К теоретическим методам научного познания относятся. Методы познания

Метод - это набор приемов и операций, используемых в практической или теоретической деятельности. Методы выступают в качестве формы освоения действительности.

Методы познания по принципу соотношения общего и частного делятся на всеобщие (общечеловеческие), общенаучные (общелогические) и конкретно-научные методы. Также они классифицируются с точки зрения соотношения эмпирических или теоретических знаний на методы эмпирического исследования, методы общие для эмпирического и теоретического исследования, а также – чисто теоретического исследования.

Нужно учитывать, что отдельные отрасли научных знаний применяют свои специальные, конкретно-научные способы изучения явлений и процессов, которые обусловлены сущностью исследуемого объекта. Однако есть методы, свойственные определенной науки, успешно применяются и в других областях знаний. К примеру, физические и химические способы исследования применяются биологией, поскольку объекты изучения биологии включают в себя и физические, и химические формы существования и движения материи.

Всеобщие методы познания делятся на диалектические и метафизические. Их называют общефилософскими.

Диалектический сводится к познанию действительности в ее целостности, развитии и свойственных ей противоречиях. Метафизический является противоположностью диалектическому, он рассматривает явления, не учитывая их взаимосвязи и процессов изменения по времени. Примерно с середины XIX века метафизический метод вытесняется диалектическим.

Общелогические методы познания включают в себя синтез, анализ, абстрагирование, обобщение, индукцию, дедукцию, аналогию, моделирование, исторический и логический методы.

Анализ – это разложение объекта на компоненты. Синтез – объединение познанных элементов в одно целое. Обобщение – мысленный переход от единичного к общему. Абстрагирование (идеализация) – внесение мысленных изменений в объект изучения в соответствии с целями исследования. Индукция – выведение общих положений из наблюдений частных фактов. Дедукция – аналитическое рассуждение от общего к частным деталям. Аналогия – правдоподобное и вероятное заключение о наличии сходных черт двух предметов, явлений по определенному признаку. Моделирование – создание на основе аналога модели с учетом всех свойств исследуемого объекта. Исторический метод – это воспроизведение фактов из истории изучаемого явления в их многогранности, учитывая детали и случайности. Логический метод – воспроизведение истории объекта исследования путем освобождения ее от всего случайного и несущественного.

Анализ - мысленное или реальное разложение объекта на составляющие его части.

Синтез - объединение познанных в результате анализа элементов в единое целое.

Обобщение - процесс мысленного перехода от единичного к о общему, от менее общего, к более общему, например: переход от суждения «этот металл проводит электричество» к суждению «все металлы проводят электричество», от суждения: «механическая форма энергии превращается в тепловую» к суждению «всякая форма энергии превращается в тепловую».

Абстрагирование (идеализация) - мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследования. В результате идеализации из рассмотрения могут быть исключены некоторые свойства, признаки объектов, которые не являются существенными для данного исследования. Пример такой идеализации в механике - материальная точка , т.е. точка, обладающая массой, но лишенная всяких размеров. Таким же абстрактным (идеальным) объектом является абсолютно твердое тело .

Индукция - процесс выведения общего положения из наблюдения ряда частных единичных фактов, т.е. познание от частного к общему. На практике чаще всего применяется неполная индукция, которая предполагает вывод о всех объектах множества на основании познания лишь части объектов. Неполная индукция, основанная на экспериментальных исследованиях и включающая теоретическое обоснование называется научной индукцией. Выводы такой индукции часто носят вероятностный характер. Это рискованный, но творческий метод. При строгой постановке эксперимента, логической последовательности и строгости выводов она способна давать достоверное заключение. По словам известного французского физика Луи де Бройля, научная индукция является истинным источником действительно научного прогресса.

Дедукция - процесс аналитического рассуждения от общего к частному или менее общему. Она тесно связана с обобщением. Если исходные общие положения являются установленной научной истиной, то метом дедукции всегда будет получен истинный вывод. Особенно большое значение дедуктивный метод имеет в математике. Математики оперируют математическими абстракциями и строят свои рассуждения на общих положениях. Эти общие положения применяются к решению частных, конкретных задач.

В истории естествознания были попытки абсолютизировать значение в науке индуктивного метода (Ф. Бэкон) или дедуктивного метода (Р. Декарт), придать им универсальное значение. Однако эти методы не могут применяться как обособленные, изолированные друг от друга. каждый из них используется на определенном этапе процесса познания.

Аналогия - вероятное, правдоподобное заключение о сходстве двух предметов или явлений в каком-либо признаке, на основании установленного их сходства в других признаках. Аналогия с простым позволяет понять более сложное. Так, по аналогии с искусственным отбором лучших пород домашних животных Ч.Дарвин открыл закон естественного отбора в животном и растительном мире.

Моделирование - воспроизведение свойств объекта познания на специально устроенном его аналоге - модели. Модели могут быть реальными (материальными), например, модели самолетов, макеты зданий. фотографии, протезы, куклы и т.п. и идеальными (абстрактными), создаваемые средствами языка (как естественного человеческого языка, так и специальных языков, например, языком математики. В этом случае мы имеем математическую модель . Обычно это система уравнений, описывающая взаимосвязи в изучаемой системе.

Исторический метод подразумевает воспроизведение истории изучаемого объекта во всей своей многогранности, с учетом всех деталей и случайностей. Логический метод - это, по сути, логическое воспроизведение истории изучаемого объекта. При этом история эта освобождается от всего случайного, несущественного, т.е. это как бы тот же исторический метод, но освобожденный от его исторической формы .

Классификация - распределение тех или иных объектов по классам (отделам, разрядам) в зависимости от их общих признаков, фиксирующее закономерные связи между классами объектов в единой системе конкретной отрасли знания. Становление каждой науки связано с созданием классификаций изучаемых объектов, явлений.

Классификация - это процесс упорядочивания информации. В процессе изучения новых объектов в отношении каждого такого объекта делается вывод: принадлежит ли он к уже установленным классификационным группам. В некоторых случаях при этом обнаруживается необходимость перестройки системы классификации. Существует специальная теория классификации - таксономия . Она рассматривает принципы классификации и систематизации сложноорганизованных областей действительности, имеющих обычно иерархическое строение (органический мир, объекты географии, геологии и т.п.).

Одной из первых классификаций в естествознании явилась классификация растительного и животного мира выдающегося шведского натуралиста Карла Линнея (1707-1778). Для представителей живой природы он установил определенную градацию: класс, отряд, род, вид, вариация.

Методы познания эмпирического делятся на измерение, наблюдение, описание, эксперимент и сравнение.

Наблюдение – организованное и целенаправленнее восприятие объекта изучения. Эксперимент – отличается от наблюдения характером, предполагающим постоянную активность участников. Измерение – процесс материального сравнения определенной величины с эталоном или установленной единицей измерения. В науке учитывают относительность свойств объекта изучения по отношению к этим средствам исследования.

Методы познания теоретического объединяют формализацию, аксиоматизацию, гипотетико-дедуктивный метод.

Формализация – построение абстрактных и математических моделей, которые нацелены на раскрытие сути изучаемого объекта. Аксиоматизация – создание теорий на основании аксиом. Гипотетико-дедуктивный метод заключается в создании связанных дедуктивно гипотез, из которых можно вывести эмпирическое заключение об изучаемом факте.

Формы и методы познания непосредственно связаны между собой. Под формами познания понимают научные факты, гипотезы, принципы, проблемы, идеи, теории, категории и законы.

Из методички

Все методы познания можно поделить на следующие классы:

    Всеобщие методы – этот философские методы, с помощью которых познается всеобщая определенность предмета. Основными философскими способами мышления являются диалектический и метафизический. Диалектический познает предметы в процессе их генезиса, учитывая всеобщую связь предметов и явлений друг с другом. Метафизический же сущность вещей полагает неизменной, предметы изучаются изолированно друг от друга.

    Общелогические методы – методы, применяемые во всех видах познания – научном, обыденном, художественном и т.д. К ним относятся анализ, синтез, обобщение, абстрагирование, дедукция, индукция, абдукция, классификация и т.д. Эти методы изучает формальная логика.

    Собственно научные – это перечисленные выше теоретические и эмпирические методы научного исследования, которые применяются в любой области научного знания.

К эмпирическим методам познания относятся следующие:

Наблюдение - целенаправленное пассивное изучение предметов, опирающееся в основном на данные органов чувств. Наблюдение может быть непосредственным и опосредованным различными приборами и другими техническими устройствами. Основные требования к научному наблюдению: однозначность замысла (что именно наблюдается); возможность контроля путем либо повторного наблюдения, либо с помощью других методов (например, эксперимента). Важным моментом наблюдения является интерпретация его результатов - расшифровка показаний приборов и т.п.

Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение исследуемого объекта или его воспроизведение в специально созданных и контролируемых условиях, определяемых целями эксперимента. Основные особенности эксперимента: а) более активное (чем при наблюдении) отношение к объекту исследования, вплоть до его изменения и преобразования; б) возможность контроля за поведением объекта и проверки результатов; в) многократная воспроизводимость изучаемого объекта по желанию исследователя; г) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях. Выделяют: по своим функциям исследовательские, проверочные, воспроизводящие эксперименты. По характеру объектов различают физические, химические, биологические, социальные и т.п. Существуют эксперименты качественные и количественные. Широкое распространение в современной науке получил мысленный эксперимент - система мыслительных процедур, проводимых над идеализированными объектами. Но мысленный эксперимент относится уже к теоретическим методам познания.

Сравнение - познавательная операция, выявляющая сходство или различие объектов, т.е. их тождество и различия. Оно имеет смысл только в совокупности однородных предметов, образующих класс. Сравнение предметов в классе осуществляется по признакам, существенным для данного рассмотрения. При этом предметы, сравниваемые по одному признаку, могут быть несравнимы по другому.

Описание - познавательная операция, состоящая в фиксировании результатов опыта (наблюдения или эксперимента) с помощью определенных систем обозначения, принятых в науке.

Измерение - совокупность действий, выполняемых при помощи определенных средств с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Следует подчеркнуть, что методы эмпирического исследования никогда не реализуются "вслепую", а всегда "теоретически нагружены", направляются определенными концептуальными идеями.

Теоретические методы познания – это, прежде всего, способы построения теории – самой достоверной формы познания. К ним относятся

Формализация - отображение содержательного знания в знаково-символическом виде. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами), что связано с построением искусственных языков (язык математики, логики, химии и т.п.). Главное в процессе формализации - над формулами можно производить операции. Тем самым операции с мыслями о предметах заменяются действиями со знаками и символами.

Аксиоматический метод - способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения - аксиомы (постулаты), из которых все остальные утверждения этой теории выводятся из них чисто логическим путем, посредством доказательства. Аксиоматический метод - лишь один из методов построения уже добытого научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизированной содержательной теории.

Гипотетико- дедуктивный метод – это такой способ построения теории, при котором сначала выдвигается гипотеза – научно обоснованное предположение о причинах тех или иных явлений, а затем из нее дедуцируются следствия, которые затем подвергаются опытной проверке. Идеализация - мыслительная процедура, связанная с образованием абстрактных объектов, принципиально не осуществимых в действительности ("точка", "идеальный газ" и т.п.). Идеализированный объект выступает как отражение реальных предметов и процессов. Моделирование - метод исследования определенных объектов путем воспроизведения их характеристик на другом объекте – модели. По характеру моделей выделяют материальное и идеальное моделирование, выраженное в соответствующей знаковой форме. Материальные модели являются природными объектами, подчиняющимися в своем функционировании естественным законам - физики, механики и т.п. При материальном моделировании конкретного объекта его изучение заменяется исследованием некоторой модели, имеющей ту же физическую природу, что и оригинал (модели самолетов, кораблей, космических аппаратов и т.п.). При идеальном моделировании модели выступают в виде графиков, чертежей, формул, систем уравнений, предложений естественного и искусственного (символы) языка и т.п. В настоящее время широкое распространение получило математическое (компьютерное) моделирование. Системный подход - рассмотрение объектов как систем. Ему характрны: исследование механизма взаимодействия системы и среды; изучение характера иерархичности, присущей данной системе; обеспечение всестороннего многоаспектного описания системы; рассмотрение системы как динамичной, развивающейся целостности.

Логический и исторический методы – это связанные между собой методы. задача исторического метода – воссоздание реальной истории предмета, а задача логического – на основе знания истории предмета выявить внутреннюю логику его развития, необходимую последовательность стадий становления предмета.

Структурно - функциональный (структурный) метод строится на основе выделения в целостных системах их структуры - совокупности устойчивых отношений и взаимосвязей между ее элементами и их роли относительно друг друга. Структура понимается как нечто неизменное при определенных преобразованиях, а функция как "назначение" каждого из элементов данной системы (функции какого-либо биологического органа, функции государства,). Основные требования структурно-функционального метода: изучение строения, структуры системного объекта; исследование его элементов и их функциональных характеристик; анализ изменения этих элементов и их функций; рассмотрение развития (истории) системного объекта в целом; представление объекта как гармонически функционирующей системы, все элементы которой "работают" на поддержание этой гармонии.

В заключение следует отметить, что каждый метод окажется неэффективным и даже бесполезным, если им пользоваться не как «руководящей нитью» в научной или иной форме деятельности, а как готовым шаблоном для перекраивания фак­тов. Главное предназначение любого метода - на основе соответству­ющих принципов (требований, предписаний и т. п.) обеспечить ус­пешное решение определенных познавательных и практических про­блем, приращение знания, оптимальное функционирование и разви­тие тех или иных объектов.

    Специально- научные ( или частно-научные) – методы, применяемые либо только в одной науке, либо в нескольких.

6. Основные закономерности роста научного знания .

Основные закономерности роста научного знания.

Проблема роста научного знания является центральной проблемой философии науки – и как дисциплины, и как направления в философии. В современной западной философии наиболее полно она исследуется такими течениями, как постпозитивизм («поздний» Поппер К., Т.Кун, И Лакатос, П.Фейрабенд, С.Тулмин и др.) и эволюционная эпистемология (К.Лоренц, Д.Кэмпбелл, Ж.Пиаже, Г.Фоллмер). Представители эволюционной эпистемологии реконструируют развитие научных идей, теорий, используя эволюционные модели.

Если в неопозитивизме главное внимание уделялось выявлению структуры готового научного знания, то сменившая его в 60-х г.г. последующая историческая форма позитивистской философии – постпозитивизм – впервые обратилась к реальной истории науки. Появились первые концепции роста научного знания.

К.Поппер (1902 -1994) понимает рост научного знания как процесс выдвижения гипотез и осуществление их опровержения. Дело в том, что он исходит из того, что нет безошибочных теорий, каждая содержит в себе ошибку (принцип фаллибилизма). Наука в точности знает, какие ее суждения ложны, но не может гарантировать окончательной истинности ни одного из своих суждений. Поэтому процесс развития знания есть процесс выявления ошибок в существующих теориях и порождения новых, которые тоже со временем будут опровергнуты. Те теории, которые в принципе не могут быть опровергнуты экспериментами, он называл ненаучными (принцип фальсификации). Если традиционно считалось, что прогресс научного знания состоит во все большем приближении к объективной истине, то для Поппера – в силу его фаллибилизма – это лишено смысла. Свою модель роста научного знания он изображает схемой:

П1 – Т – ОТ – П2

где П1 – некоторая исходная научная проблема, Т – теория, с помощью которой она решается, ОТ – опровержение этой теории или устранение ошибок в ней путем критики или экспериментальной проверки, П2 – новая, более глубокая проблема, для решения которой необходимо построить новую, более глубокую теорию. Другими словами, критерий прогресса научного знания К.Поппер видит в углублении научных проблем .

Рост научного знания понимается Поппером по аналогии с биологической эволюцией. Как развитие биологического вида осуществляется путем проб и ошибок (вид, для которого жизненно важно приспособиться к среде обитания, предлагает в силу наследственной изменчивости разные варианты приспособления, но природа с помощью механизма естественного отбора отбраковывает неудачные и закрепляет удачные), так и научные теории. В ходе познавательного процесса происходит порождение ряда конкурирующих теорий для решения той или иной научной проблемы и затем их «отбраковка» или элиминация содержащихся в них ошибок. Рост научного знания рассматривается Поппером как частный случай общих мировых эволюционных процессов.

Свою концепцию роста научного знания предложил американский историк науки и эпистемолог Т.Кун (1922-1995) в работе «Структура научных революций» (1962).

Важнейшим понятием концепции Куна является понятие парадигмы . Парадигмой можно назвать одну или несколько фундаментальных теорий, получивших всеобщее признание и в течение некоторого времени направляющих научное исследование. Парадигма (по-гречески paradeigma - образец, пример для подражания) предлагает для научного исследования набор образцов решения проблем, в чем и заключается ее важнейшая функция. В свете господствующей в определенный период развития науки парадигмы исследуются и интерпретируются факты.

С понятием парадигмы очень тесно связано понятие научного сообщества. Парадигма представляет собой некоторый взгляд на мир, принимаемый научным сообществом. А научное сообщество представляет собой группу людей, объединенных верой в одну парадигму. Научное сообщество исходит из того, что для адекватного решения любой научной проблемы (или головоломки, по выражению Куна) парадигма обладает методологическими средствами. Но рано или поздно в науке начинают возникать аномалии – проблемы, неразрешимые средствами существующей парадигмы, и дело здесь не в каких-то индивидуальных способностях того или иного ученого, не в повышении точности приборов, а в принципиальной неспособности самой парадигмы ее решить. По мере роста таких аномалий наступает состояние, которое Кун именует кризисом. Ученые оказываются перед лицом множества нерешенных проблем, необъясненных фактов и экспериментальных данных. У многих из них господствовавшая недавно парадигма уже не вызывает доверия, и они начинают искать новые теоретические средства, которые, возможно, окажутся более успешными. Уходит то, что ранее объединяло ученых, - парадигма. Научное сообщество распадается на несколько групп, одни из которых продолжают верить в парадигму, другие - выдвигают гипотезы, претендующие на роль новой парадигмы. Нормальное исследование замирает. Наука, по сути дела, перестает функционировать.

Период кризиса заканчивается, когда одна из предложенных гипотез доказывает свою способность справиться с существующими проблемами, объяснить непонятные факты и благодаря этому привлекает на свою сторону большую часть ученых. Она приобретает статус новой парадигмы. Научное сообщество восстанавливает свое единство. Такую смену парадигм Кун и называет научной революцией .

Итак, модель развития науки у Куна выглядит следующим образом: нормальная наука, развивающаяся в рамках общепризнанной парадигмы; рост числа аномалий, приводящий в конечном итоге к кризису; научная революция, означающая смену парадигмы.

Накопление знаний, совершенствование методов и инструментов, расширение сферы практических приложений, то есть все то, что можно назвать прогрессом, совершается только в период нормальной науки. Научная революция приводит к отбрасыванию того, что было получено на предыдущем этапе, и работа науки начинается как бы заново, на пустом месте. Таким образом, в целом развитие науки носит прерывистый характер: периоды прогресса и накопления знания разделены революционными провалами, разрывами ткани науки.

К.Поппер, по сути дела представлял рост научного знания как перманентную (постоянную) революцию: предложенная им методологическая концепция требовала немедленного отбрасывания теории, если хотя бы один факт ее опровергал. Но в реальности так не происходит. Поэтому ученик и критик К.Поппера И.Лакатос (1922-1979) разработал новую концепцию роста научного знания – «концепцию методологии научно-исследовательских программ», или концепцию «утонченного фальсификационизма».

И. Лакатос понимает развитие науки как историю возникновения, функционирования и чередования научно-исследовательских программ . Научно-исследовательская программа (НИП) – основная единица развития и оценки научного познания - представляет собой связанную последовательность научных теорий, объединяемых совокупностью фундаментальных идей и методологических принципов.

Научно-исследовательская программа (НИП) содержит в себе 1) «жесткое ядро» - целостную систему фундаментальных допущений, сохраняющуюся во всех теориях данной программы, 2) «защитный пояс», состоящий из «вспомогательных гипотез», которые примиряют теорию с фактами, принимают на себя удары опытных проверок, которые могут быть изменены или отброшены, но при этом обеспечивают сохранность «жесткого ядра»; 3) методологические правила, предписывающие, какие пути исследований перспективны («положительная эвристика»), а каких следует избегать («отрицательная эвристика»).

До тех пор, пока "жесткое ядро" научно-исследовательской программы выполняет движение ко все более широким и полным описаниям и объяснениям реальности (и выполняет лучше, чем другие - альтернативные - системы идей и методов), оно представляет в глазах ученых огромную ценность. Однако программа все-таки не "бессмертна". Рано или поздно наступает момент, когда ее творческий потенциал оказывается исчерпанным: развитие программы резко замедляется, количество и ценность новых моделей, создаваемых с помощью "положительной эвристики", падают, "аномалии" громоздятся одна на другую, нарастает число ситуаций, когда ученые тратят больше сил на то, чтобы сохранить в неприкосновенности "жесткое ядро" своей программы, нежели на выполнение той задачи, ради которой эта программа существует. Научно-исследовательская программа вступает в стадию своего "вырождения". Однако и тогда ученые не спешат расстаться с ней. Лишь после того, как возникает и завоевывает умы новая научно-исследовательская программа, которая не только позволяет решить задачи, оказавшиеся не под силу "выродившейся" программе, но и открывает новые горизонты исследования, раскрывает более широкий творческий потенциал, она вытесняет старую программу.

Согласно И.Лакатосу, смена одной теории другой, переход от одной НИП к другой происходит на рациональных основаниях. Здесь он полемизирует с Т.Куном, который считал, что переход научного сообщества от одной парадигмы к другой определяется случайными, субъективными факторами: влиянием мировоззренческих установок эпохи, общества, к которым принадлежит ученый, его личным познавательным опытом и т.д. Лакатос выстраивает рационалистическую модель смены теорий и научно-исследовательских программ, т.е. выбор среди конкурирующих теорий, гипотез и т.д. происходит на основе рациональных признаков. Новая теория сменяет старую, если она «имеет какое-то добавочное эмпирическое содержание по сравнению с ее предшественницей, то есть предсказывает некоторые новые, ранее не ожидаемые факты» . Другими словами, новая теория должна не только переинтерпретировать исходя из иных теоретических представлений те же факты, которые интерпретировались старой, но и иметь более широкий эмпирический базис, а также обладать большей предсказательной силой. .

Лакатос также не согласен и со своим учителем К.Поппером в понимании роста науки как перманентной революции. Отнюдь не факты заставляют отбросить некую теорию, а другая, лучшая теория: «Не может быть никакой фальсификации прежде, чем появится лучшая теория» . Картина научного знания, представленная как серия дуэлей между теорией и фактами, не совсем верна. В борьбе между теоретическим и фактическим, полагает Лакатос, как минимум три участника: факты и две соперничающие теории. Теория отживает свой век не тогда, когда объявляется противоречащий ей факт, а когда о себе заявляет теория, которая лучше предыдущей.

Рассмотрим теперь в целом, какие закономерности развития научного знания выделяются в современной эпистемологии.

В истории науки сложилось два крайних подхода к анализу развития научного знания: кумулятивизм и антикумулятивизм.

Кумулятивизм исходит из того, что развитие знания происходит путем его количественного роста, путем постепенного прибавления новых положений к уже накопленной сумме знаний. Процесс развития научного знания понимается как непрерывный, исключается возможность качественных изменений в самих основах познания.

Антикумулятивизм полагает, что в ходе развития познания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. История науки представляется сторонниками этой точки зрения как непрекращающаяся борьба теорий и методов, между которыми нет никакой преемственности. К представителям этой точки зрения из рассматриваемых здесь исследователей можно отнести К.Поппера.

Спор о том, какие факторы – внутренние или внешние – определяют развитие научного знания привел к выделению противоположных точек зрения на эту проблему: интернализма и экстернализма.

Интернализм – точка зрения, согласно которой развитие науки осуществляется преимущественно под воздействием внутренних факторов, т.е. в силу внутренней логики развития (например, необходимости создавать новую теорию, если старая уже не может объяснить какие-либо открытые научные факты, необходимости разрешать обнаруживающееся противоречие в теоретических представлениях и т.д.)

Экстернализм - точка зрения, согласно которой развитие науки осуществляется под воздействием внешних для науки факторов – влиянием государства, религии и других социокультурных факторов.

Итак, каковы закономерности развития научного знания? Назовем наиболее важные из них:

1. Наука развивается под влиянием как внешних, так и внутренних факторов.

    Процесс научного познания представляет собой единство постепенных, количественных изменений и коренных качественных. Количественный прирост знания прежде всего присущ эмпирическому уровню научных исследований – это постепенное накопление новых фактов, наблюдений, экспериментальных данных в рамках существующих теорий. Как показал Т.Кун, кумулятивный характер имеет развитие науки в ее нормальный период. Период же научных революций – это период качественных изменений в самих основах знаний, происходит нарушение непрерывности, скачок, коренная ломка фундаментальных законов и принципов.

    В процессе развития научного знания выполняется принцип преемственности. Отношение старой теории к новой регулируется принципом соответствия , выдвинутым одним из создателей квантовой физики Н.Бором. Согласно этому принципу, теория, ранее доказанная и экспериментально подтвержденная, не отбрасывается как абсолютно ложная при возникновении новой теории, но рассматривается как ее частный случай. Другими словами, новая теория лишь сужает границы применимости старой. Согласно этому принципу, все те законы природы, которые были открыты на основе научных методов, никогда не будут удалены из научной картины мира, дальнейший процесс познания будет лишь конкретизировать их, устанавливая более точно границы их действия.

    Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов – дифференциацией (выделением новых научных дисциплин) и интеграцией (объединением ряда наук).

    Важнейшей закономерностью развития науки является нарастание сложности и абстрактности научного знания, повышение ее математизации и компьютеризации.

Цель изучения темы: Формирование представлений о структуре научной методологии.

Основные вопросы темы: Основные уровни методологического знания, их взаимосвязь. Роль философии в обосновании научной методологии. Методологическая направленность теории. Методы эмпирического исследования. Методы теоретического исследования. Общелогические методы познания. Методы познания. Общенаучные подходы в познании.

Научными методами называется совокупность практических и мыслительных действий, обеспечивающих получение, систематизацию и обоснование научных знаний. Методы – «технология выработки» научных знаний. В любой сфере деятельности технологическое знание является необходимым условием успеха. Знание о методах, приемах научной деятельности называется методологией. Методологическое знание существует в различных формах – как неявное знание, присутствующее в реальных процессах научного познания; как методологическая рефлексия ученого, применяющего тот или иной метод, или оценивающего его результаты; как раздел философии науки, направленный на познание деятельности ученого и т.д.. Методологическая рефлексия – необходимый элемент обоснования научных знаний: их надежность зависит от надежности применяемых методов познания.

Принято выделять три уровня методологического знания: философско-методологический, общенаучный, частно-научный. Границы между этими уровнями условны. К общенаучному уровню относится знание о методах, применяемых во всех науках или в большой группе наук. К таким методам относятся эмпирические приемы получения научных фактов (наблюдение, эксперимент, моделирование), общелогические методы их обработки (обобщение, сравнение, систематизация и др.), методы построения и обоснования теорий.

Частно-научное методологическое знание представляет собой конкретизацию, адаптацию общенаучных методов применительно к объектам конкретных научных дисциплин. Например, для химика недостаточно знать общие принципы построения научного эксперимента. Он должен разработать структуру эксперимента, соотнесенную со спецификой своего объекта и задач исследования.

Философская методология направлена на философско-мировоззренческое обоснование научных методов. Многие представители философии науки, обращаясь к истории научного познания, отмечали, что философская компонента методологического знания присутствует в научной деятельности не явно до той поры, пока ученые находятся в русле традиционной методологии, пока применяемые ими методы приводят к успеху. В переломные, революционные периоды науки возрастает интерес к философским аспектам знания, познания, реальности.

Примером может служить история обоснования экспериментальной науки. Для современного ученого экспериментирование – естественный и надежный метод получения научных фактов. Зарождавшаяся наука Нового времени обосновывала экспериментальный метод, используя философско-мировоззренческую аргументацию. Ученым приходилось бороться против авторитаризма в познании, используя идею равных возможностей людей. Г. Галилей в знаменитой работе, посвященной сравнению птолемеевской и коперниковской космологий, утверждал: Аристотель – всего лишь человек, путь к знанию не закрыт ни для кого. Эксперимент в качестве научного метода эффективен лишь в том случае, если его результаты можно воспроизвести, обобщить, представить как проявление закономерной связи. Другими словами, экспериментальное естествознание могло базироваться лишь на определенной философской картине мира, в которой реальность представлялась как единая, однородная в пространственном и временном аспектах, закономерно упорядоченная. Ясно, что собственными силами доказать такую структуру мира наука не могла. Это стало делом философии.

Вместе с тем некоторые философы Нового времени из идеи единства мира сделали неверные методологические выводы. Например, Р. Декарт полагал, что, поскольку единый по своей структуре мир познается единым в своих проявлениях разумом, возможна разработка универсального метода познания, эффективность которого не будет зависеть от специфики объектов исследования. Принцип универсального метода познания был преодолен дальнейшим развитием философии и науки.

Методы науки пластичны, изменчивы, требуют творческой изобретательности и такого воплощения, чтобы полученный результат был ответом на определенный исследовательский вопрос. Ф. Бэкон называл научную опытную деятельность «искусством задавать Природе вопросы».

История науки в первую очередь является историей развития научных методов, т.е. деятельности ученых, результаты которой воплощены в научных фактах и теориях. В то же время теория как знание и как метод, способ деятельности не противостоят друг другу. Теория превращается в метод, играет методологическую роль, если ее содержание служит приращению знания. Теория служит методологическим основанием научной деятельности, поскольку в ней содержатся (порой – в неявной форме) предписания, касающиеся практических и мыслительных операций с объектами. Теория служит основанием для планирования и разработки методик (приемов) экспериментирования, наблюдений, модельных экспериментов.

Обратимся к общенаучным методам эмпирического уровня науки. Наблюдение – это целенаправленное систематическое восприятие объектов исследования в естественных условиях. Активность наблюдателя меньше, чем активность экспериментатора, тем не менее структура наблюдения зачастую почти аналогична структуре эксперимента.

Эксперимент представляет собой исследование объекта в искусственно созданных условиях, позволяющих исключить или учитывать случайные возмущающие влияния. Эксперименты различаются по дисциплинарной принадлежности (химический, физический и т.д.), по целям (поисковый, верифицирующий, демонстрационный, учебный). Эксперимент вне зависимости от его конкретных воплощений обладает общей структурой, основными элементами которой являются: субъект познания; объект исследования; система, изолирующая объект от случайных воздействий; измерительная система, включающая в себя измерительные инструменты; совокупность эталонов и характеристик, по которым можно отслеживать изменения объектов.

Эксперименты часто приводят к созданию эффектов, которые не могут существовать вне приборной установки. Другими словами, исследователь не открывает эффект, а изобретает, производит его. В связи с этим возникают проблемы: 1) онтологического (бытийного) статуса эффектов и объектов, искусственно созданных наукой; 2) гносеологического статуса научных знаний о подобных объектах. С точки зрения современной философии науки нет существенной разницы между открытыми и изобретенными объектами. В принципе почти любой эксперимент создает ситуации, которые в природе не встречаются. Если бы мы отказывались включать в состав реальных явлений все процессы, созданные человеком, то пришлось бы отрицать существование эффектов генной инженерии, селекции, химии, фармакологии, тяжелых элементов и т.д. Дело не в том, что изобретенные эффекты не встречаются в природе, а в том, что в них проявляются объективные законы природы.

Моделирование применяется, когда проведение экспериментов и наблюдений невозможно из-за недоступности объекта, нравственных запретов (например, эксперименты над человеком) или по каким-то другим причинам. Модели могут быть материальными или знаковыми. Знания, полученные при исследовании модели, переносятся на реальный объект. Основное требование, предъявляемое к модели – ее репрезентативность, способность служить аналогом, гносеологическим представителем реального объекта исследования.

Эмпирические методы направлены на исследование реальных (материальных) объектов. В результате их действия образуется слой (массив) фактуального знания.

Факт – форма эмпирического знания, репрезентирующая конкретное событие объективной действительности в сознании субъекта научного познания. Факты выражаются в виде высказывания, текста, формулы, фотографии или иного информационного средства. Структура факта:

1) объективная составляющая (реальное событие, процесс и т.д.);

2) информационная составляющая (фиксация события, процесса и т.д.);

3) социально-культурная составляющая (обусловленность факта инструментальной базой науки, достигнутым уровнем научного знания, мировоззренческими факторами и т.п.).

Эмпирическое знание (факты) выступает основанием дальнейшего движения научного познания. Прежде всего происходит систематизация фактов, их классификация (разбиение на классы, группы, типы и т.п.). В действие вступают методы анализа и синтеза. Анализ – метод исследования, состоящий в мысленном разбиении целого на его составные части, выделении отдельных сторон, свойств, связей объекта. Синтез – соединение частей, элементов, сторон сложного объекта в единое целое, постижение целого в его единстве.

Большую роль в первичном осмыслении эмпирического материала играет метод индукции. Традиционно она понимается как переход от отдельных фактов к знанию общего, как эмпирическое обобщение. Такая индукция называется неполной. Она может иметь наивный характер (детская индукция) – произвольные, случайные обобщения. Но неполная индукция может иметь научный характер (отбор фактов, их предварительная систематизация и классификация, сопоставительный анализ подмножества исследуемого множества объектов и т.д.). Сила индукции – в её исходном базисе. Слабость индукции – в недостаточной обоснованности перехода от частного к общему. Индукция дает вероятное, проблематичное знание. Достоверность его не бесспорна. Помимо неполной индукции существует т.н. полная индукция. Этот метод ориентирован на конечное множество объектов. Здесь общий вывод делается на основании изучения каждого элемента множества. Поэтому полная индукция дает достоверное знание.

С методом индукции связан метод дедукции. Под дедукцией традиционно понимается метод перехода от общих суждений к частным. Но такое понимание недостаточно. Принципиальным для дедукции является необходимый характер следования из одних высказываний (посылок) других высказываний (заключений). Эта необходимость обеспечивается соблюдением в процессе перехода законов и правил логики. Сила дедукции состоит в непреложности выводов, получаемых из исходных начал. Но сказать, что необходимый характер следования делает полученное знание не вероятным (как в индукции), а достоверным, было бы неправильным. Всё дело в том, что собой представляют начала (посылки, исходные высказывания). Они могут иметь достоверный характер (тогда непреложность выводов бесспорна). Они могут иметь гипотетический характер, они могут быть проблематичными, сомнительными, просто неверными. Тогда законы логики с необходимостью переносят характер посылок на характер заключений.

К рассмотренным методам примыкает метод абдукции (от лат. ab-ductum: отводить, уводить). Куда уводить? В прошлое! Впервые этот метод начал исследовать Ч. Пирс (1839-1914). То есть относительно недавно, если сравнивать с методами индукции и дедукции, которые были предметом внимания ещё Аристотеля. Абдукция – это рассуждение, которое основывается на фактах и объясняет их. Факты принадлежат настоящему, а объяснение ищется в прошлом. Здесь следствие, факт достоверно, а заключение проблематично. Ведь объяснения фактов могут быть различными, гипотезы о настоящем, которые уводят в прошлое, могут быть разными. Этот метод можно бы назвать и ретродукцией, абдуктивные рассуждения назвать ретродуктивными. Абдукция – это не индукция, где необходимы для её реализации по крайней мере два элемента множества. Кроме того, индукция только обобщает, абдукция – объясняет. Абдукция – не дедукция, где реализуется логический вывод. При выдвижении гипотезы о прошлом реализуются многие познавательные механизмы: наблюдение, эксперимент, воображение, и, конечно, индукция и дедукция. Более общий характер имеет гипотетико-дедуктивный метод , состоящий в выдвижении (конструировании) гипотез, из которых логическим путем выводятся следствия, сопоставляемые с опытом. Гипотеза может относиться не только к прошлому, но и к настоящему, будущему.

Рассмотренные методы реализуются в сфере эмпирических знаний и при переходе к теоретическому уровню научного знания. Вместе с тем они находят применение и на теоретическом уровне науки. Более того, эти методы принадлежат не только сфере науки, но мышлению вообще, которое характеризует любые проявления человеческой жизнедеятельности. Поэтому их иногда называют общелогическими методами познания.

В сфере науки эти методы обеспечивают первичную обработку эмпирических знаний (фактов). Результатом их реализации являются такие формы знания как первичные обобщения, типологии, эмпирические гипотезы и законы и т.п. Но это ещё не теоретический уровень научного знания, высшей формой которого является теория. Теория не может быть получена как результат индуктивного обобщения и систематизации фактов, как их логическое следствие. Теория есть результат перехода на качественно иной уровень познания, где реализуются другие методы исследования.

Методы теоретического уровня создают возможность заменить изучение реальных объектов и процессов абстрактными, идеализированными объектами.

Метод абстракции , абстрагирование широко представлен в человеческом мышлении. Причем не только в науке, но и вне её (прекрасные примеры абстрактного мышления на уровне обыденного сознания приводит Гегель в статье «Кто мыслит абстрактно?»). Метод абстрагирования предполагает отвлечение от свойств и отношений объекта познания, которые не имеют значения для данного исследования. Соответственно, те свойства и отношения, которые выступают предметом исследования, образуют первый уровень абстрагирования. На его основе могут быть образованы абстракции второго, третьего и т.д. порядка. В результате абстрагирования ученый получает частичное, одностороннее знание об объекте.

Метод идеализации основан на абстрагировании, но идет дальше него. Идеализация – это мысленное конструирование таких идеальных объектов, в которых выделенное в процессе абстрагирования качество представлено в предельном, наиболее выраженном виде. Идеализация в максимальной степени выражает реальные свойства объекта. В результате идеализации создаются идеальные объекты, которые имеют свои прообразы в материальном мире, но не являются их копией. Идеальные объекты наделяются человеком такими характеристиками, которыми реальные объекты не обладают. (Пример: различные предметы могут иметь различную степень твердости – мел, дерево, сталь, алмаз и т.д.; можно мысленно отвлечься от всех физических, химических свойств объектов, выделив у них только одно свойство – твердость, которое в чистом виде не существует; это – абстрагирование; эту абстракцию (твёрдость) можно наделить мысленно приписываемым ей качеством – способностью не испытывать деформации; так получается результат идеализации – идеальный объект «абсолютно твердое тело»). Научные теории и законы создаются по отношению к идеальным объектам. Они выступают как идеальные модели (наглядные или ненаглядные) изучаемых реальных объектов. С идеальными объектами возможны мысленные эксперименты. Такие эксперименты проводятся в сфере мышления, мысленного представления с объектами, которые наглядны, имеют чувственное содержание. Причем эта наглядность может выходить за рамки привычных представлений, не быть копией реальных (материальных) объектов.

Аксиоматический метод возникает в античной математике - «Начала» Евклида. Это такой способ построения научной теории, при котором в её основе находятся исходные положения (определения, аксиомы, постулаты), из которых все остальные положения этой теории выводятся чисто логическим путем. Аксиомы (постулаты) – положения, которые принимаются без доказательства в рамках данной теории. Природа аксиом (постулатов) может быть различной: очевидность, конвенциональность, гипотетичность, практическая обоснованность и др. Основные понятия теории могут определяться (как у Евклида), но могут просто перечисляться (тогда аксиомы – это их неявные определения). Доказательство – традиционная формальная логика (её правила специально не формулируются в силу свей очевидности, они подразумеваются). После Евклида аксиоматический метод нашёл своё применение во многих науках. Долгое время содержание теорий, где он находил реализацию, выражалось на естественном языке. Такой язык имеет известные недостатки. Поэтому постепенно вводилась символика для обозначения основных понятий и основоположений теорий. Логические средства по-прежнему явным образом не задавались. Выведение предложений теории происходило с помощью естественного языка. Пример – аксиоматическое построение Д. Гильбертом евклидовой геометрии. Если же логические средства будут явно сформулированы, т.е. будут введены выраженные в символической форме логические правила действий с символикой системы, то будет иметь место формализация теории. Тогда для логического развертывания теории нет необходимости принимать во внимание значение или смысл её предложений. Теория превращается в совокупность материальных объектов (символов), они наглядны, даны в чувственном созерцании, с ними можно обращаться как с физическими объектами. Формализация – это представление построенной содержательной теории в виде формальной системы. Предложения теории превращаются в формулы. Формализация теории даёт возможность: 1) выяснить степень полноты постановки проблемы; 2) упростить процесс доказательства; 3) вывести из оснований такие элементы теории, которые содержательно невыводимы; 4) прояснить общую структуру теории; 5) создавать конструкции из символов, которые не осознаются на содержательном уровне.

Результатом реализации методов теоретического исследования является теория - наиболее развитая форма теоретического знания. Теория дает целостное отображение закономерных и существенных связей определенной области действительности. Структура теории: 1) фундаментальные понятия, принципы, законы; 2) идеализированные объекты теории – идеальная модель изучаемых предметов; 3) логика теории; 4) философские установки, ценностные факторы; 5) выведенные из основоположений предложения, составляющие содержание теории.

Помимо методов в научном познании находят реализацию более общие методологические процедуры. Это – общенаучные подходы . Если каждый метод требует соблюдения определенных, чётко сформулированных правил действия, то подходы имеют менее определенное содержание. Они не требуют выполнения жёстких предписаний, не регламентируют каждый шаг субъекта познания, а задают лишь общие направления исследования, его ориентацию на постижение той или иной характеристики бытия объекта. К общенаучным относится системный подход (направленность на постижение системного характера объекта), функциональный подход (ориентация на постижение функционирования объекта в том или ином контексте его существования), структурный подход, субстратный, деятельностный, информационный и др. подходы.

Контрольные вопросы и задания

1. Какую роль играет философия в обосновании научных методов?

2. Почему идея универсального метода оказалась несостоятельной?

3. Проиллюстрируйте примерами из истории науки обращение теории в метод.

4. Каковы основные элементы в структуре эксперимента?

5. В чем заключаются сходства и различия эксперимента и наблюдения?

6. Искажает ли активное вмешательство экспериментатора в естественный ход природных взаимодействий представления о законах природы?

7. Каково соотношение анализа и синтеза, индукции и дедукции в процессе познания?

8. В чём сила и слабость индукции (дедукции)?

9. В чём отличие абдукции от индукции, дедукции?

10. Приведите примеры идеальных объектов в различных науках.

11. Каково соотношение аксиоматизации и формализации?

12. Покажите действие общенаучных подходов в познании на материале различных наук.

РЕФЕРАТ

НА ТЕМУ:

«ЭМПИРИЧЕСКИЙ И ТЕОРЕТИЧЕСКИЙ УРОВНИ НАУЧНОГО ПОЗНАНИЯ»

КРАТКАЯ ХАРАКТЕРИСТИКА ЭМПИРИЧЕСКОГО И ТЕОРЕТИЧЕСКОГО УРОВНЕЙ НАУЧНОГО ПОЗНАНИЯ

Как уже отмечалось выше, различают эмпирический и теоретический уровни научного познания.
Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений, выполнения разнообразных измерений, поставки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т. п. Кроме того, уже на втором уровне научного познания - как следствие обобщения научных фактов - возможно формулирование некоторых эмпирических закономерностей .
Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне ученый оперирует только теоретическими (идеальными, знаковыми) объектами . Также на этом уровне происходит раскрытие наиболее глубоких существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям. Теоретический уровень – более высокая ступень в научном познании .
Рассматривая теоретическое познание как высшее и наиболее развитое, следует прежде всего определить его структурные компоненты. К основным из них относятся: проблема, гипотеза и теория.
Проблема - форма знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Иначе говоря, это знание о незнании, вопрос, возникший в ходе познания и требующий ответа. решения.
Научные проблемы следует отличать от ненаучных (псевдопроблем), например, проблема создания вечного двигателя. Решение какой-либо конкретной проблемы есть существенный момент развития знания, в ходе которого возникают новые проблемы, а также выдвигаются новые проблемы, те или иные концептуальные идеи, в т. ч. и гипотезы.
Гипотеза - форма знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятный, а не достоверный характер и требует проверки, обоснования. В ходе доказательства выдвинутых гипотез одни из них становятся истинной теорией, другие видоизменяются, уточняются и конкретизируются, превращаются в заблуждения, если проверка дает отрицательный результат.
Решающей проверкой истинности гипотезы является практика (логический критерий истины играет при этом вспомогательную роль). Проверенная и доказанная гипотеза переходит в разряд достоверных истин, становится научной теорией.
Теория - наиболее развитая форма научного знания, дающая целостное отображение закономерных и существенных связей определенной области действительности. Примерами этой формы знания являются классическая механика Ньютона, эволюционная теория Дарвина, теория относительности Эйнштейна, теория самоорганизующихся целостных систем (синергетика) и др. .
В практике научные знания успешно реализуются лишь в том случае, когда люди убеждены в их истинности. Без превращения идеи в личное убеждение, веру человека невозможна успешная практическая реализация теоретических идей.
Каждый из уровней научного познания характеризуется своим предметом, средствами и методами исследования. Описание некоторых методов научного познания свойственных данным уровням приведено в пунктах 2 – 4.



ЭМПИРИЧЕСКИЕ МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Прежде чем начать, хотелось бы отметить, что понятие метод (от греческого слова «методос» - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности .
Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.
Одни методы применяются только на эмпирическом уровне (наблюдение, эксперимент, измерение), другие – только на теоретическом (идеализация, формализация), а некоторые (например моделирование) – как на эмпирическом, так и на теоретическом уровнях.
Основными методами эмпирического уровня научного познания, как уже отмечалось выше, являются: научное наблюдение, измерение и эксперимент.

Научное наблюдение

Наблюдение - метод изучения объекта без какого-либо вмешательства в объект исследования со стороны ученого, являющегося субъектом познания. Объект находится в своих естественных условиях, а исследователь созерцает его либо только с помощью своих органов чувств, либо с помощью приборов, установок или автоматизированных систем наблюдения .
Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:
- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей);
- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);
- активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения) .
Можно говорить о существовании двух крайних течений в философии наблюдения. Это – феноменализм и ноуменализм . Феноменализмом можно называть такую философию наблюдения, которая утверждает, что наблюдаться может только то, что воспринимается внешними органами чувств – зрением, слухом, вкусом, обонянием и осязанием. И только это можно считать научным. Все остальное должно быть изгнано из научного познания. Наоборот, ноуменализм (от латинского noumen - сущность) утверждает возможность наблюдения не только на основе внешних, но и внутренних органов чувств – интуиции, интеллектуального созерцания, интроспекции. Предполагается тем самым, что у человека существуют особые внутренние органы чувств, позволяющие ему столь же непосредственно наблюдать более глубокий слой бытия, сокрытый за данными внешнего восприятия.
По-видимому, оба эти направления являются крайними позициями, между которыми находится реальный процесс научного наблюдения.
По способу проведения наблюдения могут быть непосредственными и опосредованными.
При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.
Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т. е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.
Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы восприимаются исследователем косвенно - по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.
Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным .

Эксперимент

Эксперимент – метод изучения объекта, посредством погружения его в искусственную ситуацию с помощью экспериментальной установки или создания искусственных условий, что позволяет выделить в объекте интересующие ученого стороны. Эксперимент включает в себя и измерение, и наблюдение . В то же время он обладает рядом важных, присущих только ему особенностей.
Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования.
Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия. В таких искусственно созданных условиях удается обнаружить удивительные порой неожиданные свойства объектов и тем самым глубже постигать их сущность.
В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание.
В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.
В современной науке многие эксперименты требуют специальной организации, планирования и автоматизации.
Существует множество различных видов эксперимента, например, прямой (при котором осуществляется воздействие непосредственно на объект исследования) и модельный (объект заменяется в эксперименте моделью), полевой (эксперимент проводится в естественных для объекта условиях) и лабораторный (объект исследуется в искусственно-созданной обстановке). По целям можно выделять поисковый (когда исследуется влияние какого-то фактора на объект исследования), измерительный (осуществляется сложное измерение объекта), проверочный (в этом случае идет проверка и отбор гипотез) эксперименты. По методам можно выделять эксперименты, проводимые на основе метода проб и ошибок (делаются случайные пробы, на основе ошибок отбрасываются неудачные пробы), с использованием определенного алгоритма, проводимый по методу «черного ящика» (когда на основе знания функции предполагают определенную структуру объекта) или «белого ящика» (наоборот, от известной структуры переходят к гипотезе о функции объекта) .

ТЕОРЕТИЧЕСКИЕ МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Теоретические методы научного познания подразделяются на общие методы познания действительности и специфические методы теоретического познания .
К общим методам познания действительности относятся: индукция, дедукция, аналогия, сравнение, обобщение, абстрагирование и др.
К специфические методам теоретического познания в науке принадлежат: идеализация, интерпретация, мысленный эксперимент, машинный вычислительный эксперимент, аксиоматический метод и генетический метод построения теории, и др. .
Рассмотрим подробнее такие теоретические методы научного познания как: абстрагирование, идеализация и формализация.

Абстрагирование

Наука оперирует научными абстракциями, которые находят выражение в научных понятиях. Они являются результатом процесса абстрагирования. Абстрагирование – это процесс отвлечения от тех или иных сторон, свойств или связей изучаемого объекта с целью выделения существенных и закономерных признаков . В процессе абстрагирования происходит отход (восхождение) от чувственно воспринимаемых конкретных объектов (со всеми их свойствами, сторонами и т. д.) к воспроизводимым в мышлении абстрактным представлениям о них.
В научном познании широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некоторого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т. д. Изолирующая абстракции получается путем выделения некоторых свойств, отношений, неразрывно связанных с предметами материального мира, в самостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т. д.).
Формирование научных абстракций, общих теоретических положений не является конечной целью познания, а представляет собой только средство более глубокого, разностороннего познания конкретного. Поэтому необходимо дальнейшее движение (восхождение) познания от достигнутого абстрактного вновь к конкретному. Получаемое на этом этапе исследования знание о конкретном будет качественно иным по сравнению с тем, которое имелось на этапе чувственного познания. Другими словами, конкретное в начале процесса познания (чувственно-конкретное, являющееся его исходным моментом) и конкретное, постигаемое в конце познавательного процесса (его называют логически-конкретным, подчеркивая роль абстрактного мышления в его постижении), коренным образом отличаются друг от друга .

Теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, теорий, законов и других форм и «мыслительных операций». Отсутствие непосредственного практического взаимодействия с объектами обуславливает ту особенность, что объект на данном уровне научного познания может изучаться только опосредованно, в мысленном эксперименте, но не в реальном. Однако живое созерцание здесь не устраняется, а становится подчиненным (но очень важным) аспектом познавательного процесса.

На данном уровне происходит раскрытие наиболее глубоких существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям путем обработки данных эмпирического знания. Эта обработка осуществляется с помощью систем абстракций «высшего порядка» - таких как понятия, умозаключения, законы, категории, принципы и др. Однако «на теоретическом уровне мы не найдем фиксации или сокращенной сводки эмпирических данных; теоретическое мышление нельзя свести к суммированию эмпирически данного материала. Получается, что теория вырастает не из эмпирии, но как бы рядом с ней, а точнее, над ней и в связи с ней».

Теоретический уровень - более высокая ступень в научном познании. «Теоретический уровень познания направлен на формирование теоретических законов, которые отвечают требованиям всеобщности и необходимости, т.е. действуют везде и всегда». Результатами теоретического познания становятся гипотезы, теории, законы.

Методы познания, используемые на теоретическом уровне научного познания. Это, в частности, абстрагирование - метод, сводящийся к отвлечению в процессе познания от каких-то свойств объекта с целью углубленного исследования одной определенной его стороны. Результатом абстрагирования является выработка абстрактных понятий, характеризующих объекты с разных сторон. В процессе познания используется и такой прием, как аналогия - умозаключение о сходстве объектов в определенном отношении на основе их сходства в ряде иных отношений. С этим приемом связан метод моделирования , получивший особое распространение в современных условиях. Этот метод основан на принципе подобия. Его сущность состоит в том, что непосредственно исследуется не сам объект, а его аналог, его заместитель, его модель, а затем полученные при изучении модели результаты по особым правилам переносятся на сам объект. Моделирование используется в тех случаях, когда сам объект либо труднодоступен, либо его прямое изучение экономически невыгодно и т.д. Различают ряд видов моделирования: 1). Предметное моделирование, при котором модель воспроизводит геометрические, физические, динамические или функциональные характеристики объекта.

2). Аналоговое моделирование, при котором модель и оригинал описываются единым математическим соотношением. 3). Знаковое моделирование, при котором в роли моделей выступают схемы, чертежи, формулы. 4). Со знаковым тесно связано мысленное моделирование, при котором модели приобретают мысленно наглядный характер. 5). Наконец, особым видом моделирования является включение в эксперимент не самого объекта, а его модели, в силу чего последний приобретает характер модельного эксперимента. Этот вид моделирования свидетельствует о том, что нет жесткой грани между методами эмпирического и теоретического познания. С моделированием органически связана идеализация - мысленное конструирование понятий, теорий об объектах, не существующих и не осуществимых в действительности, но таких, для которых существует близкий прообраз или аналог в реальном мире. С подобного рода идеальными объектами оперируют все науки - идеальный газ, абсолютно черное тело, общественно - экономическая формация, государство и т.д.

Существенное место в современной науке занимает системный метод исследования или (как часто говорят) системный подход. Этот метод и стар и нов. Он достаточно стар, поскольку такие его формы и составляющие, как подход к объектам под углом зрения взаимодействия части и целого, становления единства и целостности, рассмотрения системы как закона структуры данной совокупности компонентов существовали, что называется от века, но они были разрозненны. Специальная разработка системного подхода началась с середины ХХ века с переходом к изучению и использованию на практике сложных многокомпонентных систем. Системный подход - это способ теоретического представления и воспроизведения объектов как систем. Основные понятия системного подхода: «элемент», «структура», «функция» и т.д. - были рассмотрены ранее в теме «Диалектика и ее альтернативы». В центре внимания при системном подходе находится изучение не элементов как таковых, а прежде всего структуры объекта и места элементов в ней. В целом же основные моменты системного подхода следующие: 1). Изучение феномена целостности и установление состава целого, его элементов. 2). Исследование закономерностей соединения элементов в систему, т.е. структуры объекта, что образует ядро системного подхода. 3). В тесной связи с изучением структуры необходимо изучение функций системы и ее составляющих, т.е. структурно - функциональный анализ системы. 4). Исследование генезиса системы, ее границ и связей с другими системами. Особое место в методологии науки занимают методы построения и обоснования теории.

Среди них важное место занимает объяснение - использование более конкретных, в частности, эмпирических знаний для уяснения знаний более общих. Объяснение может быть: а) структурным, например, как устроен мотор; б) функциональным: как действует мотор; в) причинным: почему и как он работает. При построении теории сложных объектов важную роль играет метод восхождения от абстрактного к конкретному . На начальном этапе познание идет от реального, предметного, конкретного к выработке абстракций, отражающих отдельные стороны изучаемого объекта. Рассекая объект, мышление как бы умерщвляет его, представляя объект расчлененным, разъятым скальпелем мысли. Теперь встает на очередь следующая задача - воспроизвести объект, его целостную картину в системе понятий, опираясь на выработанные на первом этапе абстрактные определения, т.е. перейти от абстрактного к конкретному, но уже воспроизведенному в мышлении или к духовно - конкретному.

Именно такой путь от общих абстракций товара, денег и т.д. до целостной, богатой картины капитализма проделывает Маркс в «Капитале». При этом само построение теории может быть осуществлено либо логическим, либо историческим методами, которые тесно связаны между собой. При историческом методе теория воспроизводит реальный процесс возникновения и развития объекта вплоть до настоящего времени, при логическом она ограничивается воспроизведением сторон объекта, как они существуют в предмете в развитом его состоянии. Выбор метода, естественно, не произволен, а диктуется целями исследования. Исторический и логический методы тесно взаимосвязаны. Ведь в результате, в итоге развития сохраняется все положительное, накапливавшееся в процессе развития объекта. Не случайно организм в своем индивидуальном развитии повторяет эволюцию живого от уровня клетки до современного состояния. Поэтому можно сказать, что логический метод есть тот же исторический, но очищенный от исторической формы. В свою очередь исторический метод, в конечном счете, дает ту же, что и логический метод, реальную картину объекта, но логический метод при этом отягощен исторической формой.

В построении теории, как и идеальных объектов, важная роль принадлежит аксиоматизации - способу построения научной теории, при котором в основу его кладутся некоторые исходные положения - аксиомы или постулаты, из которых все остальные утверждения теории выводятся дедуктивно чисто логическим путем, посредством доказательства. Как уже отмечено выше, этот метод построения теории предполагает широкое использование дедукции. Классическим образцом построения теории аксиоматическим методом может служить геометрия Евклида.

Эмпирическое исследование, выявляя с помощью наблюдений и экспериментов новые данные, стимулирует теоретическое познание (которое их обобщает и объясняет), ставит перед ним новые более сложные задачи. С другой стороны, теоретическое познание, развивая и конкретизируя на базе эмпирии новое собственное содержание, открывает новые, более широкие горизонты для эмпирического познания, ориентирует и направляет его в поисках новых фактов, способствует совершенствованию его методов и средств и т.п.

Научное познание, как процесс, связано с деятельностью познающего субъекта, а субъект может добывать знания опытным путем (эмпирически) и путем сложных логических операций, творческой переработкой полученных исходных данных, т.е. теоретически. Отсюда и вытекает, что научное познание имеет эмпирический и теоретический уровни, которые органически взаимосвязаны. Научное познание отличается от обыденного целенаправленностью, конкретностью, четкой фиксацией результатов познания с обязательным теоретическим переосмыслением и внесением корректив в арсенал науки.

Эмпирический уровень - это своеобразный этап сбора данных о природных или социальных объектах, которых не хватает ученым, чтобы создать полную картину исследуемого явления или процесса. Поэтому сам процесс эмпирического этапа исследования направляется и контролируется теорией. Однако это не означает, что теория сковывает эмпирические исследования, ограничивает их. Эмпирический этап сбора имеет относительную самостоятельность, и собранный материал не обязательно должен соответствовать той или иной теоретической концепции. Несоответствие опытного материала той или иной форме теоретического знания указывает на несовершенство знания.

На эмпирическом уровне исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений, доступных живому созерцанию. Главным для эмпирического этапа является фактофиксирующая деятельность.

Эмпирическое познание очень близко соприкасается с такими теоретическими методами как анализ и синтез, которые можно назвать даже теоретике-эмпирическими. Точно также можно сказать и об эксперименте, как методе познания, соединяющим в себе опытное получение знаний с предварительным осмыслением условий его проведения и, соответственно, закладкой определенного гипотетического знания в основу конкретных действий. Этим самым подтверждается непреложный факт любого познания, что опыт (практика) является исходным и конечным этапом познания.

Теоретический уровень научного познания связан с осмыслением эмпирического материала, его переработкой на основе понятий, законов, теорий.

Эмпирические данные, будучи многократно и под разными углами зрения переосмыслены, перепроверены, трансформируются из единичного, частного в общее и ложатся в основу частных или общих законов, теорий.

Теоретическое осмысление осуществляется на основе арсенала методов теоретического познания, который пополняется из года в год. Относительно недавно в научную жизнь вошел системный подход, еще более молод синергетический подход.

К методам эмпирического уровня познания относятся наблюдение, сравнение и эксперимент.


Наблюдение - целесообразное восприятие явлений действительности, связанное с их описанием и измерением. В медицине применяется метод натурного наблюдения, объектами которого могут быть больные, находящиеся на лечении, различные объекты внешней среды, микроорганизмы, ткани живого организма, продукты выделения. Столь же разнообразны и конкретные методики натурного наблюдения (микроскопия, биохимические, гематологические и др.). Метод натурного наблюдения предполагает изучение объекта в обычных для него условиях.

Сравнение - выявление сходных и отличающихся сторон в процессах, предметах, явлениях.

Эксперимент - активная, целенаправленная практическая деятельность, при которой исследователь выбирает или формирует объект исследования и условия, в которых он функционирует. Эксперимент может быть осуществлен в натуральной, модельной или натурально-модельной формах. Медицинский (медико-биологический) эксперимент - это вид научной деятельности, предпринимаемый на биологических объектах в целях открытия и изучения объективных законов возникновения, течения и исхода заболевания, а также для выяснения эффективности лечебных (терапевтических или хирургических) средств. К числу экспериментальных исследований нужно отнести клинические испытания средств и способов оказания медицинской помощи (предшествовать которым должны обязательно эксперименты на животных с целью проверки на патологическое воздействие для живого организма).

К методам теоретического уровня познания относятся следующие.

Абстрагирование - мысленное отвлечение отдельных элементов, свойств, отношений и рассмотрение их в «чистом виде», отдельно друг от друга.

Анализ и синтез. Анализ - реальное или мысленное разделение объекта на составные части, а синтез - их объединение в единое целое.

Идеализация - мысленное конструирование понятий об объектах, несуществующих и неосуществимых в действительности, но имеющих прообразы в объективном мире.

Индукция и дедукция. Индукция - движение мысли от единичного к общему, а дедукция - от общего к единичному.

Аналогия - установление сходства черт, сторон, свойств, отношений у рассматриваемых нетождественных объектов. Умозаключение по аналогии дает не достоверное, а вероятностное знание.

Мысленное моделирование - построение и исследование вторичного (теоретического) объекта, сходного в существенных чертах с изучаемым первичным объектом.

Системный подход - рассмотрение объекта как элемента системы с выяснением места и функции каждого элемента, внутренней иерархии и законов функционирования.

Синергетический метод - метод выявления самоорганизации открытых неравновесных систем любой природы.

При рассмотрении теоретических методов следует учитывать, что системный и синергетический методы выступают проявлением методологического значения теории систем и синергетики.

Научное познание есть процесс, в ходе которого обогащается содержание знания и сменяются формы его существования. Основными формами, в которых существует научное познание являются: проблема, гипотеза, теория. Но эта цепочка форм знания не может существовать без фактического материала и практической деятельности по проверке научных предположений. Формы научного познания невозможно рассмотреть вне процесса научного познания, который включает в себя эмпирический и теоретический этапы.

Эмпирический этап связан с получением фактов, а потому на данном этапе фигурирует такая форма научного познания как факт науки.

Факт науки отличается от факта действительности, поскольку факты действительности фиксируются как события, явления жизни, но без их детального описания. Факты науки - факты действительности, отраженные, проверенные и зафиксированные на языке науки. Факты науки не всегда согласовываются с существующими взглядами на тот или иной вопрос, предмет или явление. Попадая в поле зрения ученых, факт науки возбуждает теоретическую мысль и способствует переходу исследования от эмпирического к теоретическому этапу.

Из противоречия теоретического знания и фактов науки возникает такая форма научного познания как проблема. Проблема - знание, отражающее несоответствие фактов науки и существующих концепций, взглядов на исследуемое явление, процесс.

Решение проблемы осуществляется выдвижением рабочих гипотез с последующей их проверкой. Гипотеза - форма научного знания, сформулированная на основе ряда фактов и содержащая в себе предположение, истинное значение которого неопределенно и нуждается в доказательстве.

В ходе доказательства выдвинутых гипотез одни из них становятся теорией, поскольку несут в себе истинные знания, а другие уточняются, изменяются, конкретизируются. Третьи, если проверка дает отрицательный результат, отвергаются, знаменуя собой заблуждение. Вершиной научного познания является теория, как логическое завершение тернистого пути проб и ошибок. Теория - наиболее развитая целостная форма научного знания, дающая полное отображение существенных, закономерных связей определенной области действительности.

Подлинно научная теория должна быть объективно истинной, логически непротиворечивой, цельной, обладать относительной самостоятельностью, быть развивающимся знанием и воздействовать через деятельность людей на практику.

Таким образом, познание знаменует активное освоение человеком объективной и субъективной реальности. В своем стремлении к знаниям человек использует возможности органов чувств и силу разума. Постоянно совершенствуя инструментарий познавательной деятельности, он стремится знать все, от микромира до глубин Вселенной, но при этом его удовлетворяют не любые знания, а только истинные, способные служить основой для дальнейшей познавательной деятельности. Стремясь к познанию, человек учится понимать тех, кто жил, и тех, кто живет, объяснять себе и другим то, что понял из хитросплетений жизни, поскольку познание и понимание есть духовная жизнь человека, без которой его физическое существование теряет содержание и смысл. Основной опорой человека на пути к знанию является наука как система постоянно расширяющегося и углубляющегося знания о мире и процессах, происходящих в нем. Понимание процесса получения научного знания, а также форм его существования возвышает человека, способствует его приобщению к научному творчеству, а следовательно, открывает возможности к успехам в той конкретной области, которой он занимается.