График функции и касательные как решать. Касательная к графику функции

Видеоурок «Уравнение касательной к графику функции» демонстрирует учебный материал для освоения темы. В ходе видеоурока представлен теоретический материал, необходимый для формирования понятия об уравнении касательной к графику функции в данной точке, алгоритм нахождения такой касательной, описаны примеры решения задач с использованием изученного теоретического материала.

В видеоуроке используются методы, улучшающие наглядность материала. В представлении вставлены рисунки, схемы, даются важные голосовые комментарии, применяется анимация, выделение цветом и другими инструментами.

Видеоурок начинается с представления темы урока и изображения касательной к графику некоторой функции y=f(x) в точке M(a;f(a)). Известно, что угловой коэффициент касательной, построенной к графику в данной точке, равен производной функции f΄(a) в данной точке. Также из курса алгебры известно уравнение прямой y=kx+m. Схематично представлено решение задачи нахождения уравнения касательной в точке, которая сводится к нахождению коэффициентов k, m. Зная координаты точки, принадлежащей графику функции, можем найти m, подставив значение координат в уравнение касательной f(a)=ka+m. Из него находим m=f(a)-ka. Таким образом, зная значение производной в данной точке и координаты точки, можно представить уравнение касательной таким образом y=f(a)+f΄(a)(x-a).

Далее рассматривается пример составления уравнения касательной, следуя схеме. Дана функция y=x 2 , x=-2. Приняв а=-2, находим значение функции в данной точке f(a)= f(-2)=(-2) 2 =4. Определяем производную функции f΄(х)=2х. В данной точке производная равна f΄(a)= f΄(-2)=2·(-2)=-4. Для составления уравнения найдены все коэффициенты а=-2, f(a)=4, f΄(a)=-4, поэтому уравнение касательной у=4+(-4)(х+2). Упростив уравнение, получаем у=-4-4х.

В следующем примере предлагается составить уравнение касательной в начале координат к графику функции y=tgx. В данной точке а=0, f(0)=0, f΄(х)=1/cos 2 x, f΄(0)=1. Таким образом, уравнение касательной выглядит у=х.

В качестве обобщения процесс составления уравнения касательной к графику функции в некоторой точке оформляется в виде алгоритма, состоящего из 4 шагов:

  • Вводится обозначение а абсциссы точки касания;
  • Вычисляется f(a);
  • Определяется f΄(х) и вычисляется f΄(a). В формулу уравнения касательной y=f(a)+f΄(a)(x-a) подставляются найденные значения а, f(a), f΄(a).

В примере 1 рассматривается составление уравнения касательной к графику функции у=1/х в точке х=1. Для решения задачи пользуемся алгоритмом. Для данной функции в точке а=1 значение функции f(a)=-1. Производная функции f΄(х)=1/х 2 . В точке а=1 производная f΄(a)= f΄(1)=1. Используя полученные данные, составляется уравнение касательной у=-1+(х-1), или у=х-2.

В примере 2 необходимо найти уравнение касательной к графику функции у=х 3 +3х 2 -2х-2. Основное условие - параллельность касательной и прямой у=-2х+1. Сначала находим угловой коэффициент касательной, равный угловому коэффициенту прямой у=-2х+1. Так как f΄(a)=-2 для данной прямой, то k=-2 и для искомой касательной. Находим производную функции (х 3 +3х 2 -2х-2)΄=3х 2 +6х-2. Зная, что f΄(a)=-2, находим координаты точки 3а 2 +6а-2=-2. Решив уравнение, получаем а 1 =0, а 2 =-2. Используя найденные координаты, можно найти уравнение касательной с помощью известного алгоритма. Находим значение функции в точках f(а 1)=-2, f(а 2)=-18. Значение производной в точке f΄(а 1)= f΄(а 2)=-2. Подставив найденные значения в уравнение касательной, получим для первой точки а 1 =0 у=-2х-2, а для второй точки а 2 =-2 уравнение касательной у=-2х-22.

В примере 3 описывается составление уравнения касательной для ее проведения в точке (0;3) к графику функции y=√x. Решение производится по известному алгоритму. Точка касания имеет координаты х=а, где а>0. Значение функции в точке f(a)=√x. Производная функции f΄(х)=1/2√х, поэтому в данной точке f΄(а)=1/2√а. Подставив все полученные значения в уравнение касательной, получаем у=√а+(х-а)/2√а. Преобразовав уравнение, получаем у=х/2√а+√а/2. Зная, что касательная проходит через точку (0;3), находим значение а. Находим а из 3=√а/2. Отсюда √а=6, а=36. Находим уравнение касательной у=х/12+3. На рисунке изображается график рассматриваемой функции и построенная искомая касательная.

Ученикам напоминаются приближенные равенства Δy=≈f΄(x)Δxи f(x+Δx)-f(x)≈f΄(x)Δx. Принимая х=а, x+Δx=х, Δx=х-а, получаем f(х)- f(а)≈f΄(а)(х-а), отсюда f(х)≈f(а)+f΄(а)(х-а).

В примере 4 необходимо найти приближенное значение выражение 2,003 6 . Так как необходимо отыскать значение функции f(х)=х 6 в точке х=2,003, можем воспользоваться известной формулой, приняв f(х)=х 6 , а=2, f(а)= f(2)=64, f΄(x)=6х 5 . Производная в точке f΄(2)=192. Поэтому 2,003 6 ≈65-192·0,003. Вычислив выражение, получаем 2,003 6 ≈64,576.

Видеоурок «Уравнение касательной к графику функции» рекомендуется использовать на традиционном уроке математики в школе. Учителю, осуществляющему обучению дистанционно, видеоматериал поможет более понятно объяснить тему. Видео может быть рекомендовано для самостоятельного рассмотрения учениками при необходимости углубить их понимание предмета.

ТЕКСТОВАЯ РАСШИФРОВКА:

Нам известно, что если точка М (а; f(а)) (эм с координатами а и эф от а) принадлежит графику функции у =f (x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f"(a) (эф штрих от а).

Пусть даны функция у = f(x) и точка М (a; f(a)), a также известно, что существует f´(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx+m (игрек равный ка икс плюс эм), поэтому задача состоит в отыскании значений коэффициентов k и m.(ка и эм)

Угловой коэффициент k= f"(a). Для вычисления значения m воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(a) = ka+m, откуда находим, что m = f(a) - ka.

Осталось подставить найденные значения коэффициентов kи mв уравнение прямой:

y = kx+(f(a) -ka);

y = f(a)+k(x-a);

y = f (a )+ f "(a ) (x - a ). (игрек равен эф от а плюс эф штрих от а, умноженный на икс минус а).

Нами получено уравнение касательной к графику функции y = f(x) в точке х=а.

Если, скажем, у = х 2 и х= -2 (т.е. а = -2), то f(а) = f(-2) = (-2) 2 =4; f´(x) = 2х, значит, f"(a) = f´(-2) = 2·(-2) = -4. (то эф от а равно четыре, эф штрих от икс равно два икс, значит эф штрих от а равно минус четыре)

Подставив в уравнение найденные значения a = -2, f(a) = 4, f"(a) = -4, получим: у = 4+(-4)(х+2), т.е. у = -4х-4.

(игрек равен минус четыре икс минус четыре)

Составим уравнение касательной к графику функции у = tgx(игрек равен тангенс икс) в начале координат. Имеем: а = 0, f(0) = tg0=0;

f"(x)= , значит, f"(0) = l. Подставив в уравнение найденные значения а=0, f(a)=0, f´(a) = 1, получим: у=х.

Обобщим наши шаги нахождения уравнения касательной к графику функции в точке х с помощью алгоритма.

АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x):

1) Обозначить абсциссу точки касания буквой а.

2) Вычислить f (а).

3) Найти f´(x) и вычислить f´(a).

4) Подставить найденные числа a, f(a), f´(а) в формулуy = f (a )+ f "(a ) (x - a ).

Пример 1. Составить уравнение касательной к графику функции у = - в

точке х = 1.

Решение. Воспользуемся алгоритмом, учитывая, что в данном примере

2) f(a)=f(1)=- =-1

3) f´(x)=; f´(a)= f´(1)= =1.

4) Подставим найденные три числа: а = 1, f(а) = -1, f"(а) = 1 в формулу. Получим: у = -1+(х-1), у = х-2.

Ответ: у = х-2.

Пример 2. Дана функция у = х 3 +3х 2 -2х-2 . Записать уравнение касательной к графику функции у= f(х), параллельной прямой у = -2х +1.

Используя алгоритм составления уравнения касательной, учтем, что в данном примере f(x) = х 3 +3х 2 -2х-2 , но здесь не указана абсцисса точки касания.

Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = -2х+1. А параллельные прямые имеют равные угловые коэффициенты. Значит, угловой коэффициент касательной равен угловому коэффициенту заданной прямой: k кас. = -2. Hok кас. = f"(a). Таким образом, значение а мы можем найти из уравнения f ´(а) = -2.

Найдем производную функции у= f (x ):

f "(x )= (х 3 +3х 2 -2х-2)´ =3х 2 +6х-2; f "(а)= 3а 2 +6а-2.

Из уравнения f"(а) = -2, т.е. 3а 2 +6а-2 =-2 находим а 1 =0, a 2 =-2. Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 0, другая в точке с абсциссой -2.

Теперь можно действовать по алгоритму.

1) а 1 =0, а 2 =-2.

2) f(a 1)= 0 3 +3·0 2 -2∙0-2=-2 ; f(a 2)=(-2) 3 +3·(-2) 2 -2·(-2)-2=6 ;

3) f"(a 1) = f"(a 2) = -2.

4) Подставив значения a 1 = 0, f(a 1) =-2, f"(a 1) = -2 в формулу, получим:

у=-2-2(х-0), у=-2х-2.

Подставив значения а 2 =-2, f(a 2) =6, f"(a 2)= -2 в формулу, получим:

у=6-2(х+2), у=-2х+2.

Ответ: у=-2х-2, у=-2х+2.

Пример 3. Из точки (0; 3) провести касательную к графику функции у = . Решение. Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере f(x) = . Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее, действуем по алгоритму.

1) Пусть х = а — абсцисса точки касания; ясно, что а >0.

3) f´(x)=()´=; f´(a) =.

4) Подставив значения a, f(a) = , f"(a) = в формулу

y=f (a) +f "(a) (x-a) , получим:

По условию касательная проходит через точку (0; 3). Подставив в уравнение значения х = 0, у = 3, получим: 3 = , и далее =6, a =36.

Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение a =36 в уравнение, получим: y=+3

На рис. 1 представлена геометрическая иллюстрация рассмотренного примера: построен график функции у =, проведена прямая у = +3.

Ответ: у = +3.

Нам известно, что для функции y = f(x), имеющей производную в точке х, справедливо приближенное равенство: Δyf´(x)Δx (дельта игрек приближенно равно эф штрих от икс, умноженное на дельта икс)

или, подробнее, f(x+Δx)-f(x) f´(x) Δx (эф от икс плюс дельта икс минус эф от икс приближенно равно эф штрих от икс на дельта икс).

Для удобства дальнейших рассуждений изменим обозначения:

вместо х будем писать а ,

вместо х+Δxбудем писать х

вместо Δх будем писать х-а.

Тогда написанное выше приближенное равенство примет вид:

f(x)-f(a)f´(a)(x-a)

f(x)f(a)+f´(a)(x-a). (эф от икс приближенно равно эф от а плюс эф штрих от а, умноженное на разность икса и а).

Пример 4. Найти приближенное значение числового выражения 2,003 6 .

Решение. Речь идет об отыскании значения функции у = х 6 в точке х = 2,003. Воспользуемся формулой f(x)f(a)+f´(a)(x-a), учтя, что в данном примере f(x)=x 6 , a = 2,f(a) = f(2) = 2 6 =64; x = 2,003, f"(x) = 6x 5 и, следовательно, f"(а) = f"(2) = 6·2 5 =192.

В итоге получаем:

2,003 6 64+192· 0,003, т.е. 2,003 6 =64,576.

Если мы воспользуемся калькулятором, то получим:

2,003 6 = 64,5781643...

Как видите, точность приближения вполне приемлема.

У = f(х) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f"(а). Мы этим уже несколько раз пользовались. Например, в § 33 было установлено, что график функции у = sin х(синусоида) в начале координат образует с осью абсцисс угол 45° (точнее, касательная к графику в начале координат составляет с положительным направлением оси х угол 45°), а в примере 5 § 33 были найдены точки на графике заданной функции , в которых касательная параллельна оси абсцисс. В примере 2 § 33 было составлено уравнение касательной к графику функции у = х 2 в точке х = 1 (точнее, в точке (1; 1), но чаще указывают только значение абсциссы, полагая, что если значение абсциссы известно, то значение ординаты можно найти из уравнения у = f(х)). В этом параграфе мы выработаем алгоритм составления уравнения касательной.к графику любой функции.

Пусть даны функция у = f(х) и точка М (а; f(а)), а также известно, что существует f"(а). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид у = кх+m, поэтому задача состоит в отыскании значений коэффициентов к и m.

С угловым коэффициентом к проблем нет: мы знаем, что к = f"(а). Для вычисления значения т воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(а) = ка+m, откуда находим, что m = f(а) - ка.
Осталось подставить найденные значения коэффициентов кит в уравнение прямой:

Нами получено уравнение касательной к графику функции у = f(х) в точке х=а.
Если, скажем,
Подставив в уравнение (1) найденные значения а = 1, f(а) = 1 f"(а) = 2, получим: у = 1+2(х-f), т.е. у = 2х-1.
Сравните этот результат с тем, что был получен в примере 2 из § 33. Естественно, получилось то же самое.
Составим уравнение касательной к графику функции у = tg х в начале координат. Имеем: значит, соs х f"(0) = 1. Подставив в уравнение (1) найденные значения а= 0, f(а)= 0, f"(а) = 1, получим: у=х.
Именно поэтому мы и провели тангенсоиду в § 15 (см. рис. 62) через начало координат под углом 45° к оси абсцисс.
Решая эти достаточно простые примеры, мы фактически пользовались определенным алгоритмом, который заложен в формуле (1). Сделаем этот алгоритм явным.

АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x)

1) Обозначить абсциссу точки касания буквой а.
2) Вычислить 1 (а).
3) Найти f"(х) и вычислить f"(а).
4) Подставить найденные числа а, f(а), (а) в формулу (1).

Пример 1. Составить уравнение касательной к графику функции в точке х = 1.
Воспользуемся алгоритмом, учитывая, что в данном примере

На рис. 126 изображена гипербола , построена прямая у= 2-х.
Чертеж подтверждает приведенные выкладки: действительно, прямая у = 2-х касается гиперболы в точке(1; 1).

Ответ: у =2- х.
Пример 2. К графику функции провести касательную так, чтобы она была параллельна прямой у =4х - 5.
Уточним формулировку задачи. Требование «провести касательную» обычно означает «составить уравнение касательной». Это логично, ибо если человек смог составить уравнение касательной, то вряд ли он будет испытывать затруднения с построением на координатной плоскости прямой по ее уравнению.
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Но в отличие от предыдущего примера здесь имеется неясность: не указана явно абсцисса точки касания.
Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = 4х-5. Две прямые параллельны тогда и только тогда, когда равны их угловые коэффициенты. Значит, угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: Таким образом, значение а мы можем найти из уравнения f"(а)= 4.
Имеем:
Из уравнения Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2.
Теперь можно действовать по алгоритму.


Пример 3. Из точки (0; 1) провести касательную к графику функции
Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее действуем по алгоритму.


По условию касательная проходит через точку (0; 1). Подставив в уравнение (2) значения х = 0, у = 1, получим:
Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение а =4 в уравнение (2), получим:

На рис. 127 представлена геометрическая иллюстрация рассмотренного примера: построен график функции


В § 32 мы отметили, что для функции у = f(х), имеющей производную в фиксированной точке х, справедливо приближенное равенство:


Для удобства дальнейших рассуждений изменим обозначения: вместо х будем писать а, вместо будем писать х и соответственно вместо будем писать х-а. Тогда написанное выше приближенное равенство примет вид:


А теперь взгляните на рис. 128. К графику функции у = f(х) проведена касательная в точке М (а; f (а)). Отмечена точка х на оси абсцисс близко от а. Ясно, что f(х) - ордината графика функции в указанной точке х. А что такое f(а) + f"(а) (х-а)? Это ордината касательной, соответствующая той же точке х - см. формулу (1). В чем же смысл приближенного равенства (3)? В том, что для вычисления приближенного значения функции берут значение ординаты касательной.


Пример 4. Найти приближенное значение числового выражения 1,02 7 .
Речь идет об отыскании значения функции у = х 7 в точке х = 1,02. Воспользуемся формулой (3), учтя, что в данном примере
В итоге получаем:

Если мы воспользуемся калькулятором, то получим: 1,02 7 = 1,148685667...
Как видите, точность приближения вполне приемлема.
Ответ: 1,02 7 =1,14.

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Эта математическая программа находит уравнение касательной к графику функции \(f(x) \) в заданной пользователем точке \(a \).

Программа не только выводит уравнение касательной, но и отображает процесс решения задачи.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.

Если вы не знакомы с правилами ввода функций, рекомендуем с ними ознакомиться.

Введите выражение функции \(f(x)\) и число \(a\)
f(x)=
a=
Найти уравнение касательной

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Угловой коэффициент прямой

Напомним, что графиком линейной функции \(y=kx+b\) является прямая. Число \(k=tg \alpha \) называют угловым коэффициентом прямой , а угол \(\alpha \) - углом между этой прямой и осью Ox

Если \(k>0\), то \(0 Если \(kУравнение касательной к графику функции

Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой коэффициент касательной равен f"(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.

Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f"(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.

С угловым коэффициентом k все понятно: известно, что k = f"(a). Для вычисления значения b воспользуемся тем, что искомая прямая проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное равенство: \(f(a)=ka+b \), т.е. \(b = f(a) - ka \).

Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:

$$ y=kx+b $$ $$ y=kx+ f(a) - ka $$ $$ y=f(a)+ k(x-a) $$ $$ y=f(a)+ f"(a)(x-a) $$

Нами получено уравнение касательной к графику функции \(y = f(x) \) в точке \(x=a \).

Алгоритм нахождения уравнения касательной к графику функции \(y=f(x) \)
1. Обозначить абсциссу точки касания буквой \(a \)
2. Вычислить \(f(a) \)
3. Найти \(f"(x) \) и вычислить \(f"(a) \)
4. Подставить найденные числа \(a, f(a), f"(a) \) в формулу \(y=f(a)+ f"(a)(x-a) \)

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач Нахождение НОД и НОК Упрощение многочлена (умножение многочленов)

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .