) Высалиыание ВМС - выделение ВМС из раствора при введении ионов или неэлектролитов.

Наименьший высаливающий эффект будут проявлять мягкие основания-анионы I- и NCS- - слабо гидратирующиеся и хорошо адсорбирующиеся на молекулах ВМС.

Снижение устойчивости раствора ВМС наблюдается при уменьшении лиофильности полимера. Лиофильность может быть понижена не только добавлением хорошо гидратируемых ионов, но и добавлением к водному раствору ВМС растворителя, в котором полимер хуже растворим, чем в воде. Например, этанол оказывает высаливающий эффект на желатин, растворенный в воде.

4) Коацервация - при нарушении устойчивости раствора ВМС возможно образование коацервата - новой жидкой фазы, обогащенной полимером. Коацерват может находиться в исходном растворе в виде капель или образовать сплошной слой (расслаивание);

Коацервация происходит при изменении температуры или состава раствора и обусловлена понижением взаимной растворимости компонентов раствора. Наиболее изучена коацервация белков и полисахаридов в водных растворах. Согласно одной из теорий происхождения жизни на Земле (А.И.Опарин) коацерваты являются зародышами древних форм жизни.

Использование: при микрокапсулировании лекарств. Для этого лекарственное вещество диспергируют в растворе полимера, а затем, изменяя температуру или рН среды, испаряя часть растворителя или вводя высаливатель, выделяют из раствора фазу, обогащенную полимером. Мелкие капли этой фазы отлагаются на поверхности капсул дисперигируемых частиц, образуя сплошную оболочку. Микрокапсулирование лекарств обеспечивает устойчивость, пролонгирует действие, маскирует неприятный вкус лекарств.

2.24,25,26,27

Вязкость – мера сопротивления среды движению . Эту величину характеризуют коэффициентом вязкости.