Кинетическая энергия вращающегося твердого тела. Кинетическая энергия вращательного движения

Рассмотрим вначале твердое тело, вращающееся вокруг неподвижной оси OZ с угловой скоростью ω (рис.5.6). Разобьем тело на элементарные массы . Линейная скорость элементарной массы равна , где - ее расстояние от оси вращения. Кинетическая энергия i -той элементарной массы будет равна

.

Кинетическая энергия всего тела слагается из кинетических энергий его частей, поэтому

.

Учитывая то, что сумма в правой части этого соотношения представляет момент инерции тела относительно оси вращения, получим окончательно

. (5.30)

Формулы кинетической энергии вращающегося тела (5.30) подобны соответствующим формулам для кинетической энергии поступательного движения тела. Они получаются из последних формальной заменой .

В общем случае движение твердого тела можно представить в виде суммы движений – поступательного со скоростью, равной скорости центра масс тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр масс. В этом случае выражение для кинетической энергии тела принимает вид

.

Найдем теперь работу, совершаемую моментом внешних сил, при вращении твердого тела. Элементарная работа внешних сил за время dt будет равна изменению кинетической энергии тела

Взяв дифференциал от кинетической энергии вращательного движения, найдем ее приращение

.

В соответствии с основным уравнением динамики для вращательного движения

С учетом данных соотношений, приведем выражение элементарной работы к виду

где - проекция результирующего момента внешних сил на направление оси вращения OZ, - угол поворота тела за рассматриваемый промежуток времени.

Интегрируя (5.31), получим формулу для работы внешних сил, действующих на вращающееся тело

В случае, если , то формула упрощается

Таким образом, работа внешних сил при вращении твердого тела относительно неподвижной оси определяется действием проекции момента этих сил на данную ось.

Гироскоп

Гироскопом называется быстро вращающееся симметричное тело, ось вращения которого может изменять свое направление в пространстве. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп помещают в так называемом кардановом подвесе (рис.5.13). Маховик гироскопа вращается во внутренней кольцевой обойме вокруг оси С 1 С 2 , проходящей через его центр тяжести. Внутренняя обойма в свою очередь может вращаться во внешней обойме вокруг оси В 1 В 2 , перпендикулярной к С 1 С 2 . Наконец, наружная обойма может свободно вращаться в подшипниках стойки вокруг оси А 1 А 2 , перпендикулярной к осям С 1 С 2 и В 1 В 2 . Все три оси пересекаются в некоторой неподвижной точке О, называемой центром подвеса или точкой опоры гироскопа. Гироскоп в кардановом подвесе имеет три степени свободы и, следовательно, может совершать любые повороты вокруг центра подвеса. Если центр подвеса гироскопа совпадает с его центром тяжести, то результирующий момент сил тяжести всех частей гироскопа относительно центра подвеса равен нулю. Такой гироскоп называют уравновешенным.

Рассмотрим теперь наиболее важные свойства гироскопа, которые и нашли ему широкое применение в различных областях.

1) Устойчивость.

При любых поворотах стойки уравновешенного гироскопа его ось вращения сохраняет неизменное направление по отношению к лабораторной системе отсчета. Это связано с тем, что момент всех внешних сил, равный моменту сил трения, очень мал и практически не вызывает изменения момента импульса гироскопа, т.е.

Поскольку момент импульса направлен вдоль оси вращения гироскопа, то ее ориентация должна сохраняться неизменной.

Если внешняя сила действует в течение короткого времени, то интеграл, определяющий приращение момента импульса, будет мал

. (5.34)

Значит, при кратковременных воздействиях даже больших сил движение уравновешенного гироскопа изменяется мало. Гироскоп как бы сопротивляется всяким попыткам изменить величину и направление его момента импульса. С этим и связана замечательная устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение. Это свойство гироскопа широко используется для автоматического управления движением самолетов, судов, ракет и прочих аппаратов.

Если же действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается, в конце концов, по направлению момента внешних сил. Данное явление используется в гирокомпасе. Этот прибор представляет собой гироскоп, ось которого может свободно поворачиваться в горизонтальной плоскости. Вследствие суточного вращения Земли и действия момента центробежных сил ось гироскопа поворачивается так, чтобы угол между и стал минимальным (рис.5.14). Это соответствует положению оси гироскопа в плоскости меридиана.

2). Гироскопический эффект.

Если к вращающемуся гироскопу приложить пару сил и , стремящуюся повернуть его около оси, перпендикулярной оси вращения, то он станет поворачиваться вокруг третьей оси, перпендикулярной к первым двум (рис.5.15). Такое необычное поведение гироскопа получило название гироскопического эффекта. Оно объясняется тем, что момент пары сил направлен вдоль оси О 1 О 1 и изменение за время вектора на величину будет иметь тоже направление. В результате новый вектор повернется относительно оси О 2 О 2 . Таким образом, противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения

3). Прецессия гироскопа.

Прецессией гироскопа называется конусообразное движение его оси. Оно происходит в том случае, когда момент внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Для демонстрации прецессии может служить велосипедное колесо с наращенной осью, приведенное в быстрое вращение (рис.5.16).

Если колесо подвесить за наращенный конец оси, то его ось начнет прецессировать вокруг вертикальной оси под действием собственного веса. Демонстрацией прецессии может служить и быстро вращающийся волчок.

Выясним причины прецессии гироскопа. Рассмотрим неуравновешенный гироскоп, ось которого может свободно поворачиваться вокруг некоторой точки О (рис.5.16). Момент сил тяжести, приложенный к гироскопу, равен по величине

где - масса гироскопа, - расстояние от точки О до цента масс гироскопа, - угол, образованный осью гироскопа с вертикалью. Вектор направлен перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа.

Под действием этого момента момент импульса гироскопа (его начало помещено в точку О) получит за время приращение , а вертикальная плоскость, проходящая через ось гироскопа, повернется на угол . Вектор все время перпендикулярен к , следовательно, не изменяясь по величине, вектор изменяется только по направлению. При этом спустя время взаимное расположение векторов и будет таким же, как и в начальный момент. В итоге ось гироскопа будет непрерывно поворачиваться вокруг вертикали, описывая конус. Такое движение называется прецессией.

Определим угловую скорость прецессии. Согласно рис.5.16 угол поворота плоскости, проходящей через ось конуса и ось гироскопа, равен

где - момент импульса гироскопа, а - его приращение за время .

Разделив на , с учетом отмеченных соотношений и преобразований, получим угловую скорость прецессии

. (5.35)

Для гироскопов, применяющихся в технике, угловая скорость прецессии бывает в миллионы раз меньше скорости вращения гироскопа .

В заключении отметим, что явление прецессии наблюдается и у атомов вследствие орбитального движения электронов.

Примеры применения законов динамики

При вращательном движении

1. Рассмотрим некоторые примеры на закон сохранения момента импульса, которые можно осуществить с помощью скамьи Жуковского. В простейшем случае скамья Жуковского представляет собой платформу в форме диска (кресло), который может свободно вращаться вокруг вертикальной оси на шариковых подшипниках (рис.5.17). Демонстратор садится или становится на скамью, после чего ее приводят во вращательное движение. Вследствие того, что силы трения благодаря применению подшипников очень малы, момент импульса системы, состоящей из скамьи и демонстратора, относительно оси вращения не может меняться во времени, если система предоставлена самой себе. Если демонстратор держит в руках тяжелые гантели и разводит руки в стороны, то он увеличит момент инерции системы, а потому должна уменьшится угловая скорость вращения, чтобы остался неизменным момент импульса.

По закону сохранения момента импульса составим уравнение для данного случая

где - момент инерции человека и скамьи, и - момент инерции гантелей в первом и втором положениях, и - угловые скорости системы.

Угловая скорость вращения системы при разведении гантелей в сторону будет равна

.

Работу, совершенную человеком при перемещении гантелей, можно определить через изменение кинетической энергии системы

2. Приведем еще один опыт со скамьей Жуковского. Демонстратор садится или становится на скамью и ему передают быстро вращающееся колесо с вертикально направленной осью (рис.5.18). Затем демонстратор поворачивает колесо на 180 0 . При этом изменение момента импульса колеса целиком передается скамье и демонстратору. В результате скамья вместе с демонстратором приходит во вращение с угловой скоростью, определяемой на основании закона сохранения момента импульса.

Момент импульса системы в начальном состоянии определяется только моментом импульса колеса и равен

где - момент инерции колеса, - угловая скорость его вращения.

После поворота колеса на угол 180 0 момент импульса системы будет уже определяться суммой момента импульса скамьи с человеком и момента импульса колеса. С учетом того, что вектор момента импульса колеса изменил свое направление на противоположное, а его проекция на вертикальную ось стала отрицательной, получим

,

где - момент инерции системы «человек-платформа», - угловая скорость вращения скамьи с человеком.

По закону сохранения момента импульса

и .

В итоге, находим скорость вращения скамьи

3. Тонкий стержень массой m и длиной l вращается с угловой скоростью ω=10 с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Продолжая вращаться в той же плоскости, стержень перемещается так, что ось вращения теперь проходит через конец стержня. Найти угловую скорость во втором случае.

В данной задаче за счет того, что распределение массы стержня относительно оси вращения изменяется, момент инерции стержня также изменяется. В соответствии с законом сохранения момента импульса изолированной системы, имеем

Здесь - момент инерции стержня относительно оси, проходящей через середину стержня; - момент инерции стержня относительно оси, проходящей через его конец и найденный по теореме Штейнера.

Подставляя данные выражения в закон сохранения момента импульса, получим

,

.

4. Стержень длиной L =1,5 м и массой m 1 =10 кг подвешен шарнирно за верхний конец. В середину стержня ударяет пуля массой m 2 =10 г, летящая горизонтально со скоростью =500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?

Представим на рис. 5.19. систему взаимодействующих тел «стержень-пуля». Моменты внешних сил (сила тяжести, реакция оси) в момент удара равны нулю, поэтому можем воспользоваться законом сохранения момента импульса

Момент импульса системы до удара равен моменту импульса пули относительно точки подвеса

Момент импульса системы после неупругого удара определится по формуле

,

где - момент инерции стержня относительно точки подвеса, - момент инерции пули, - угловая скорость стержня с пулей непосредственно после удара.

Решая после подстановки полученное уравнение, найдем

.

Воспользуемся теперь законом сохранения механической энергии. Приравняем кинетическую энергию стержня после попадания в него пули его потенциальной энергии в наивысшей точке подъема:

,

где - высота поднятия центра масс данной системы.

Проведя необходимые преобразования, получим

Угол отклонения стержня связан с величиной соотношением

.

Проведя вычисления, получим =0,1p=18 0 .

5. Определить ускорения тел и натяжения нити на машине Атвуда, предполагая, что (рис.5.20). Момент инерции блока относительно оси вращения равен I , радиус блока r . Массой нити пренебречь.

Расставим все силы, действующие на грузы и блок, и составим для них уравнения динамики

Если нет проскальзывания нити по блоку, то линейное и угловое ускорение связаны между собой соотношением

Решая эти уравнения, получим

После чего находим T 1 и T 2 .

6. К шкиву креста Обербека (рис.5.21) прикреплена нить, к которой подвешен груз массой M = 0,5 кг. Определить за какое время груз опускается с высоты h =1 м до нижнего положения. Радиус шкива r =3 см. На кресте укреплены четыре груза массой m =250 г каждый на расстоянии R = 30 см от его оси. Моментом инерции самого креста и шкива пренебречь по сравнению с моментом инерции грузов.

1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m i . Линейная скорость элементарной массы m i – v i = w·R i , где R i – расстояние массы m i от оси вращения. Следовательно, кинетическая энергия i -ой элементарной массы будет равна . Полная кинетическая энергия тела: , здесь – момент инерции тела относительно оси вращения.

Таким образом, кинетическая энергия тела, вращающегося относительно неподвижной оси равна:

2. Пусть теперь тело вращается относительно некоторой оси, а сама ось перемещается поступательно, оставаясь параллельной самой себе.

НАПРИМЕР: Катящийся без скольжения шар совершает вращательное движение, а центр тяжести его, через который проходит ось вращения (точка «О») перемещается поступательно (рис.4.17).

Скорость i -той элементарной массы тела равна , где – скорость некоторой точки «О» тела; – радиус-вектор, определяющий положение элементарной массы по отношению к точке «О».

Кинетическая энергия элементарной массы равна:

ЗАМЕЧАНИЕ: векторное произведение совпадает по направлению с вектором и имеет модуль, равный (рис.4.18).

Учтя это замечание, можно записать, что , где – расстояние массы от оси вращения. Во втором слагаемом сделаем циклическую перестановку сомножителей, после этого получим

Чтобы получить полную кинетическую энергию тела, просуммируем это выражение по всем элементарным массам, вынося постоянные множители за знак суммы. Получим

Сумма элементарных масс есть масса тела «m». Выражение равно произведению массы тела на радиус-вектор центра инерции тела (по определению центра инерции). Наконец, – момент инерции тела относительно оси, проходящей через точку «О». Поэтому можно записать

.

Если в качестве точки «O» взять центр инерции тела «С», радиус-вектор будет равен нулю и второе слагаемое исчезнет. Тогда, обозначив через – скорость центра инерции, а через – момент инерции тела относительно оси, проходящей через точку «С», получим:

(4.6)

Таким образом, кинетическая энергия тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра инерции, и энергии вращения вокруг оси, проходящей через центр инерции тела.

Работа внешних сил при вращательном движении твердого тела.

Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.

Пусть на массу действуют внутренняя сила и внешняя сила (результирующая сила лежит в плоскости, перпендикулярной оси вращения) (рис. 4.19). Эти силы совершают за время dt работу:

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей, находим:

где , – соответственно, моменты внутренней и внешней сил относительно точки «О».

Просуммировав по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt :

Сумма моментов внутренних сил равна нулю. Тогда, обозначив суммарный момент внешних сил через , придем к выражению:

.

Известно, что скалярным произведением двух векторов называется скаляр, равный произведению модуля одного из перемножаемых векторов на проекцию второго на направление первого, учтя, что , (направления оси Z и совпадают), получим

,

но w·dt =d j, т.е. угол, на который поворачивается тело за время dt . Поэтому

.

Знак работы зависит от знака M z , т.е. от знака проекции вектора на направление вектора .

Итак, при вращении тела внутренние силы работы не совершают, а работа внешних сил определяется формулой .

Работа за конечный промежуток времени находится путем интегрирования

.

Если проекция результирующего момента внешних сил на направление остается постоянной, то ее можно вынести за знак интеграла:

, т.е. .

Т.е. работа внешней силы при вращательном движении тела равна произведению проекции момента внешней силы на направление и угол поворота.

С другой стороны работа внешней силы, действующей на тело идет на приращение кинетической энергии тела (или равна изменению кинетической энергии вращающегося тела). Покажем это:

;

Следовательно,

. (4.7)

Самостоятельно:

Упругие силы;

Закон Гука.

ЛЕКЦИЯ 7

Гидродинамика

Линии и трубки тока.

Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независимая от времени и являющаяся функцией координат. При стационарном течении траектории частиц жидкости образуют линию тока. Совокупность линий тока образует трубку тока (рис. 5.1). Будем считать жидкость несжимаемой, тогда объем жидкости, протекающей через сечения S 1 и S 2 , будет одинаков. За секунду через эти сечения пройдет объем жидкости, равный

, (5.1)

где и - скорости жидкости в сечениях S 1 и S 2 , а вектора и определяются как и , где и - нормали к сечениям S 1 и S 2 . Уравнение (5.1) называют уравнением неразрывности струи. Из него следует, что скорость жидкости обратно пропорциональна сечению трубки тока.

Уравнение Бернулли.

Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим в стационарно текущей жидкости тонкую трубку тока (рис. 5.2) с сечениями S 1 и S 2 , перпендикулярными к линиям тока. В сечении 1 за малое время t частицы сместятся на расстояние l 1 , а в сечении 2 - на расстояние l 2 . Через оба сечения за время t пройдут одинаковые малые объемы жидкости V = V 1 = V 2 и перенесут массу жидкости m=rV , где r - плотность жидкости. В целом изменение механической энергии всей жидкости в трубке тока между сечениями S 1 и S 2 , произошедшее за время t , можно заменить изменением энергии объема V , произошедшим при его перемещении от сечения 1 до сечения 2 . При таком движении изменится кинетическая и потенциальная энергия этого объема, и полное изменение его энергии

, (5.2)

где v 1 и v 2 - скорости частичек жидкости в сечениях S 1 и S 2 соответственно; g - ускорение земного притяжения; h 1 и h 2 - высоты центра сечений.

В идеальной жидкости потери на трение отсутствуют, поэтому приращение энергии DE должно быть равно работе, совершаемой силами давления над выделенным объемом. При отсутствии сил трения эта работа:

Приравнивая правые части равенств (5.2) и (5.3) и перенося члены с одинаковыми индексами в одну часть равенства, получим

. (5.4)

Сечения трубки S 1 и S 2 были взяты произвольно, поэтому можно утверждать, что в любом сечении трубки тока справедливо выражение

. (5.5)

Уравнение (5.5) называется уравнением Бернулли. Для горизонтальной линии тока h = const , и равенство (5.4) приобретает вид

r /2 + p 1 = r· /2 + p 2 , (5.6)

т.е. давление оказывается меньшим в тех точках, где скорость больше.

Силы внутреннего трения.

Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольно прекращается при отсутствии причин, вызвавших его. Рассмотрим опыт, в котором слой жидкости расположен над неподвижной поверхностью, а сверху его перемещается со скоростью , плавающая на ней пластина с поверхностью S (рис. 5.3). Опыт показывает, что для перемещения пластины с постоянной скоростью необходимо действовать на нее с силой . Так как пластина не получает ускорения, значит, действие этой силы уравновешивается другой, равной ей по величине и противоположно направленной силой, которая является силой трения . Ньютон показал, что сила трения

, (5.7)

где d - толщина слоя жидкости, h - коэффициент вязкости или коэффициент трения жидкости, знак минус учитывает различное направление векторов F тр и v o . Если исследовать скорость частиц жидкости в разных местах слоя, то оказывается, что она изменяется по линейному закону (рис. 5.3):

v(z) = = (v 0 /d)·z.

Дифференцируя это равенство, получим dv/dz = v 0 /d . С учетом этого

формула (5.7) примет вид

F тр =- h(dv/dz)S , (5.8)

где h - коэффициент динамической вязкости . Величина dv/dz называется градиентом скорости. Она показывает, как быстро изменяется скорость в направлении оси z . При dv/dz = const градиент скорости численно равен изменению скорости v при изменении z на единицу. Положим численно в формуле (5.8) dv/dz = -1 и S = 1, получим h = F . Отсюда следует физический смысл h : коэффициент вязкости численно равен силе, которая действует на слой жидкости единичной площади при градиенте скорости, равном единице. Единица вязкости в СИ называется паскаль-секундой (обозначается Па с). В системе СГС единицей вязкости является 1 пуаз (П), причем 1 Па с = 10П.

Начнем с рассмотрения вращения тела вокруг неоодвижной оси которую мы назовем осью z (рис. 41.1). Линейная скорость элементарной массы равна где - расстояние массы от оси . Следовательно для кинетической энергии элементарной массы получается выражение

Кинетическая энергия тела слагается из кинетических энергий его частей:

Сумма в правой части этого соотношения представляет собой момент инерции тела 1 относительно оси вращения. образом, кинетическая энергия тела, вращающегося вокруг неподвижной оси равна

Пусть на массу действуют внутренняя сила и внешняя сила (см. рис. 41.1). Согласно (20.5) эти силы совершат за время работу

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей (см. (2.34)), получим:

где N - момент внутренней силы относительно точки О, N - аналогичный момент внешней силы.

Просуммировав выражение (41.2) по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

Сумма моментов внутренних сил равна нулю (см. (29.12)). Следовательно, обозначив суммарный момент внешних сил через N придем к выражению

(мы воспользовались формулой (2.21)).

Наконец, приняв во внимание, что есть угол на который поворачивается тело за время получим:

Знак работы зависит от знака т. е. от знака проекции вектора N на направление вектора

Итак, при вращении тела внутренние силы работы не совершают, работа же внешних сил определяется формулой (41.4).

К формуле (41.4) можно прийти, воспользовавшись тем, что работа, совершаемая всеми приложенными к телу силами, идет на приращение его кинетической энергии (см. (19.11)). Взяв дифференциал от обеих частей равенства (41.1), придем к соотношению

Согласно уравнению (38.8) так что, заменив через придем к формуле (41.4).

Таблица 41.1

В табл. 41.1 сопоставлены формулы механики вращательного движений с аналогичными формулами механики поступательного движения (механики точки). Из этого сопоставления легко заключить, что во всех случаях роль массы играет момент инерции, роль силы момент силы, роль импульса - момент импульса и т. д.

Формулу. (41.1) мы получили для случая, когда тело вращается вокруг неподвижной фиксированной в теле оси. Теперь допустим что тело вращается произвольным образом относительно неподвижной точки, совпадающей с его центром масс.

Свяжем жестко с телом декартову систему координат, начало которой поместим в центр масс тела. Скорость i-й элементарный массы равна Следовательно, для кинетической энергии тела, можно написать выражение

где - угол между векторами Заменив а через и учтя, что получим:

Распишем скалярные произведения через проекции векторов на оси связанной с телом координатной системы:

Наконец, объединив слагаемые с одинаковыми произведениями компонент угловой скорости и вынеся эти произведения за знаки сумм, получим: так что формула (41.7) принимает вид (ср. с (41.1)). При вращении произвольного тела вокруг одной из главных осей инерции, скажем оси и формула (41.7) переходит в (41.10.

Таким, образом. кинетическая энергия вращающегося тела равна половине произведения момента инерции на квадрат угловой скорости в трех случаях: 1) для тела вращающегося вокруг неподвижной оси; 2) для тела вращающегося вокруг одной из главных осей инерции; 3) для шарового волчка. В остальных случаях кинетическая энергия определяется белее сложными формулами (41.5) или (41.7).

Кинетическая энергия вращающегося тела равна сумме кинетических энергий всех частиц тела:

Масса какой-либо частицы, ее линейная (окружная) скорость, пропорциональная расстоянию данной частицы от оси вращения. Подставляя в это выражение и вынося за знак суммы общую для всех частиц угловую скорость о, находим:

Эту формулу для кинетической энергии вращающегося тела можно привести к виду, аналогичному выражению кинетической энергии поступательного движения, если ввести величину так называемого момента инерции тела. Моментом инерции материальной точки называют произведение массы точки на квадрат расстояния ее от оси вращения. Момент инерции тела есть сумма моментов инерции всех материальных точек тела:

Итак, кинетическая энергия вращающегося тела определяется такой формулой:

Формула (2) отличается от формулы, определяющей кинетическую энергию тела при поступательном движении, тем, что вместо массы тела здесь входит момент инерции I и вместо скорости групповая скорость

Большой кинетической энергией вращающегося маховика пользуются в технике, чтобы сохранить равномерность хода машины при внезапно меняющейся нагрузке. Вначале, чтобы привести маховик с большим моментом инерции во вращение, от машины требуется затрата значительной работы, но зато при внезапном включении большой нагрузки машина не останавливается и производит работу за счет запаса кинетической энергии маховика.

Особенно массивные маховые колеса применяют в прокатных станах, приводимых в действие электромотором. Вот описание одного из таких колес: «Колесо имеет в диаметре 3,5 м и весит При нормальной скорости 600 об/мин запас кинетической энергии колеса таков, что в момент проката колесо дает стану мощность в 20 000 л. с. Трение в подшипниках сведено до минимума сказкой под давлением, и во избежание вредного действия центробежных сил инерции колесо уравновешено так, что груз в помещенный на окружности колеса, выводит его из состояния покоя».

Приведем (без выполнения вычислений) значения моментов инерции некоторых тел (предполагается, что каждое из этих тел имеет одинаковую во всех своих участках плотность).

Момент инерции тонкого кольца относительно оси, проходящей через его центр и перпендикулярной к его плоскости (рис. 55):

Момент инерции круглого диска (или цилиндра) относительно оси, проходящей через его центр и перпендикулярной к его плоскости (полярный момент инерции диска; рис. 56):

Момент инерции тонкого круглого диска относительно оси, совпадающей с его диаметром (экваториальный момент инерции диска; рис. 57):

Момент инерции шара относительно оси, проходящей через центр шара:

Момент инерции тонкого сферического слоя радиуса относительно оси, проходящей через центр:

Момент инерции толстого сферического слоя (полого шара, имеющего радиус внешней поверхности и радиус полости ) относительно оси, проходящей через центр:

Вычисление моментов инерции тел производится при помощи интегрального исчисления. Чтобы дать представление о ходе подобных расчетов, найдем момент инерции стержня относительно перпендикулярной к нему оси (рис. 58). Пусть есть сечение стержня, плотность. Выделим элементарно малую часть стержня, имеющую длину и находящуюся на расстоянии х от оси вращения. Тогда ее масса Так как она находится на расстоянии х от оси вращения, то ее момент инерции Интегрируем в пределах от нуля до I:

Момент инерции прямоугольного параллелепипеда относительно оси симметрии (рис. 59)

Момент инерции кольцевого тора (рис. 60)

Рассмотрим, как связана энергия вращения катящегося (без скольжения) по плоскости тела с энергией поступательного движения этого тела,

Энергия поступательного движения катящегося тела равна , где масса тела и скорость поступательного движения. Пусть означает угловую скорость вращения катящегося тела и радиус тела. Легко сообразить, что скорость поступательного движения тела, катящегося без скольжения, равна окружной скорости тела в точках соприкосновения тела с плоскостью (за время когда тело совершает один оборот, центр тяжести тела перемещается на расстояние следовательно,

Таким образом,

Энергия вращения

следовательно,

Подставляя сюда указанные выше значения моментов инерции, находим, что:

а) энергия вращательного движения катящегося обруча равна энергии его поступательного движения;

б) энергия вращения катящегося однородного диска равна половине энергии поступательного движения;

в) энергия вращения катящегося однородного шара составляет энергии поступательного движения.

Зависимость момента инерции от положения оси вращения. Пусть стержень (рис. 61) с центром тяжести в точке С вращается с угловой скоростью (о вокруг оси О, перпендикулярной к плоскости чертежа. Положим, что в течение некоторого промежутка времени он переместился из положения А В в причем центр тяжести описал дугу Это перемещение стержня можно рассматривать так, как если бы стержень сначала поступательно (т. е. оставаясь себе параллельным) переместился в положение и затем повернулся вокруг С в положение Обозначим (расстояние центра тяжести от оси вращения) через а, а угол через При движении стержня из положения А В в положение перемещение каждой его частицы одинаково с перемещением центра тяжести, т. е. оно равно или Чтобы получить действительное движение стержня, мы можем предположить, что оба указанных движения совершаются одновременно. В соответствии с этим кинетическую энергию стержня, вращающегося с угловой скоростью вокруг оси, проходящей через О, можно разложить на две части.

«Физика - 10 класс»

Почему для увеличения угловой скорости вращения фигурист вытягивается вдоль оси вращения.
Должен ли вращаться вертолёт при вращении его винта?

Заданные вопросы наводят на мысль о том, что если на тело не действуют внешние силы или действие их скомпенсировано и одна часть тела начинает вращение в одну сторону, то другая часть должна вращаться в другую сторону, подобно тому как при выбросе горючего из ракеты сама ракета движется в противоположную сторону.


Момент импульса.


Если рассмотреть вращающийся диск, то становится очевидным, что суммарный импульс диска равен нулю, так как любой частице тела соответствует частица, движущаяся с равной по модулю скоростью, но в противоположном направлении (рис. 6.9).

Но диск движется, угловая скорость вращения всех частиц одинакова. Однако ясно, что чем дальше находится частица от оси вращения, тем больше её импульс. Следовательно, для вращательного движения надо ввести ещё одну характеристику, подобную импульсу, - момент импульса.

Моментом импульса частицы, движущейся по окружности, называют произведение импульса частицы на расстояние от неё до оси вращения (рис. 6.10):

Линейная и угловая скорости связаны соотношением v = ωr, тогда

Все точки твёрдого дела движутся относительно неподвижной оси вращения с одинаковой угловой скоростью. Твёрдое тело можно представить как совокупность материальных точек.

Момент импульса твёрдого тела равен произведению момента инерции на угловую скорость вращения:

Момент импульса - векторная величина, согласно формуле (6.3) момент импульса направлен так же, как и угловая скорость.

Основное уравнение динамики вращательного движения в импульсной форме.


Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω 2 - ω 1) = MΔt, или IΔω = MΔt.

Таким образом,

ΔL = MΔt. (6.4)

Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил.

Закон сохранения момента импульса:

Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным.

ΔL = 0, L = const .

Изменение импульса системы равно суммарному импульсу сил, действующих на систему.

Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения.

Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б).

Человек может также заставить вращаться скамью если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю.

На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа - это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.


Кинетическая энергия вращающегося твёрдого тела.


Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит:

Угловая скорость вращения всех точек тела одинакова, следовательно,

Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид

В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна

В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.