Как считать вероятность события. Долой неопределенность, или как найти вероятность

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому:

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    • Вероя́тность - степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

      Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события - вероятностная мера (или её значение) - мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от

      {\displaystyle 0}

      {\displaystyle 1}

      Значение

      {\displaystyle 1}

      Соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное вообще говоря не всегда верно). Если вероятность наступления события равна

      {\displaystyle p}

      То вероятность его ненаступления равна

      {\displaystyle 1-p}

      В частности, вероятность

      {\displaystyle 1/2}

      Означает равную вероятность наступления и ненаступления события.

      Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений - например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

      Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

      Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

    как онтологическая категория отражает меру возможности возникновения какого-либо сущего в каких-либо условиях. В отличие от математических и логической интерпретации этого понятия онтологическая В. не связывает себя с обязательностью количетвенного выражения. Значение В. раскрывается в контексте понимания детерминизма и характера развития в целом.

    Отличное определение

    Неполное определение ↓

    ВЕРОЯТНОСТЬ

    понятие, характеризующее количеств. меру возможности появления нек-рого события при определ. условиях. В науч. познании встречаются три интерпретации В. Классическая концепция В., возникшая из математич. анализа азартных игр и наиболее полно разработанная Б. Паскалем, Я. Бернулли и П. Лапласом, рассматривает В. как отношение числа благоприятствующих случаев к общему числу всех равновозможных. Напр., ири бросании игральной кости, имеющей 6 граней, выпадение каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Подобная симметричность исходов опыта специально учитывается при организации игр, но сравнительно редко встречается при исследовании объективных событий в науке и практике. Классич. интерпретация В. уступила место статистич. концепции В., в основе к-рой лежат действит. наблюдения появления нек-рого события в ходе длит. опыта при точно фиксированных условиях. Практика подтверждает, что чем чаще происходит событие, тем больше степень объективной возможности его появления, или В. Поэтому статистич. интерпретация В. опирается на понятие относит. частоты, к-рое может быть определено опытным путем. В. как теоретич. понятие никогда не совпадает с эмпирически определяемой частотой, однако во мн. случаях она практически мало отличается от относит. частоты, найденной в результате длит. наблюдений. Многие статистики рассматривают В. как «двойник» относит. частоты, к-рая определяется при статистич. исследовании результатов наблюдений

    или экспериментов. Менее реалистичным оказалось определение В. как предела относит. частот массовых событий, или коллективов, предложенное Р. Мизесом. В качестве дальнейшего развития частотного подхода к В. выдвигается диспозиционная, или пропенситивная, интерпретация В. (К. Поппер, Я. Хэккинг, М. Бунге, Т. Сетл). Согласно этой интерпретации, В. характеризует свойство порождающих условий, напр. эксперимент. установки, для получения последовательности массовых случайных событий. Именно такая установка порождает физич. диспозиции, или предрасположенности, В. к-рых может быть проверена с помощью относит. частот.

    Статистич. интерпретация В. доминирует в науч. познании, ибо она отражает специфич. характер закономерностей, присущих массовым явлениям случайного характера. Во многих физич., биологич., экономич., демографич. и др. социальных процессах приходится учитывать действие множества случайных факторов, к-рые характеризуются устойчивой частотой. Выявление этой устойчивой частоты и количеств. ее оценка с помощью В. дает возможность вскрыть необходимость, к-рая прокладывает себе путь через совокупное действие множества случайностей. В этом находит свое проявление диалектика превращения случайности в необходимость (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 535-36).

    Логическая, или индуктивная, В. характеризует отношение между посылками и заключением недемонстративного и, в частности, индуктивного рассуждения. В отличие от дедукции, посылки индукции не гарантируют истинности заключения, а лишь делают его в той или иной степени правдоподобным. Это правдоподобие при точно сформулированных посылках иногда можно оценивать с помощью В. Значение этой В. чаще всего определяется посредством сравнит. понятий (больше, меньше или равно), а иногда и численным способом. Логич. интерпретацию часто используют для анализа индуктивных рассуждений и построения различных систем вероятностных логик (Р. Карнап, Р. Джефри). В семантич. концепции логич. В. часто определяется как степень подтверждения одного высказывания другими (напр., гипотезы ее эмпирич. данными) .

    В связи с развитием теорий принятия решений и игр все большее распростраиение получает т. н. персоналистская интерпретация В. Хотя В. при этом выражает степень веры субъекта и появление нек-рого события, сами В. должны выбираться с таким расчетом, чтобы удовлетворялись аксиомы исчисления В. Поэтому В. при такой интерпретации выражает не столько степень субъективной, сколько разумной веры. Следовательно, решения, принимаемые на основе такой В., будут рациональными, ибо они не учитывают психологич. особенностей и склонностей субъекта.

    С гносеологич. т. зр. различие между статистич., логич. и персоналистской интерпретациями В. состоит в том, что если первая дает характеристику объективным свойствам и отношениям массовых явлений случайного характера, то последние две анализируют особенности субъективной, познават. деятельности людей в условиях неопределенности.

    ВЕРОЯТНОСТЬ

    одно из важнейших понятий науки, характеризующее особое системное видение мира, его строения, эволюции и познания. Специфика вероятностного взгляда на мир раскрывается через включение в число базовых понятий бытия понятий случайности, независимости и иерархии (идеи уровней в структуре и детерминации систем).

    Представления о вероятности зародились еще в древности и относились к характеристике нашего знания, при этом признавалось наличие вероятностного знания, отличающегося от достоверного знания и от ложного. Воздействие идеи вероятности на научное мышление, на развитие познания прямо связано с разработкой теории вероятностей как математической дисциплины. Зарождение математического учения о вероятности относится к 17 в., когда было положено начало разработке ядра понятий, допускающих. количественную (числовую) характеристику и выражающих вероятностную идею.

    Интенсивные приложения вероятности к развитию познания приходятся на 2-ю пол. 19- 1-ю пол. 20 в. Вероятность вошла в структуры таких фундаментальных наук о природе, как классическая статистическая физика, генетика, квантовая теория, кибернетика (теория информации). Соответственно вероятность олицетворяет тот этап в развитии науки, который ныне определяется как неклассическая наука. Чтобы раскрыть новизну, особенности вероятностного образа мышления, необходимо исходить из анализа предмета теории вероятностей и оснований ее многочисленных приложений. Теорию вероятностей обычно определяют как математическую дисциплину, изучающую закономерности массовых случайных явлений при определенных условиях. Случайность означает, что в рамках массовости бытие каждого элементарного явления не зависит и не определяется бытием других явлений. В то же время сама массовость явлений обладает устойчивой структурой, содержит определенные регулярности. Массовое явление вполне строго делится на подсистемы, и относительное число элементарных явлений в каждой из подсистем (относительная частота) весьма устойчиво. Эта устойчивость сопоставляется с вероятностью. Массовое явление в целом характеризуется распределением вероятностей, т. е. заданием подсистем и соответствующих им вероятностей. Язык теории вероятностей есть язык вероятностных распределений. Соответственно теорию вероятностей и определяют как абстрактную науку об оперировании распределениями.

    Вероятность породила в науке представления о статистических закономерностях и статистических системах. Последние суть системы, образованные из независимых или квазинезависимых сущностей, их структура характеризуется распределениями вероятностей. Но как возможно образование систем из независимых сущностей? Обычно предполагается, что для образования систем, имеющих целостные характеристики, необходимо, чтобы между их элементами существовали достаточно устойчивые связи, которые цементируют системы. Устойчивость статистическим системам придает наличие внешних условий, внешнего окружения, внешних, а не внутренних сил. Само определение вероятности всегда опирается на задание условий образования исходного массового явления. Еще одной важнейшей идеей, характеризующей вероятностную парадигму, является идея иерархии (субординации). Эта идея выражает взаимоотношения между характеристиками отдельных элементов и целостными характеристиками систем: последние как бы надстраиваются над первыми.

    Значение вероятностных методов в познании заключается в том, что они позволяют исследовать и теоретически выражать закономерности строения и поведения объектов и систем, имеющих иерархическую, «двухуровневую» структуру.

    Анализ природы вероятности опирается на частотную, статистическую ее трактовку. Вместе с тем весьма длительное время в науке господствовало такое понимание вероятности, которое получило название логической, или индуктивной, вероятности. Логическую вероятность интересуют вопросы обоснованности отдельного, индивидуального суждения в определенных условиях. Можно ли оценить степень подтверждения (достоверности, истинности) индуктивного заключения (гипотетического вывода) в количественной форме? В ходе становления теории вероятностей такие вопросы неоднократно обсуждались, и стали говорить о степенях подтверждения гипотетических заключений. Эта мера вероятности определяется имеющейся в распоряжении данного человека информацией, его опытом, воззрениями на мир и психологическим складом ума. Во всех подобных случаях величина вероятности не поддается строгим измерениям и практически лежит вне компетенции теории вероятностей как последовательной математической дисциплины.

    Объективная, частотная трактовка вероятности утверждалась в науке со значительными трудностями. Первоначально на понимание природы вероятности оказали сильное воздействие те философско-методологические взгляды, которые были характерны для классической науки. Исторически становление вероятностных методов в физике происходило под определяющим воздействием идей механики: статистические системы трактовались просто как механические. Поскольку соответствующие задачи не решались строгими методами механики, то возникли утверждения, что обращение к вероятностным методам и статистическим закономерностям есть результат неполноты наших знаний. В истории развития классической статистической физики предпринимались многочисленные попытки обосновать ее на основе классической механики, однако все они потерпели неудачу. Основания вероятности состоят в том, что она выражает собою особенности структуры определенного класса систем, иного, чем системы механики: состояние элементов этих систем характеризуется неустойчивостью и особым (не сводящимся к механике) характером взаимодействий.

    Вхождение вероятности в познание ведет к отрицанию концепции жесткого детерминизма, к отрицанию базовой модели бытия и познания, выработанных в процессе становления классической науки. Базовые модели, представленные статистическими теориями, носят иной, более общий характер: они включают в себя идеи случайности и независимости. Идея вероятности связана с раскрытием внутренней динамики объектов и систем, которая не может быть всецело определена внешними условиями и обстоятельствами.

    Концепция вероятностного видения мира, опирающаяся на абсолютизацию представлений о независимости (как и прежде парадигма жесткой детерминации), в настоящее время выявила свою ограниченность, что наиболее сильно сказывается при переходе современной науки к аналитическим методам исследования сложноорганизованных систем и физико-математических основ явлений самоорганизации.

    Отличное определение

    Неполное определение ↓

    Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие научимся решать задачи на конкретных примерах.

    Наука

    Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

    События

    Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

    • Достоверные.
    • Невозможные.
    • Случайные.

    Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

    Достоверное событие

    Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

    • Мы работаем и получаем вознаграждение в виде заработной платы.
    • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
    • Мы вложили деньги в банк, при необходимости получим их назад.

    Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

    Невозможные события

    Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

    От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

    • Вода замерзла при температуре плюс десять (это невозможно).
    • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

    Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

    Случайные события

    Изучая элементы теории вероятности, особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

    • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
    • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

    Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

    название

    определение

    Достоверные

    События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

    Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

    Невозможные

    События, которые никогда не произойдут ни при каких условиях.

    Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

    Случайные

    Событие, которое может произойти или нет в ходе проведения опыта/испытания.

    Попадание или промах при бросании баскетбольного мяча в кольцо.

    Законы

    Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

    • Сходимость последовательностей случайных величин.
    • Закон больших чисел.

    При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

    Сходимость последовательностей случайных величин

    Отметим, что видов сходимости несколько:

    • Последовательность случайных величин сходима по вероятности.
    • Почти невозможное.
    • Среднеквадратическая сходимость.
    • Сходимость по распределению.

    Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

    Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

    Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

    Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

    Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

    Закон больших чисел

    Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

    • Неравенство Чебышева.
    • Теорема Чебышева.
    • Обобщенная теорема Чебышева.
    • Теорема Маркова.

    Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

    Аксиомы

    С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

    Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

    Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

    Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

    Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

    Лотерейный билет

    Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

    Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

    В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

    С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

    Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

    Карточная колода

    Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

    Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

    Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

    Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

    Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

    Забытый номер

    Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

    Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

    Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

    Карточки с числами

    Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

    • выпадет четное число;
    • двухзначное.

    Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

    Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.