Как считать многочлены. Многочлен, его стандартный вид, степень и коэффициенты членов

полином, выражение вида

Axkyl┘..wm + Bxnyp┘..wq + ┘┘ + Dxrts┘..wt,

где х, у, ..., w ≈ переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней ≈ целые неотрицательные числа) ≈ постоянные. Отдельные слагаемые вида Ахkyl┘..wmназываются членами М. Порядок членов, а также порядок множителей в каждом члене можно менять произвольно; точно так же можно вводить или опускать члены с нулевыми коэффициентами, а в каждом отдельном члене ≈ степени с нулевыми показателями. В случае, когда М. имеет один, два или три члена, его называют одночленом, двучленом или трёхчленом. Два члена М. называются подобными, если в них показатели степеней при одинаковых переменных попарно равны. Подобные между собой члены

А"хkyl┘..wm, B"xkyl┘..wm, ┘.., D"xkyl┘..wm

можно заменить одним (приведение подобных членов). Два М. называются равными, если после приведения подобных все члены с отличными от нуля коэффициентами оказываются попарно одинаковыми (но, может быть, записанными в разном порядке), а также если все коэффициенты этих М. оказываются равными нулю. В последнем случае М. называется тождественным нулём и обозначают знаком 0. М. от одного переменного х можно всегда записать в виде

P(x) = a0xn+ a1xn-1 + ... + an-1x+ an,

где a0, a1,..., an ≈ коэффициенты.

Сумму показателей степеней какого-либо члена М. называют степенью этого члена. Если М. не тождественный нуль, то среди членов с отличными от нуля коэффициентами (предполагается, что все подобные члены приведены) имеются один или несколько наибольшей степени; эту наибольшую степень называют степенью М. Тождественный нуль не имеет степени. М. нулевой степени сводится к одному члену А (постоянному, не равному нулю). Примеры: xyz + х + у + z есть многочлен третьей степени, 2x + у ≈ z + 1 есть многочлен первой степени (линейный М.), 5x2 ≈ 2x2 ≈ 3х2 не имеет степени, т. к. это тождественный нуль. М., все члены которого одинаковой степени, называется однородным М., или формой; формы первой, второй и третьей степеней называются линейными, квадратичными, кубичными, а по числу переменных (два, три) двоичными (бинарными), тройничными (тернарными) (например, x2 + y2 + z2 ≈ ху ≈ yz ≈ xz есть тройничная квадратичная форма).

Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) ≈ кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0.

Если для двух многочленов Р(х) и Q(x) можно найти такой многочлен R(x), что Р = QR, то говорят, что Р делится на Q; Q называется делителем, a R ≈ частным. Если Р не делится на Q, то можно найти такие многочлены Р(х) и S(x), что Р = QR + S, причём степень S(x) меньше степени Q(x).

Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q, т. е. такой делитель Р и Q, который делится на любой общий делитель этих многочленов (см. Евклида алгоритм). М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае ≈ неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R, a P на R не делится, то тогда Q должно делиться на R. Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя

в поле действительных чисел и на четыре множителя ═в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел ≈ на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x3 + yz2 + z3 неприводим в любом числовом поле.

Если переменным х, у, ..., w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций, где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций.

К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники. Способы такого выражения исследуются в специальных разделах математики (см. Приближение и интерполирование функций, Наименьших квадратов метод).

В элементарной алгебре многочленом иногда называются такие алгебраические выражения, в которых последним действием является сложение или вычитание, например

Лит. : Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мишина А. П., Проскуряков И. В., Высшая алгебра, 2 изд., М., 1965.

Которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример. Разложите на 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).

Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.

Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).

Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.

Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).

Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.

Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы . Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).

Источники:

  • Разложение многочленов на множители
  • как разложить на множители на многочлен

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Совет 3: Как 90 разложить на два взаимно простых множителя

Взаимно простыми множителями называются числа, не имеющие общих делителей, кроме единицы. Алгоритм достаточно прост, попробуйте рассмотреть его на примере: разложите на два взаимно простых множителя число 90.

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Понятие многочлена

Определение многочлена: многочлен - это сумма одночленов. Пример многочлена:

здесь мы видим сумму двух одночленов, а это и есть многочлен, т.е. сумма одночленов.

Слагаемые, из которых состоит многочлен, называются членами многочлена.

Является ли разность одночленов многочленом? Да, является, ведь разность легко приводится к сумме, пример: 5a – 2b = 5a + (-2b).

Одночлены тоже считают многочленами. Но в одночлене нет суммы, тогда почему его считают многочленом? А к нему можно прибавить ноль и получить его сумму с нулевым одночленом. Итак, одночлен - это частный случай многочлена, он состоит из одного члена.

Число ноль - это нулевой многочлен.

Стандартный вид многочлена

Что такое многочлен стандартного вида? Многочлен есть сумма одночленов и если все эти одночлены, составляющие многочлен, записаны в стандартном виде, кроме того среди них не должно быть подобных, тогда многочлен записан в стандартном виде.

Пример многочлена в стандартном виде:

здесь многочлен состоит из 2-х одночленов, каждый из которых имеет стандартный вид, среди одночленов нет подобных.

Теперь пример многочлена, который не имеет стандартный вид:

здесь два одночлена: 2a и 4a являются подобными. Надо их сложить, тогда многочлен получит стандартный вид:

Ещё пример:

Этот многочлен приведен к стандартному виду? Нет, у него второй член не записан в стандартом виде. Записав его в стандартном виде, получаем многочлен стандартного вида:

Степень многочлена

Что такое степень многочлена?

Степень многочлена определение:

Степень многочлена - наибольшая степень, которую имеют одночлены, составляющие данный многочлен стандартного вида.

Пример. Какова степень многочлена 5h? Степень многочлена 5h равна одному, ведь в этот многочлен входит всего один одночлен и степень его равна одному.

Другой пример. Какова степень многочлена 5a 2 h 3 s 4 +1? Степень многочлена 5a 2 h 3 s 4 + 1 равна девяти, ведь в этот многочлен входят два одночлена, наибольшую степень имеет первый одночлен 5a 2 h 3 s 4 , а его степень равна 9-ти.

Ещё пример. Какова степень многочлена 5? Степень многочлена 5 равна нулю. Итак, степень многочлена, состоящего только из числа, т.е. без букв, равна нулю.

Последний пример. Какова степень нулевого многочлена, т.е. нуля? Степень нулевого многочлена не определена.

Согласно определению, многочлен это алгебраическое выражение представляющее собой сумму одночленов.

Для примера: 2*a^2 + 4*a*x^7 - 3*a*b^3 + 4; 6 + 4*b^3 - многочлены, а выражение z/(x - x*y^2 + 4) не является многочленом потому, что оно не является суммой одночленов. Многочлен еще иногда называют полиномом, а одночлены которые входят в состав многочлена членами многочлена или мономами.

Комплексное понятие многочлена

Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен. Такие названия, в зависимости от количества слагаемых, ставят все на свои места.

И термин одночлен становится интуитивно понятным. С точки зрения математики, одночлен является частным случаем многочлена. Одночлен это многочлен, который состоит из одного слагаемого.

Так же как и у одночлена, у многочлена есть свой стандартный вид. Стандартным видом многочлена называется такая запись многочлена, при которой все входящие в него в качестве слагаемых одночлены, записаны в стандартном виде и приведены подобные члены.

Стандартный вид многочлена

Процедура приведения многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.

Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена.

Из того, что любой одночлен можно привести к стандартному виду, следует также и тот факт, что любой многочлен можно привести к стандартному виду.

Когда многочлен приведен к стандартному виду, можно говорить о таком понятии как степень многочлена. Степенью многочлена называется наибольшая степень одночлена, входящего в данный многочлен.
Так, например, 1 + 4*x^3 - 5*x^3*y^2 - многочлен пятой степени, так как максимальная степень одночлена входящего в многочлен (5*x^3*y^2) пятая.