Цель молекулярно кинетической теории. Основы молекулярно-кинетической теории. Основные положения мкт

Мир, в котором мы с вами живем, невообразимо прекрасен и полон множества различных процессов, которые задают течение жизни. Все эти процессы изучает всем знакомая наука - физика. Она дает возможность получить хоть какое-то представление о происхождении Вселенной. В данной статье мы рассмотрим такое понятие, как молекулярно-кинетическая теория, ее уравнения, виды и формулы. Однако, прежде чем перейти к более глубокому изучению этих вопросов, нужно прояснить для себя сам смысл физики и областей, ею изучаемых.

Что же такое физика?

На самом деле, это очень обширная наука и, пожалуй, одна из самых фундаментальных за всю историю человечества. Например, если та же информатика связана практически с каждой областью человеческой деятельности, будь то расчетное проектирование или создание мультфильмов, то физика - это сама жизнь, описание ее сложных процессов и течений. Давайте постараемся разобрать ее смысл, максимально упростив понимание.

Таким образом, физика - это наука, которая занимается изучением энергии и материи, связей между ними, объяснением многих процессов, происходящих в нашей необъятной Вселенной. Молекулярно-кинетическая теория строения вещества - лишь малая капля в море теорий и разделов физики.

Энергию, которую подробно изучает данная наука, можно представить в самых различных формах. Например, в виде света, движения, гравитации, излучения, электричества и во многих других видах. Нами будет затронута в данной статье молекулярная кинетическая теория строения этих форм.

Изучение материи дает нам представление об атомарном строении вещества. Оно, кстати, следует из молекулярно-кинетической теории. Наука о строении материи позволяет понять и найти смысл нашего существования, причины возникновения жизни и самой Вселенной. Давайте все-таки постараемся изучить молекулярно кинетическую теорию вещества.

Для начала необходимо некоторое вступление для полного осознания терминологии и каких-либо выводов.

Разделы физики

Отвечая на вопрос о том, что такое молекулярно-кинетическая теория, нельзя не поговорить о разделах физики. Каждый из этих них занимается подробным изучением и объяснением определенной области человеческой жизни. Они классифицируются следующим образом:

  • Механика, которая делится еще на два раздела: кинематика и динамика.
  • Статика.
  • Термодинамика.
  • Молекулярный раздел.
  • Электродинамика.
  • Оптика.
  • Физика квантов и атомного ядра.

Поговорим конкретно о молекулярной физике, ведь именно в ее основе лежит молекулярно-кинетическая теория.

Что такое термодинамика?

Вообще, молекулярная часть и термодинамика являются тесно связанными разделами физики, которые занимаются изучением исключительно макроскопической составляющей общего числа физических систем. Стоит помнить, что эти науки описывают именно внутреннее состояние тел и веществ. Например, их состояние при нагреве, кристаллизации, парообразовании и конденсации, на атомарном уровне. Другими словами, молекулярная физика - наука о системах, которые состоят из огромного количества частиц: атомов и молекул.

Именно этими науками были изучены основные положения молекулярно-кинетической теории.

Еще в курсе седьмого класса мы познакомились с понятиями микро- и макромиров, систем. Не будет лишним освежить эти термины в памяти.

Микромир, как мы можем заметить из самого его названия, составляют элементарные частицы. Другими словами, малых частиц. Размеры их измеряются в пределах от 10 -18 м до 10 -4 м, а время их фактического состояния может достичь как бесконечности, так и несоизмеримо малых промежутков, к примеру, 10 -20 с.

Макромир рассматривает тела и системы устойчивых форм, состоящих из множества элементарных частиц. Такие системы соизмеримы с нашими, человеческими размерами.

Кроме того, существует и такое понятие, как мегамир. Его составляют огромных масштабов планеты, космические галактики и комплексы.

Основные положения теории

Теперь, когда мы немного повторили и вспомнили основные термины физики, можем перейти непосредственно к рассмотрению главной темы данной статьи.

Молекулярно-кинетическая теория появилась и была сформулирована впервые еще в девятнадцатом веке. Суть ее заключается в том, что она подробно описывает строение какого-либо вещества (чаще строение газов, чем твердых и жидких тел), основываясь на трех фундаментальных положениях, которые были собраны из предположений таких видных научных деятелей, как Роберт Гук, Исаак Ньютон, Даниил Бернулли, Михаил Ломоносов и многих других.

Положения основные молекулярно-кинетической теории звучат так:

  1. Абсолютно все вещества (независимо от того, жидкие они, твердые или газообразные) имеют сложное строение, состоящее из более мелких частиц: молекул и атомов. Атомы иногда называют "элементарными молекулами".
  2. Все эти элементарные частицы всегда находятся в состоянии непрерывного и хаотического перемещения. Каждый из нас сталкивался с прямым доказательством данного положения, но, вероятнее всего, не придавал этому особого значения. Например, все мы видели на фоне солнечных лучей, что пылинки непрерывно движутся в хаотическом направлении. Это связано с тем, что атомы производят взаимные толчки друг с другом, постоянно сообщая кинетическую энергию друг другу. Впервые это явление было изучено в 1827 году, а названо оно в честь открывателя - "броуновским движением".
  3. Все элементарные частицы находятся в процессе непрерывного взаимодействия друг с другом с определенными силами, которые имеют электрическую породу.

Стоит отметить, что другим примером, описывающим положение под номером два, которое может относиться также, например, к молекулярно кинетической теории газов, служит диффузия. С ней мы сталкиваемся и в повседневной жизни, и в многократных тестах и контрольных, поэтому важно иметь о ней представление.

Для начала рассмотрим следующие примеры:

Врач случайно пролил на стол спирт из колбы. Или же вы уронили флакон с духами, а они растеклись по полу.

Почему в этих двух случаях и запах спирта, и запах духов через какое то время наполнит всю комнату, а не только ту область, куда пролилось содержимое этих веществ?

Ответ прост: диффузия.

Диффузия - что это? Как она протекает?

Это процесс, при котором частицы, входящие в состав какого-то одного определенного вещества (чаще газа), проникают в межмолекулярные пустоты другого. В наших примерах, приведенных выше, произошло следующее: за счет теплового, то есть непрерывного и разобщенного движения, молекулы спирта и/или духов попадали в промежутки между молекулами воздуха. Постепенно, под действием соударения с атомами и молекулами воздуха, они распространялись по комнате. К слову, интенсивность диффузии, то есть скорость ее протекания, зависит от плотности веществ, участвующих в диффузии, а также от энергии движения их атомов и молекул, именуемой кинетической. Чем больше кинетическая энергия, тем выше скорость этих молекул, соответственно, и интенсивность.

Наиболее быстрым процессом диффузии можно назвать диффузию в газах. Это связано с тем, что газ не является однородным по своему составу, а это означает, что межмолекулярные пустоты в газах занимают значительный объем пространства, соответственно, и процесс попадания атомов и молекул стороннего вещества в них протекает проще и быстрее.

Немного медленней этот процесс проходит в жидкостях. Растворение кубиков сахара в кружке с чаем - как раз твердого тела в жидкости.

Но самой продолжительной по времени является диффузия в телах с твердой кристаллической структурой. Это именно так, потому что структура твердых тел однородна и имеет прочную кристаллическую решетку, в ячейках которой атомы твердого вещества колеблются. Например, если поверхности двух металлических брусков хорошо очистить, а затем заставить их контактировать друг с другом, то спустя достаточно длительное время мы сможем обнаружить кусочки одного металла в другом, и наоборот.

Как и любой другой фундаментальный раздел, основная теория физики подразделяется на отдельные части: классификацию, виды, формулы, уравнения и так далее. Таким образом, мы изучили основы молекулярно-кинетической теории. Это значит, что можно спокойно перейти к рассмотрению отдельных теоретических блоков.

Молекулярно-кинетическая теория газов

Появляется необходимость в понимании положений газовой теории. Как мы говорили ранее, нами будут рассмотрены макроскопические характеристики газов, например, давление и температура. Это понадобится в дальнейшем для того, чтобы вывести уравнение молекулярно-кинетической теории газов. Но математика - потом, а сейчас займемся теорией и, соответственно, физикой.

Учеными были сформулированы пять положений молекулярной теории газов, которые служат для осмысления кинетической модели газов. Они звучат так:

  1. Все газы состоят из элементарных частиц, которые не имеют какого-то определенного размера, но имеют определенную массу. Иными словами, объем этих частиц минимален по сравнению с величиной длины между ними.
  2. Атомы и молекулы газов практически не имеют потенциальной энергии, соответственно, по закону вся энергия равна кинетической.
  3. С этим положением мы уже знакомились ранее - броуновское движение. То есть, газовые частицы всегда совершают в непрерывное и сумбурное движение.
  4. Абсолютно все взаимные соударения газовых частиц, сопровождающиеся сообщением скорости и энергии, являются полностью эластичными. Это означает, что потери энергии или резкие скачки их кинетической энергии при столкновении отсутствуют.
  5. При нормальных условиях и постоянной температуре усредненная энергия движения частиц практически всех газов одинакова.

Пятое положение мы с вами можем переписать через такой вид уравнения молекулярно-кинетической теории газов:

Е=1/2*m*v^2=3/2*k*T,

где k - это постоянная Больцмана; Т - температура в Кельвинах.

Это уравнение дает нам понять связь между скоростью элементарных частиц газа и их абсолютной температурой. Соответственно, чем выше их абсолютная температура, тем больше их скорость и кинетическая энергия.

Давление газов

Такие макроскопические составляющие характеристики, как, например, давление газов, также можно объяснить с помощью кинетической теории. Для этого представим такой пример.

Допустим, что молекула какого-то газа находится в ящике, длина которого L. Воспользуемся вышеописанными положениями газовой теории и учтем тот факт, что молекулярная сфера движется только по иксовой оси. Таким образом, мы сможем наблюдать процесс упругого столкновения с одной из стенок сосуда (ящика).

Импульс происходящего столкновения, как нам известно, определяется формулой: p=m*v, но в данном случае эта формула приобретет проекционный вид: p=m*v(х).

Так как нами рассматривается только размерность оси абсцисс, то есть оси х, то общее изменение импульса будет выражено формулой: m*v(х) - m*(-v(х))=2*m*v(х).

Из этих формул выразим давление со стороны газа: P=F/a;

Теперь подставим в полученную формулу выражения силы и получим: P=m*v(х)^2/L^3.

После этого нашу готовую формулу давления можно записать для N-го числа молекул газа. Иными словами, она приобретет следующий вид:

P=N*m*v(х)^2/V, где v - скорость, а V - объем.

Теперь постараемся выделить несколько основных положений по давлению газа:

  • Оно проявляется благодаря столкновениям молекул с молекулами стенок объекта, в котором он находится.
  • Величина давления прямо пропорциональна силе и скорости ударения молекул о стенки сосуда.

Немного кратких выводов по теории

  • Мерой средней энергии движения ее атомов и молекул является абсолютная температура.
  • В том случае, когда два различных газа находятся при тождественной температуре, их молекулы имеют равную среднюю кинетическую энергию.
  • Энергия газовых частиц прямо пропорциональна среднеквадратичной скорости: Е=1/2*m*v^2.
  • Во сколько раз мы увеличиваем температуру газа (например, удваиваем), во столько раз увеличивается и энергия движения его частиц (соответственно, удваивается).

Основное уравнение и формулы

Основное уравнение молекулярно-кинетической теории позволяет установить взаимосвязь между величинами микромира и, соответственно, макроскопическими, то есть измеряемыми, величинами.

Одной из самых простых моделей, которые может рассматривать молекулярная теория, считается модель идеального газа.

Можно сказать, что это своеобразная воображаемая модель, изучаемая молекулярно-кинетической теорией идеального газа, в которой:

  • простейшие частицы газа рассматриваются в качестве идеально упругих шаров, которые проявляют взаимодействие как друг с другом, так и с молекулами стенок какого бы то ни было сосуда только в одном случае - абсолютно упругого столкновения;
  • силы притяжения внутри газа отсутствуют, или можно ими фактически пренебречь;
  • элементы внутреннего строения газа могут приниматься в качестве материальных точек, то есть их объемом можно также пренебречь.

Рассматривая такую модель, физик Рудольф Клаузиус немецкого происхождения написал формулу давления газа через связь микро- и макроскопических параметров. Она имеет вид:

р=1/3*m(0)*n*v^2.

Позже эту формулу назовут как основное уравнение молекулярно-кинетической теории идеального газа. Ее можно будет представить в нескольких различных видах. Наша обязанность сейчас заключается в том, чтобы показать разделы, такие как молекулярная физика, молекулярно-кинетическая теория, а значит и их полные уравнения и виды. Поэтому есть смыл в рассмотрении иных вариаций основной формулы.

Нам известно, что среднюю энергию, характеризующую движение молекул газа, можно найти с помощью формулы: Е=m(0)*v^2/2.

В таком случае мы можем заменить выражение m(0)*v^2 в исходной формуле давления на среднюю кинетическую энергию. В результате этого нам представится возможность составить основное уравнение молекулярно-кинетической теории газов в такой форме: р=2/3*n*E.

Кроме того, мы с вами знаем, что выражение m(0)*n можно расписать в виде произведения двух частных:

После этих манипуляций мы можем переписать нашу формулу уравнения молекулярно-кинетической теории идеального газа уже в третьем, отличном от других, виде:

Ну что, пожалуй, это все, что нужно знать по данной теме. Осталось только систематизировать полученные знания в форме кратких (и не очень) выводов.

Все общие выводы и формулы по теме "Молекулярно-кинетическая теория"

Итак, приступим.

Во-первых:

Физика - фундаментальная наука, входящая в курс естествознания, которая занимается тем, что изучает свойства материи и энергии, их строения, закономерностей неорганической природы.

В ее состав входят следующие разделы:

  • механика (кинематика и динамика);
  • статика;
  • термодинамика;
  • электродинамика;
  • молекулярный раздел;
  • оптика;
  • физика квантов и атомного ядра.

Во-вторых:

Физика простых частиц и термодинамика являются тесно связанными разделами, которые занимаются изучением исключительно макроскопической составляющей общего числа физических систем, то есть систем, состоящих из огромного числа элементарных частиц.

В их основе лежит молекулярно-кинетическая теория.

В-третьих:

Суть вопроса заключается в следующем. Молекулярно-кинетическая теория подробно описывает строение какого-либо вещества (чаще строение газов, чем твердых и жидких тел), основываясь на трех фундаментальных положениях, которые были собраны из предположений видных научных деятелей. Среди них: Роберт Гук, Исаак Ньютон, Даниил Бернулли, Михаил Ломоносов и многие другие.

В-четвертых:

Три основных положения молекулярно-кинетической теории:

  1. Все вещества (независимо от того, жидкие они, твердые или газообразные) имеют сложное строение, состоящее из более мелких частиц: молекул и атомов.
  2. Все эти простые частицы находятся в непрерывном сумбурном движении. Пример: броуновское движение и диффузия.
  3. Все молекулы при любых условиях взаимодействуют друг с другом с определенными силами, которые имеют электрическую породу.

Каждое это положение молекулярно-кинетической теории является прочным фундаментом в изучении строения материи.

Несколько главных положений молекулярной теории для модели газа:

  • Все газы состоят из элементарных частиц, которые не имеют какого-то определенного размера, но имеют определенную массу. Иными словами, объем этих частиц минимален по сравнению с расстояниями между ними.
  • Атомы и молекулы газов практически не имеют потенциальной энергии, соответственно, их полная энергия равна кинетической.
  • С этим положением мы уже знакомились ранее - броуновское движение. То есть, газовые частицы всегда находятся в непрерывном и беспорядочном движении.
  • Абсолютно все взаимные соударения атомов и молекул газов, сопровождающиеся сообщением скорости и энергии, являются полностью эластичными. Это означает, что потери энергии или резкие скачки их кинетической энергии при столкновении отсутствуют.
  • При нормальных условиях и постоянной температуре средняя кинетическая энергия практически всех газов одинакова.

В-шестых:

Выводы из теории по газам:

  • Абсолютная температура является мерой средней кинетической энергии ее атомов и молекул.
  • В том случае, когда два различных газа находятся при одинаковой температуре, их молекулы имеют одинаковую среднюю кинетическую энергию.
  • Средняя кинетическая энергия частиц газа прямо пропорциональна среднеквадратичной скорости: Е=1/2*m*v^2.
  • Хотя молекулы газа и имеют среднюю кинетическую энергию, соответственно, и среднюю скорость, отдельные частицы движутся с различной скоростью: какие-то быстро, какие-то медленно.
  • Чем выше температура, тем выше и скорость молекул.
  • Во сколько раз мы увеличиваем температуру газа (например, удваиваем), во столько раз увеличивается и средняя кинетическая энергия его частиц (соответственно, удваивается).
  • Взаимосвязь между давлением газа на стенки сосуда, в котором он располагается, и интенсивностью ударов молекул об эти стенки прямо пропорциональна: чем больше ударов, тем выше давление, и наоборот.

В-седьмых:

Такая модель, в которой должны выполняться следующие условия:

  • Молекулы газа могут и рассматриваются в качестве идеально упругих шаров.
  • Эти шары могут взаимодействовать друг с другом и со стенками какого бы то ни было сосуда только в одном случае - абсолютно упругого столкновения.
  • Те силы, которые описывают взаимную тягу между атомами и молекулами газа, отсутствуют или можно ими фактически пренебречь.
  • Атомы и молекулы рассматриваются в качестве материальных точек, то есть их объемом можно также пренебречь.

В-восьмых:

Приведем все основные уравнения и покажем в теме "Молекулярно-кинетическая теория" формулы:

р=1/3*m(0)*n*v^2 - основное уравнение для модели идеального газа, выведена немецким физиком Рудольфом Клаузиусом.

р=2/3*n*E - основное уравнение молекулярно-кинетической теории идеального газа. Выводится через среднюю кинетическую энергию молекул.

р=1/3*ρ*v^2 - это же уравнение, но рассмотренное через плотность и среднюю квадратичную скорость молекул идеального газа.

m(0)=M/N(a) - формула для нахождения массы одной молекулы через число Авогадро.

v^2=(v(1)+v(2)+v(3)+...)/N - формула для нахождения средней квадратичной скорости молекул, где v(1),v(2),v(3) и так далее - скорости первой молекулы, второй, третьей и так далее до n-ной молекулы.

n=N/V - формула для нахождения концентрации молекул, где N - количество молекул в объеме газа к данному объему V.

Е=m*v^2/2=3/2*k*Т - формулы для нахождения средней кинетической энергии молекул, где v^2 - средняя квадратичная скорость молекул, k - постоянная величина, названная в честь австрийского физика Людвига Больцмана, а Т - это температура газа.

p=nkT - формула давления через концентрацию, постоянную Больцмана и абсолютную температуру Т. Из нее вытекает другая фундаментальная формула, открытая русским ученым Менделеевым и французским физиком-инженером Клайпероном:

pV=m/M*R*T, где R=k*N(a) - универсальная постоянная для газов.

Теперь покажем константы для разных и адиабатного.

р*V/Т=const - выполняется в том случае, когда масса и состав газа являются величинами неизменными.

р*V=const - если при этом постоянна и температура.

V/T=const - если постоянно давление газа.

p/T=const - если объем постоянен.

Пожалуй, вот и все, что нужно было бы знать по этой теме.

Сегодня мы с вами погрузились в такую научную область, как теоретическая физика, ее множественные разделы и блоки. Более подробно нами была затронута такая область физики, как фундаментальная молекулярная физика и термодинамика, а именно молекулярно-кинетическая теория, которая, казалось бы, не представляет никаких сложностей при первичном изучении, но на самом деле имеет множество подводных камней. Она расширяет наше представление о модели идеального газа, которую мы также подробно изучили. Кроме того, стоит отметить, что мы познакомились и с основными уравнениями молекулярной теории в различных их вариациях, а также рассмотрели все самые необходимые формулы для нахождения тех или иных неизвестных величин по этой теме Это будет особо полезно при подготовке к написанию каких-либо тестов, экзаменационных и контрольных работ, или для расширения общего кругозора и знаний по физике.

Надеемся, что данная статья была вам полезна, и вы извлекли из нее только самую необходимую информацию, укрепив свои знания в таких столпах термодинамики, как основные положения молекулярно-кинетической теории.

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В основе молекулярно-кинетической теории лежат три основных положения:

  • Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул , которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы (соответственно, анионы и катионы).
  • Атомы и молекулы находятся в непрерывном хаотическом движении и взаимодействии, скорость которого зависит от температуры, а характер – от агрегатного состояния вещества.
  • Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Атом – наименьшая химически неделимая частица элемента (атом железа, гелия, кислорода). Молекула – наименьшая частица вещества, сохраняющая его химические свойства. Молекула состоит из одного и более атомов (вода – Н 2 О – 1 атом кислорода и 2 атома водорода). Ион – атом или молекула, у которых один или несколько электронов лишние (или электронов не хватает).

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10 –10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах молекулы конденсируются в жидкое или твердое вещество. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10 –8 м, то есть в сотни раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.

Идеальный газ – это газ, молекулы которого не взаимодействуют друг с другом, за исключением процессов упругого столкновения и считаются материальными точками.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль). Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12 C. Молекула углерода состоит из одного атома. Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро: N А = 6,022·10 23 моль –1 .

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории. Количество вещества определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро N А, или как отношение массы к молярной массе:

Массу одного моля вещества принято называть молярной массой M . Молярная масса равна произведению массы m 0 одной молекулы данного вещества на постоянную Авогадро (то есть на количество частиц в одном моле). Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса. В таблице Менделеева молярная масса указана в граммах на моль. Таким образом имеем еще одну формулу:

где: M – молярная масса, N A – число Авогадро, m 0 – масса одной частицы вещества, N – число частиц вещества содержащихся в массе вещества m . Кроме этого понадобится понятие концентрации (количество частиц в единице объема):

Напомним также, что плотность, объем и масса тела связаны следующей формулой:

Если в задаче идет речь о смеси веществ, то говорят о средней молярной массе и средней плотности вещества. Как и при вычислении средней скорости неравномерного движения, эти величины определяются полными массами смеси:

Не забывайте, что полное количество вещества всегда равно сумме количеств веществ, входящих в смесь, а с объемом надо быть аккуратными. Объем смеси газов не равен сумме объемов газов, входящих в смесь. Так, в 1 кубометре воздуха содержится 1 кубометр кислорода, 1 кубометр азота, 1 кубометр углекислого газа и т.д. Для твердых тел и жидкостей (если иное не указано в условии) можно считать, что объем смеси равен сумме объемов ее частей.

Основное уравнение МКТ идеального газа

При своем движении молекулы газа непрерывно сталкиваются друг с другом. Из-за этого характеристики их движения меняются, поэтому, говоря об импульсах, скоростях, кинетических энергиях молекул, всегда имеют в виду средние значения этих величин.

Число столкновений молекул газа в нормальных условиях с другими молекулами измеряется миллионами раз в секунду. Если пренебречь размерами и взаимодействием молекул (как в модели идеального газа), то можно считать, что между последовательными столкновениями молекулы движутся равномерно и прямолинейно. Естественно, подлетая к стенке сосуда, в котором расположен газ, молекула испытывает столкновение и со стенкой. Все столкновения молекул друг с другом и со стенками сосуда считаются абсолютно упругими столкновениями шариков. При столкновении со стенкой импульс молекулы изменяется, значит на молекулу со стороны стенки действует сила (вспомните второй закон Ньютона). Но по третьему закону Ньютона с точно такой же силой, направленной в противоположную сторону, молекула действует на стенку, оказывая на нее давление. Совокупность всех ударов всех молекул о стенку сосуда и приводит к возникновению давления газа. Давление газа – это результат столкновений молекул со стенками сосуда. Если нет стенки или любого другого препятствия для молекул, то само понятие давления теряет смысл. Например, совершенно антинаучно говорить о давлении в центре комнаты, ведь там молекулы не давят на стенку. Почему же тогда, поместив туда барометр, мы с удивлением обнаружим, что он показывает какое-то давление? Правильно! Потому, что сам по себе барометр является той самой стенкой, на которую и давят молекулы.

Поскольку давление есть следствие ударов молекул о стенку сосуда, очевидно, что его величина должна зависеть от характеристик отдельно взятых молекул (от средних характеристик, конечно, Вы ведь помните про то, что скорости всех молекул различны). Эта зависимость выражается основным уравнением молекулярно-кинетической теории идеального газа :

где: p - давление газа, n - концентрация его молекул, m 0 - масса одной молекулы, v кв - средняя квадратичная скорость (обратите внимание, что в самом уравнении стоит квадрат средней квадратичной скорости). Физический смысл этого уравнения состоит в том, что оно устанавливает связь между характеристиками всего газа целиком (давлением) и параметрами движения отдельных молекул, то есть связь между макро- и микромиром.

Следствия из основного уравнения МКТ

Как уже было отмечено в предыдущем параграфе, скорость теплового движения молекул определяется температурой вещества. Для идеального газа эта зависимость выражается простыми формулами для средней квадратичной скорости движения молекул газа:

где: k = 1,38∙10 –23 Дж/К – постоянная Больцмана , T – абсолютная температура. Сразу же оговоримся, что далее во всех задачах Вы должны, не задумываясь, переводить температуру в кельвины из градусов Цельсия (кроме задач на уравнение теплового баланса). Закон трех постоянных :

где: R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная . Следующей важной формулой является формула для средней кинетической энергии поступательного движения молекул газа :

Оказывается, что средняя кинетическая энергия поступательного движения молекул зависит только от температуры, одинакова при данной температуре для всех молекул. Ну и наконец, самыми главными и часто применяемыми следствиями из основного уравнения МКТ являются следующие формулы:

Измерение температуры

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0°С, а точке кипения воды: 100°С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0°С и 100°С принимается равным 1°С.

Английский физик У.Кельвин (Томсон) в 1848 году предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

При этом изменение температуры на 1ºС соответствует изменению температуры на 1 К. Изменения температуры по шкале Цельсия и Кельвина равны. В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура T С = 20°С по шкале Кельвина равна T К = 293 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева

Уравнение состояние идеального газа является очередным следствие из основного уравнения МКТ и записывается в виде:

Данное уравнение устанавливает связь между основными параметрами состояния идеального газа: давлением, объемом, количеством вещества и температурой. Очень важно, что эти параметры взаимосвязаны, изменение любого из них неизбежно приведет к изменению еще хотя бы одного. Именно поэтому данное уравнение и называют уравнением состояния идеального газа. Оно было открыто сначала для одного моля газа Клапейроном, а впоследствии обобщено на случай большего количество молей Менделеевым.

Если температура газа равна T н = 273 К (0°С), а давление p н = 1 атм = 1·10 5 Па, то говорят, что газ находится при нормальных условиях .

Газовые законы

Решение задач на расчет параметров газа значительно упрощается, если Вы знаете, какой закон и какую формулу применить. Итак, рассмотрим основные газовые законы.

1. Закон Авогадро. В одном моле любого вещества содержится одинаковое количество структурных элементов, равное числу Авогадро.

2. Закон Дальтона. Давление смеси газов равно сумме парциальных давлений газов, входящих в эту смесь:

Парциальным давлением газа называют то давление, которое он бы производил, если бы все остальные газ внезапно исчезли из смеси. Например, давление воздуха равно сумме парциальных давлений азота, кислорода, углекислого газа и прочих примесей. При этом каждый из газов в смеси занимает весь предоставленный ему объем, то есть объем каждого из газов равен объему смеси.

3. Закон Бойля-Мариотта. Если масса и температура газа остаются постоянными, то произведение давления газа на его объем не изменяется, следовательно:

Процесс, происходящий при постоянной температуре, называют изотермическим. Обратите внимание, что такая простая форма закона Бойля-Мариотта выполняется только при условии, что масса газа остается неизменной.

4. Закон Гей-Люссака. Сам закон Гей-Люссака не представляет особой ценности при подготовке к экзаменам, поэтому приведем лишь следствие из него. Если масса и давление газа остаются постоянными, то отношение объема газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном давлении, называют изобарическим или изобарным. Обратите внимание, что такая простая форма закона Гей-Люссака выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

5. Закон Шарля. Как и закон Гей-Люссака, закон Шарля в точной формулировке для нас не важен, поэтому приведем лишь следствие из него. Если масса и объем газа остаются постоянными, то отношение давления газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном объеме, называют изохорическим или изохорным. Обратите внимание, что такая простая форма закона Шарля выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

6. Универсальный газовый закон (Клапейрона). При постоянной массе газа отношение произведения его давления и объема к температуре не изменяется, следовательно:

Обратите внимание, что масса должна оставаться неизменной, и не забывайте про кельвины.

Итак, существует несколько газовых законов. Перечислим признаки того, что нужно применять один из них при решении задачи:

  1. Закон Авогадро применяется во всех задачах где речь идет о количестве молекул.
  2. Закон Дальтона применяется во всех задачах, в которых идет речь о смеси газов.
  3. Закон Шарля применяют в задачах, когда объем газа остается неизменным. Обычно это или сказано явно, или в задаче присутствуют слова «газ в закрытом сосуде без поршня».
  4. Закон Гей-Люссака применяют, если неизменным остается давление газа. Ищите в задачах слова «газ в сосуде, закрытом подвижным поршнем» или «газ в открытом сосуде». Иногда про сосуд ничего не сказано, но по условию понятно, что он сообщается с атмосферой. Тогда считается, что атмосферное давление всегда остается неизменным (если в условии не сказано иного).
  5. Закон Бойля-Мариотта. Тут сложнее всего. Хорошо, если в задаче написано, что температура газа неизменна. Чуть хуже, если в условии присутствует слово «медленно». Например, газ медленно сжимают или медленно расширяют. Еще хуже, если сказано, что газ закрыт теплонепроводящим поршнем. Наконец, совсем плохо, если про температуру не сказано ничего, но из условия можно предположить, что она не изменяется. Обычно в этом случае ученики применяют закон Бойля-Мариотта от безысходности.
  6. Универсальный газовый закон. Его используют, если масса газа постоянна (например, газ находится в закрытом сосуде), но по условию понятно, что все остальные параметры (давление, объем, температура) изменяются. Вообще, часто вместо универсального закона можно применять уравнение Клапейрона-Менделеева, вы получите правильный ответ, только в каждой формуле будете писать по две лишние буквы.

Графическое изображение изопроцессов

Во многих разделах физики зависимость величин друг от друга удобно изображать графически. Это упрощает понимание взаимосвязи параметров, происходящих в системе процессов. Такой подход очень часто применяется и в молекулярной физике. Основными параметрами, описывающими состояние идеального газа, являются давление, объем и температура. Графический метод решения задач и состоит в изображении взаимосвязи этих параметров в различных газовых координатах. Существует три основных типа газовых координат: (p ; V ), (p ; T ) и (V ; T ). Заметьте, что это только основные (наиболее часто встречающиеся типы координат). Фантазия составителей задач и тестов не ограничена, поэтому Вы можете встретить и любые другие координаты. Итак, изобразим основные газовые процессы в основных газовых координатах.

Изобарный процесс (p = const)

Изобарным процессом называют процесс, протекающий при неизменным давлении и массе газа. Как следует из уравнения состояния идеального газа, в этом случае объем изменяется прямо пропорционально температуре. Графики изобарического процесса в координатах р V ; V Т и р Т имеют следующий вид:

V T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как при очень низких температурах газ превращается в жидкость и зависимость объема от температура меняется.

Изохорный процесс (V = const)

Изохорный процесс – это процесс нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным. Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре. Графики изохорного процесса в координатах р V ; р Т и V Т имеют следующий вид:

Обратите внимание на то, что продолжение графика в p T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как газ при очень низких температурах превращается в жидкость.

Изотермический процесс (T = const)

Изотермическим процессом называют процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным. Графики изотермического процесса в координатах р V ; р Т и V Т имеют следующий вид:

Заметим, что при выполнении заданий на графики в молекулярной физике не требуется особой точности в откладывании координат по соответствующим осям (например, чтобы координаты p 1 и p 2 двух состояний газа в системе p (V ) совпадали с координатами p 1 и p 2 этих состояний в системе p (T ). Во–первых, это разные системы координат, в которых может быть выбран разный масштаб, а во–вторых, это лишняя математическая формальность, отвлекающая от главного – от анализа физической ситуации. Основное требование: чтобы качественный вид графиков был верным.

Неизопроцессы

В задачах этого типа изменяются все три основных параметра газа: давление, объем и температура. Постоянной остается только масса газа. Наиболее простой случай, если задача решается «в лоб» с помощью универсального газового закона. Чуть сложнее, если Вам надо отыскать уравнение процесса, описывающего изменение состояния газа, или проанализировать поведение параметров газа по данному уравнению. Тогда действовать надо так. Записать данное уравнение процесса и универсальный газовый закон (или уравнение Клапейрона-Менделеева, что Вам удобнее) и последовательно исключать ненужные величины из них.

Изменение количества или массы вещества

В сущности, ничего сложного в таких задачах нет. Надо только помнить, что газовые законы не выполняются, так как в формулировках любых из них записано «при постоянной массе». Поэтому действуем просто. Записываем уравнение Клапейрона-Менделеева для начального и конечного состояний газа и решаем задачу.

Перегородки или поршни

В задачах этого типа опять применяются газовые законы, при этом необходимо учесть следующие замечания:

  • Во-первых, газ через перегородку не проходит, то есть масса газа в каждой части сосуда остается неизменной, и таким образом, для каждой части сосуда выполняются газовые законы.
  • Во-вторых, если перегородка теплонепроводящая, то при нагревании или охлаждении газа в одной части сосуда температура газа во второй части останется неизменной.
  • В-третьих, если перегородка подвижна, то давления по обе ее стороны равны в каждый конкретный момент времени (но это равное с обоих сторон давление может меняться со временем).
  • А дальше пишем газовые законы для каждого газа по отдельности и решаем задачу.

Газовые законы и гидростатика

Специфика задач состоит в том, что в давлении надо будет учитывать «довески», связанные с давлением столба жидкости. Какие тут могут быть варианты:

  • Сосуд с газом погружен под воду. Давление в сосуде будет равно: p = p атм + ρgh , где: h – глубина погружения.
  • Горизонтальная трубка закрыта от атмосферы столбиком ртути (или другой жидкости). Давление газа в трубке точно равно: p = p атм атмосферному, так как горизонтальный столбик ртути не оказывает давления на газ.
  • Вертикальная трубка с газом закрыта сверху столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм + ρgh , где: h – высота столбика ртути.
  • Вертикальная узкая трубка с газом повернута открытым концом вниз и заперта столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм – ρgh , где: h – высота столбика ртути. Знак «–» ставится, так как ртуть не сжимает, а растягивает газ. Часто ученики спрашивают, почему ртуть не вытекает из трубки. Действительно, если бы трубка была широкой, ртуть бы стекла вниз по стенкам. А так, поскольку трубка очень узкая, поверхностное натяжение на дает ртути разорваться посередине и пропустить внутрь воздух, а давление газа внутри (меньшее, чем атмосферное) удерживает ртуть от вытекания.

Как только Вы сумели правильно записать давление газа в трубке, применяйте какой-либо из газовых законов (как правило, Бойля-Мариотта, так как большинство таких процессов изотермические, или универсальный газовый закон). Применяйте выбранный закон для газа (ни в коем случае не для жидкости) и решайте задачу.

Тепловое расширение тел

При повышении температуры возрастает интенсивность теплового движения частиц вещества. Это приводит к тому, что молекулы более «активно» отталкиваются друг от друга. Из-за этого большинство тел увеличивает свои размеры при нагревании. Не совершите типичную ошибку, сами атомы и молекулы не расширяются при нагревании. Увеличиваются лишь пустые промежутки между молекулами. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

где: V 0 – объем жидкости при 0°С, V – при температуре t , γ – коэффициент объемного расширения жидкости. Обратите внимание, что все температуры в этой теме нужно брать в градусах Цельсия. Коэффициент объемного расширения зависит от рода жидкости (и от температуры, что не учитывается в большинстве задач). Обратите внимание, что численное значение коэффициента, выраженное в 1/°С или в 1/К, одинаково, так как нагреть тело на 1°С это то же самое, что нагреть его на 1 К (а не на 274 К).

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

где: l 0 , S 0 , V 0 – соответственно длина, площадь поверхности и объем тела при 0°С, α – коэффициент линейного расширения тела. Коэффициент линейного расширения зависит от рода тела (и от температуры, что не учитывается в большинстве задач) и измеряется в 1/°С или в 1/К.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Молекулярно-кинетическая теория (сокращённо МКТ) - теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

      все тела состоят из частиц: атомов , молекул и ионов ;

      частицы находятся в непрерывном хаотическом движении (тепловом);

      частицы взаимодействуют друг с другом путём абсолютно упругих столкновений .

    МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

      Диффузия

      Броуновское движение

      Изменение агрегатных состояний вещества

    На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика . В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

    Идеальный газ - математическая модель газа , в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией ; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги , а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов , что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

    Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми - Дирака или Бозе - Эйнштейна )

    Классический идеальный газ

    Объём идеального газа линейно зависит от температуры при постоянном давлении

    Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

    В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно полному импульсу, переданному при столкновении частиц со стенкой в единицу времени, внутренняя энергия - сумме энергий частиц газа.

    По эквивалентной формулировке идеальный газ - такой газ, который одновременно подчиняется закону Бойля - Мариотта и Гей-Люссака , то есть:

    где - давление,- абсолютная температура. Свойства идеального газа описываютсяуравнением Менделеева - Клапейрона

    ,

    где -, - масса,-молярная масса .

    где -концентрация частиц , -постоянная Больцмана .

    Для любого идеального газа справедливо соотношение Майера :

    где -универсальная газовая постоянная , - молярнаятеплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

    Статистический расчет распределения скоростей молекул был выполнен Максвеллом.

    Рассмотрим результат, полученный Максвеллом в виде графика.

    Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.

    Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.

    Рис. 3.3

    Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема n молекул. Какая доля молекул имеет скорости от v 1 до v 1 + Δv ? Это статистическая задача.

    Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv , т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.

    Выведем функцию распределения молекул идеального газа по скоростям

    - интервал скоростей вблизи скорости .

    - число молекул, скорости которых лежат в интервале
    .

    - число молекул в рассматриваемом объеме.

    - угол молекул, скорости которых принадлежат интервалу
    .

    - доля молекул в единичном интервале скоростей вблизи скорости .

    - формула Максвелла.

    Используя статистические методы Максвелла получим следующую формулу:

    .

    - масса одной молекулы,
    - постоянная Больцмана.

    Наивероятнейшая скорость определяется из условия
    .

    Решая получаем
    ;
    .

    Обозначим ч/з
    .

    Тогда
    .

    Рассчитаем долю молекул в заданном интервале скоростей вблизи заданной скорости в заданном направлении.

    .

    .

    - доля молекул, которые имеют скорости в интервале
    ,
    ,
    .

    Развивая идеи Максвелла Больцман рассчитал распределение молекул по скоростям в силовом поле. В отличие от распределения Максвелла в распределении Больцмана вместо кинетической энергии молекул фигурирует сумма кинетической и потенциальной энергии.

    В распределении Максвелла:
    .

    В распределении Больцмана:
    .

    В гравитационном поле

    .

    Для концентрации молекул идеального газа имеет место формула:

    исоответственно.

    - распределение Больцмана.

    - концентрация молекул у поверхности Земли.

    - концентрация молекул на высоте .

    Теплоемкость.

    Теплоемкостью тела называется физическая величина, равная отношению

    ,
    .

    Теплоемкость одного моля – молярная теплоемкость

    .

    Т.к.
    - функция процесса
    , то
    .

    Учитывая

    ;

    ;




    .

    - формула Майера.

    Т.о. задача вычисления теплоемкости сводится к нахождению .

    .


    Для одного моля:

    , отсюда
    .

      Двухатомный газ (О 2 , N 2 , Cl 2 , СО и т.д.).

    (модель жесткой гантели).

    Полное число степеней свободы:

    .

    Тогда
    , то

    ;
    .

    Это значит, что теплоемкость должна быть постоянной. Вместе с тем опыт говорит, что теплоемкость зависит от температуры.

    При понижении температуры "замараживаются" сначала колебательные степени свободы, а затем и вращательные степени свободы.

    Согласно законам квантовой механики энергия гармонического осциллятора с классической частотой может принимать только дискретный набор значений

      Многоатомные газы (H 2 O, CH 4 , C 4 H 10 O и т.д.).

    ;
    ;
    ;

    Сравним теоретические данные с опытными.

    Видно, что 2-х атомных газов равняется, но изменяется при низких температурах вопреки теории теплоемкости.

    Такой ход кривой отсвидетельствует о «замораживании» степеней свободы. Наоборот при больших температурах подключаются дополнительные степени свободы эти данные ставят под сомнение теорему о равномерном распределении. Современная физика позволяет объяснить зависимость отиспользуя квантовые представления.

    Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности двухатомных газов) от температуры. Согласно положениям квантовой механики, энергия вращательного движения молекул и энергия колебаний атомов могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии (), то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно поведению одноатомного. Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между соседними колебательными уровнями (), то с ростом температуры сначала возбуждаются вращательные степени свободы. В результате этого возрастает теплоемкость. При дальнейшем увеличении температуры возбуждаются и колебательные степени свободы, и происходит дальнейший рост теплоемкости. А. Эйнштейн, приближенно считал, что колебания атомов кристаллической решетки независимы. Используя модель кристалла как совокупность независимо колеблющихся с одинаковой частотой гармонических осцилляторов, он создал качественную квантовую теорию теплоемкости кристаллической решетки. Эта теория впоследствии была развита Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми. Рассмотрев непрерывный спектр частот осцилляторов, Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания на низких частотах, соответствующих упругим волнам. Тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно–волновому дуализму свойств вещества, упругие волны в кристалле сопоставляют сквазичастицами–фононами , обладающими энергией .Фонон – квант энергии упругой волны, являющийся элементарным возбуждением, ведущим себя подобно микрочастице. Как квантование электромагнитного излучения привело к представлению о фотонах, так квантование упругих волн (как результата теплового колебания молекул твердых тел) привело к представлению о фононах. Энергия кристаллической решетки складывается из энергии фононного газа. Квазичастицы (в частности фононы) сильно отличаются от обычных микрочастиц (электронов, протонов, нейтронов и т.д.), так как они связаны с коллективным движением многих частиц системы.

      Фононы не могут возникать в вакууме, они существуют только в кристалле.

      Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке – импульс при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

      Фононы имеют спин, равный нулю, и являются бозонами, а потому фононный газ подчиняется статистике Бозе–Эйнштейна.

      Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным.

    Применение статистики Бозе–Эйнштейна к фононному газу (газу из независимых бозе–частиц) привело Дебая к следующему количественному выводу. При высоких температурах, которые много больше характеристической температуры Дебая (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, согласно которому молярная теплоемкость химически простых тел в кристаллическом состоянии одинакова и не зависит от температуры. При низких температурах, когда (квантовая область), теплоемкость пропорциональна третьей степени термодинамической температуры: Характеристическая температура Дебая равна: , где – предельная частота упругих колебаний кристаллической решетки.

    Центральное понятие этой темы - понятие молекулы; слож­ность его усвоения школьниками связана с тем, что молекула - объект, непосредственно ненаблюдаемый. Поэтому учитель дол­жен убедить десятиклассников в реальности микромира, в возмож­ности его познания. В связи с этим большое внимание уделяют рассмотрению экспериментов, доказывающих существование и движение молекул и позволяющих вычислить их основные ха­рактеристики (классические опыты Перрена, Рэлея и Штерна). Кроме этого, целесообразно ознакомить учащихся с расчетными методами определения характеристик молекул. При рассмотрении доказательства существования и движения молекул рассказывают учащимся о наблюдениях Броуном беспо­рядочного движения мелких взвешенных частиц, которое не прекращалось в течение всего времени наблюдения. В то время не было дано правильного объяснения причины этого движения, и лишь спустя почти 80 лет А. Эйнштейн и М. Смолуховский построили, а Ж. Перрен экспериментально подтвердил теорию броу­новского движения. Из рассмотрения опытов Броуна необходимо сделать следую­щие выводы: а) движение броуновских частиц вызывается уда­рами молекул вещества, в котором эти частицы взвешены; б) броуновское движение непрерывно и беспорядочно, оно зави­сит от свойств вещества, в котором частицы взвешены; в) движе­ние броуновских частиц позволяет судить о движении молекул среды, в которой эти частицы находятся; г) броуновское движение доказывает существование молекул, их движение и непрерывный и хаотический характер этого движения. Подтверждение такого характера движения молекул было по­лучено в опыте французского физика Дюнуайе (1911 г.), который показал, что молекулы газа движутся в различных направлениях и в отсутствие соударений их движение прямолинейно. В настоя­щее время факт существования молекул ни у кого не вызывает сомнения. Развитие техники позволило непосредственно наблю­дать крупные молекулы. Рассказ о броуновском движении целесообразно сопровождать демонстрацией модели броуновского движения в вертикальной проекции с помощью проекционного фонаря или кодоскопа, а так­же показом кинофрагмента «Броуновское движение» из кинофиль­ма «Молекулы и молекулярное движение». Кроме того, полезно провести наблюдение броуновского движе­ния в жидкостях с помощью микроскопа. Препарат изготавлива­ют из смеси равных частей двух растворов: 1%-ного раствора серной кислоты и 2%-ного водного раствора гипосульфита. В ре­зультате реакции образуются частицы серы, которые находятся в растворе во взвешенном состоянии. Две капли этой смеси поме­щают на предметное стекло и наблюдают за поведением частиц серы. Препарат можно изготовить из сильно разбавленного рас­твора молока в воде или из раствора акварельной краски в воде. При обсуждении вопроса о размерах молекул рассматривают сущность опыта Р. Рэлея, который заключается в следующем: на поверхность воды, налитой в большой сосуд, помещают каплю оливкового масла. Капля растекается по поверхности воды и об­разует круглую пленку. Рэлей предположил, что, когда капля пере­стает растекаться, ее толщина становится равной диаметру одной молекулы. Опыты показывают, что молекулы различных веществ имеют разные размеры, но для оценки размеров молекул прини­мают величину, равную 10 -10 м. В классе можно проделать ана­логичный опыт. Для демонстрации расчетного метода определения размеров молекул приводят пример вычисления диаметров молекул различ­ных веществ по их плотностям и постоянной Авогадро. Представить малые размеры молекул школьникам трудно, по этому полезно привести ряд примеров сравнительного характера. Например, если увеличить все размеры во столько раз, чтобы молекула была видна (т. е. до 0,1 мм), то песчинка превратилась бы в стометровую скалу, муравей увеличился бы до размеров океанского корабля, человек обладал бы ростом 1700 км. Число молекул в количестве вещества 1 моль можно опреде­лить по результатам опыта с мономолекулярным слоем. Зная диа­метр молекулы, можно найти ее объем и объем количества ве­щества 1 моль, который равен где р - плотность жидкости. Отсюда определяют постоянную Аво­гадро. Расчетный метод заключается в определении числа молекул в количестве вещества 1 моль по известным значениям молярной массы и массы одной молекулы вещества. Значение постоянной Авогадро, по современным данным, 6,022169*10 23 моль -1 . С рас­четным методом определения постоянной Авогадро можно ознако­мить учащихся, предложив ее вычислить по значениям молярных масс разных веществ. Следует ознакомить школьников с числом Лошмидта, которое показывает, какое число молекул содержится в единице объема газа при нормальных условиях (оно равно 2,68799*10 -25 м -3). Де­сятиклассники могут самостоятельно определить число Лошмидта для нескольких газов и показать, что оно во всех случаях одно и то же. Приводя примеры, можно создать у ребят представление о том, насколько большим является число молекул в единице объе­ма. Если в резиновом воздушном шаре сделать прокол настолько тонкий, что через него каждую секунду будет выходить по 1 000 000 молекул, то понадобится примерно 30 млрд. лет, чтобы все молекулы вышли. Один из методов определения массы молекул основан на опыте Перрена, который исходил из того, что капли смолы в воде ведут себя так же, как молекулы в атмосфере. Перрен подсчитывал число капелек в разных слоях эмульсии, выделив с помощью мик­роскопа слои толщиной 0,0001 см. Высота, на которой таких капе­лек в два раза меньше, чем у дна, была равна h = 3*10 -5 м. Мас­са одной капли смолы оказалась равной М = 8,5*10 -18 кг. Если бы наша атмосфера состояла только из молекул кислорода, то на высоте Н=5 км плотность кислорода была бы в два раза меньше, чем у поверхности Земли. Записывают пропорцию m/M=h/H, откуда находят массу молекулы кислорода m=5,1*10 -26 кг. Предлагают учащимся самостоятельно рассчитать массу молекулы водорода, плотность которого в два раза мень­ше, чем у поверхности Земли, на высоте H=80 км. В настоящее время значения масс молекул уточнены. Напри­мер, для кислорода установлено значение 5,31*10 -26 кг, а для во­дорода - 0,33*10 -26 кг. При обсуждении вопроса о скоростях движения молекул уча­щихся знакомят с классическим опытом Штерна. При объяснении опыта целесообразно создать его модель с помощью прибора «Вращающийся диск с принадлежностями». На краю диска в вер­тикальном положении укрепляют несколько спичек, в центре диска - трубку с желобом. Когда диск неподвижен, шарик, опу­щенный в трубку, скатываясь по желобу, сбивает одну из спичек. Затем диск приводят во вращение с определенной скоростью, за­фиксированной по тахометру. Вновь пущенный шарик отклонится от первоначального направления движения (относительно диска) и собьет спичку, находящуюся на некотором расстоянии от первой. Зная это расстояние, радиус диска и скорость шарика на ободе диска, можно определить скорость движения шарика по радиусу. После этого целесообразно рассмотреть сущность опыта Штерна и конструкцию его установки, используя для иллюстрации кино­фрагмент «Опыт Штерна». Обсуждая результаты опыта Штерна, обращают внимание на то, что существует определенное распределение молекул по ско­ростям, о чем свидетельствует наличие у полоски напыленных атомов определенной ширины, причем толщина этой, полоски различна. Кроме того, важно отметить, что молекулы, движу­щиеся с большой скоростью, оседают ближе к месту напротив щели. Наибольшее число молекул имеет наиболее вероятную скорость. Необходимо сообщить учащимся, что теоретически закон рас­пределения молекул по скоростям был открыт Дж. К. Максвел­лом. Распределение молекул по скоростям может быть промодели­ровано на доске Гальтона. Вопрос о взаимодействии молекул школьники уже изучали в VII классе, в X классе знания по этому вопросу углубляют и рас­ширяют. Необходимо подчеркнуть следующие моменты: а) меж­молекулярное взаимодействие имеет электромагнитную природу; б) межмолекулярное взаимодействие характеризуется силами при­тяжения и отталкивания; в) силы межмолекулярного взаимодейст­вия действуют на расстояниях, не больших 2-3 диаметров моле­кул, причем на этом расстоянии заметна лишь сила притяжения, силы отталкивания практически равны нулю; г) по мере умень­шения расстояния между молекулами силы взаимодействия уве­личиваются, причем сила отталкивания растет быстрее (пропорционально г -9), чем сила притяжения (пропорционально r -7 ). Поэтому при уменьшении расстояния между молекулами сначала преобладает сила притяжения, затем при некотором расстоянии r о сила притяжения равна силе отталкивания и при дальнейшем сближении преобладает сила отталкивания. Все вышесказанное целесообразно проиллюстрировать графи­ком зависимости от расстояния сначала силы притяжения, силы отталкивания, а затем равнодействующей силы. Полезно постро­ить график потенциальной энергии взаимодействия, который в дальнейшем можно использовать при рассмотрении агрегатных состояний вещества. Внимание десятиклассников обращают на то, что состоянию устойчивого равновесия взаимодействующих частиц соответствует равенство нулю равнодействующей сил взаимодействия и наи­меньшее значение их взаимной потенциальной энергии. В твердом теле энергия взаимодействия частиц (энергия свя­зи) много больше кинетической энергии их теплового движения, поэтому движение частиц твердого тела представляет собой коле­бания относительно узлов кристаллической решетки. Если кинети­ческая энергия теплового движения молекул много больше потен­циальной энергии их взаимодействия, то движение молекул полно­стью беспорядочное и вещество существует в газообразном состоянии. Если кинетическая энергия теплового движения частиц сравнима с потенциальной энергией их взаимодействия, то веще­ство находится в жидком состоянии.

    Молекулярно-кинетическая теория (МКТ) – это учение, которое объясняет тепловые явления в макроскопических телах и внутренние свойства этих тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела. В основе МКТ строения вещества лежат три положения:

    1. Вещество состоит из частиц – молекул, атомов и ионов. В состав этих частиц входят более мелкие элементарные частицы. Молекула – наименьшая устойчивая частица данного вещества. Молекула обладает основными химическими свойствами вещества. Молекула является пределом деления вещества, то есть самой маленькой частью вещества, которая способна сохранять свойства этого вещества. Атом – это наименьшая частица данного химического элемента.
    2. Частицы, из которых состоит вещество, находятся в непрерывном хаотическом (беспорядочном) движении.
    3. Частицы вещества взаимодействуют друг с другом – притягиваются и отталкиваются.

    Эти основные положения подтверждаются экспериментально и теоретически.

    Состав вещества

    Современные приборы позволяют наблюдать изображения отдельных атомов и молекул. С помощью электронного микроскопа или ионного проектора (микроскопа) можно получить изображения отдельных атомов и оценить их размеры. Диаметр любого атома имеет порядок d = 10 -8 см (10 -10 м). Размеры молекул больше размеров атомов. Поскольку молекулы состоят из нескольких атомов, то чем больше количество атомов в молекуле, тем больше её размер. Размеры молекул лежат в пределах от 10 -8 см (10 -10 м) до 10 -5 см (10 -7 м).

    Хаотическое движение частиц

    Непрерывное хаотическое движение частиц подтверждается броуновским движением и диффузией. Хаотичность движения означает, что у молекул не существует каких-либо предпочтительных путей и их движения имеют случайные направления. Это означает, что все направления равновероятны.

    Диффузия (от латинского diffusion – растекание, распространение) – явление, когда в результате теплового движения вещества происходит самопроизвольное проникновение одного вещества в другое (если эти вещества соприкасаются).

    Взаимное перемешивание веществ происходит по причине непрерывного и беспорядочного движения атомов или молекул (или других частиц) вещества. С течением времени глубина проникновения молекул одного вещества в другое увеличивается. Глубина проникновения зависит от температуры: чем выше температура, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия.

    Диффузия наблюдается во всех состояниях вещества – в газах, жидкостях и твёрдых телах. Примером диффузии в газах служит распространение запахов в воздухе при отсутствии прямого перемешивания. Диффузия в твёрдых телах обеспечивает соединение металлов при сварке, пайке, хромировании и т.п. В газах и жидкостях диффузия происходит намного быстрее, чем в твёрдых телах.

    Существование устойчивых жидких и твёрдых тел объясняется наличием сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания). Этими же причинами объясняется малая сжимаемость жидкостей и способность твёрдых тел сопротивляться деформациям сжатия и растяжения.

    Силы межмолекулярного взаимодействия имеют электромагнитную природу – это силы электрического происхождения. Причиной этого является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. По электрическим свойствам молекулу можно приближённо рассматривать как электрический диполь.

    Сила взаимодействия между молекулами имеет определённую зависимость от расстояния между молекулами. Эта зависимость изображена на рис. 1.1. Здесь показаны проекции сил взаимодействия на прямую, которая проходит через центры молекул.

    Рис. 1.1. Зависимость межмолекулярных сил от расстояния между взаимодействующими атомами.

    Как видим, по мере уменьшения расстояния между молекулами r сила притяжения F r пр увеличивается (красная линия на рисунке). Как уже было сказано, силы притяжения принято считать отрицательными, поэтому по мере уменьшения расстояния кривая уходит вниз, то есть в отрицательную зону графика.

    Силы притяжения действуют по мере сближения двух атомов или молекул, пока расстояние r между центрами молекул находится в районе 10 -9 м (2-3 диаметра молекул). По мере увеличения этого расстояния силы притяжения ослабевают. Силы притяжения являются короткодействующими силами.

    где a – коэффициент, зависящий от вида сил притяжения и строения взаимодействующих молекул.

    При дальнейшем сближении атомов или молекул на расстояниях между центрами молекул порядка 10 -10 м (это расстояние сравнимо с линейными размерами неорганических молекул) появляются силы отталкивания F r от (синяя линия на рис. 1.1). Эти силы появляются за счёт взаимного отталкивания положительно заряженных атомов в молекуле и убывают с увеличением расстояния r ещё быстрее, чем силы притяжения (что видно на графике – синяя линия более «круто» стремится к нулю, чем красная).

    где b – коэффициент, зависящий от вида сил отталкивания и строения взаимодействующих молекул.

    На расстоянии r = r 0 (это расстояние примерно равно сумме радиусов молекул) силы притяжения уравновешивают силы отталкивания, а проекция результирующей силы F r = 0. Этому состоянию соответствует наиболее устойчивое расположение взаимодействующих молекул.

    В общем случае результирующая сила равна:

    При r > r 0 притяжение молекул превосходит отталкивание, при r < r 0 – отталкивание молекул превосходит их притяжение.

    Зависимость сил взаимодействия молекул от расстояния между ними качественно объясняет молекулярный механизм появления сил упругости в твёрдых телах.

    При растяжении твёрдого тела частицы удаляются друг от друга на расстояния, превышающие r 0 . При этом появляются силы притяжения молекул, которые возвращают частицы в первоначальное положение.

    При сжатии твёрдого тела частицы сближаются на расстояния, меньшие расстояния r 0 . Это приводит к увеличению сил отталкивания, которые возвращают частицы в первоначальное положение и препятствуют дальнейшему сжатию.

    Если смещение молекул из положений равновесия мало, то силы взаимодействия растут линейно с увеличением смещения. На графике этот отрезок показан утолщённой линией светло-зелёного цвета.

    Поэтому при малых деформациях (в миллионы раз превышающих размер молекул) выполняется закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях закон Гука не действует.

    Согласно молекулярно-кинетической теории все вещества состоят из мельчайших частиц - молекул. Молекулы разделены промежутками, находятся в непрерывном движении и взаимодействуют между собой. Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Молекулы состоят из более простых частиц - атомов химических элементов. Молекулы различных веществ имеют различный атомный состав.

    Молекулы обладают кинетической энергией и одновременно потенциальной энергией взаимодействия. В газообразном состоянии W кин >> W пот. В жидком и твердом состояниях кинетическая энергия частиц сравнима с энергией их взаимодействия (W кин ~W пот).

    Поясним три основных положения молекулярно - кинетической теории.

    1. Все вещества состоят из молекул, т.е. имеют дискретное строение, молекулы разделены промежутками.

    2. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении.

    3. Между молекулами тела существуют силы взаимодействия.

    Молекулярно-кинетическая теория обосновывается многочисленными опытами и огромным количеством физических явлений.

    Наличие промежутков между молекулами следует, например, из опытов смешения различных жидкостей: объем смеси всегда меньше суммы объемов смешанных жидкостей.

    Приведем некоторые из доказательств беспорядочного (хаотического) движения молекул:

    а) стремление газа занять весь предоставленный ему объем (распространение пахучего газа по всему помещению);

    б) броуновское движение - беспорядочное движение мельчайших видимых в микроскоп частиц вещества, находящихся во взвешенном состоянии и нерастворимых в ней. Это движение происходит под действием беспорядочных ударов молекул, окружающей жидкости, находящихся в постоянном хаотическом движении;

    в) диффузия - взаимное проникновение молекул соприкасающихся веществ. При диффузии молекулы одного тела, находясь в непрерывном движении, проникают в промежутки между молекулами другого соприкасающегося с ним тела и распространяются между ними. Диффузия проявляется во всех телах - в газах, жидкостях и твердых телах, - но в разной степени.

    Диффузию в газах можно наблюдать, если сосуд с пахучим газом открыть в помещении. Через некоторое время газ распространится по всему помещению.

    Диффузия в жидкостях происходит значительно медленнее, чем в газах. Например, в стакан нальем раствор медного купороса, а затем, очень осторожно добавим слой воды и оставим стакан в помещении с постоянной температурой, и где он не подвергается сотрясениям. Через некоторое время будем наблюдать исчезновение резкой границы между купоросом и водой, а через несколько дней жидкости перемешаются, несмотря на то, что плотность купороса больше плотности воды. Так же диффундирует вода со спиртом и прочие жидкости.

    Диффузия в твердых телах происходит еще медленнее, чем в жидкостях (от нескольких часов до нескольких лет). Она может наблюдаться только в хорошо пришлифованных телах, когда расстояния между поверхностями пришлифованных тел близки к расстояниям между молекулами (10 -8 см). При этом скорость диффузии увеличивается при повышении температуры и давления.

    Доказательства силового взаимодействия молекул:

    а) деформация тел под влиянием силового воздействия;

    б) сохранение формы твердыми телами;

    в) поверхностное натяжение жидкостей и, как следствие, явление смачивания и капиллярности.

    Между молекулами существуют одновременно силы притяжения и силы отталкивания. Эти силы имеют электромагнитную природу.

    Рассмотрим различные случаи взаиморасположения молекул и покажем какие силы преобладают. Введем следующие обозначения:

    r – Расстояние между молекулами.

    d – диаметр молекулы

    F np сила притяжения

    F om сила отталкивания

    → - стремиться

      Следовательно

      r→∞ => F=0 (силы короткодействующие)

      r > d (≈2-3 диаметра)=> F np > F om

      r→d=>F np →0