Бериллий, волосы (Beryllium, hair; Be). Бериллий. Свойства и описание

Бериллий является одним из основных источников загрязнения окружающей среды. Бериллий используется в промышленности, в частности он выступает в роли источника нейтронов в атомном реакторе. Но этот элемент содержится и в человеческом организме. В этой статье мы поговорим про влияние этого элемента на здоровье человека, а также про недостаток, дефицит бериллия в организме.

Воздействие бериллия на организм

Если концентрация в воздухе достигнет 0, 01 мг на куб. м, могут проявиться явные признаки отравления бериллием. Выделяют три стадии отравления:

  1. Лихорадка литейщиков, сопровождается значительным повышением температуры, и проходит через сутки - двое.
  2. Воспаление легких, вызванное токсическим воздействием бериллия, может проявиться спустя несколько лет.
  3. Хроническое отравление - промышленный саркоидоз, или бериллиоз.

Согласно статистике, 100 отравлений в 10-ти случаях заканчивается смертельным исходом.

Бериллий относится к классу нерадиоактивных химических элементов. Его использование в последние годы увеличилось на 500%, при том что применение хрома возросло всего лишь на 50%, бора на 78%, марганца на 45%, меди на 30%, цинка на 44%, никеля на 70%.

Бериллий является достаточно редким элементом на нашей планете. Он характеризуется рядом ценных свойств: при достижении определенных условий он служит источником нейтронов, к тому же он очень легкий, примерно в 4 раза легче железа. Энрико Ферми в своих первых экспериментах использовал именно препараты бериллия и радия, благодаря которым и появился первый реактор. От всех остальных металлов бериллий отличается тем, что он не ржавеет.

Несколько десятков лет бериллий в комплексе с цинком использовался в качестве наполнения цветных уличных фонарей, свет которых, как, оказалось, впоследствии являлся токсичным.

Порошок бериллия используется в топливных смесях, использующихся в ракетах, при сгорании он выделяет огромное количество энергии. Однако все его многочисленные преимущества перевешивает всего лишь один единственный недостаток: бериллий является ядовитым, даже в минимальных количествах он может вызвать отравление. Он оказывает губительное влияние на половые функции.

Повсеместное использование бериллия в промышленных целях серьезно беспокоит диетологов, врачей и все население планеты.

Бериллий является токсичным химическим элементом. В организм бериллий может попасть через легкие и с пищей. Ежесуточно в организм человека попадает порядка 10-20 мкг бериллия. В пищеварительной системе в растворимом виде бериллий способен взаимодействовать с фосфатами, в результате чего получается плохо растворимая соль. Кроме того, бериллий связывается с белками эпителия и образуются прочные протеинаты. По этой причине всасываемость бериллия в пищеварительном тракте достаточно невелика и колеблется в пределах 4-10% от поступившего в организм элемента. Данный показатель напрямую зависит от уровня кислотности желудочного сока. В организме общее количество данного элемента достигает 0, 4-40 мкг. Металл присутствует в мышечной, костной ткани и в крови. Бериллий может накапливаться в печени, легких, костях, лимфатических узлах и миокарде. Выводится он с мочой (около 90%).

Бериллий принимает участие в поддержании иммунитета, в регуляции фосфорного обмена. Активность бериллия проявляется в ряде биохимических реакций, которые связанны с участием некоторых неорганических фосфатов.

Недостаток бериллия и его избыток

В организме человека содержание бериллия должно составлять не больше 0, 036 мкг. Активность ряда ферментов (аденозинтрифосфазы, щелочной фосфазы) может тормозиться, если имеет место быть дефицит бериллия в крови.

Повышенное содержание данного элемента в пище приводит к образованию фосфатов бериллия. Бериллий способен забирать фосфаты из важнейших частей костей, он замещает кальций, тем самым ослабляя костную ткань и способствуя ее разрушению. Экспериментально доказано, что введение данного элемента в организм животных может вызвать «бериллиевый» рахит. Даже при малых количествах бериллия в составе кости может привести к ее размягчению (бериллиоз). В области парентерального введения солей бериллия наблюдается разрушение близлежащих тканей, впоследствии бериллий вывести из организма практически невозможно, он начинает скапливаться в печени и скелете.

Согласно современным представления о бериллии, можно сказать, что данный элемент является токсичным, канцерогенным и мутагенным. Патогенное воздействие бериллия можно наблюдать в результате ингаляций в концентрациях, превышающих норму примерно в 2 раза. Соли бериллия оказывают угнетающее действие на активность некоторых ферментов. Хорошо изучены токсические свойства данного элемента. В патологии выделяют хронические и острые отравления бериллием. Вывод соединений бериллия, например, из лимфоидной ткани, происходит очень медленно, так бериллий может выводиться на протяжении 10 лет. Достаточно высокий уровень бериллия можно наблюдать в семьях, контактирующих с данным элементом на производстве.

К основным признакам повышенного содержания в организме бериллия относят:

  • Всевозможные поражения кожи - эритемы, дерматоз;
  • Поражение легких - саркоидоз, фиброз;
  • Бериллиоз;
  • Эрозии слизистых пищеварительного тракта;
  • Литейная лихорадка;
  • Развитие опухолей, аутоиммунных процессов;
  • Нарушение функций печени, миокарда.

Для того, чтобы предупредить развитие патологий, вызываемых контактом с различными соединениями бериллия на производстве, необходимо придерживаться правил по технике безопасности (использование сменной одежды, респиратора), устранение воздействия на организм человека всевозможных раздражителей (холодный воздух, никотин, спреи). На определенных стадиях развития патологий может потребоваться смена работы.

Бериллий (латинское Beryllium, обозначается символом Be) - элемент с атомным номером 4 и атомной массой 9,01218. Является элементом главной подгруппы второй группы, второго периода периодической системы химических элементов Дмитрия Ивановича Менделеева. При нормальных условиях бериллий хрупкий легкий (его плотность 1,846 г/см3), достаточно твердый металл светло-серого цвета.

В природе существует лишь один стабильный изотоп этого элемента - 9Be, другие, встречающиеся в природе, изотопы элемента номер четыре радиоактивны - 7Be (период полураспада 53 дня), 10Be (период полураспада 2,5·106 лет). Изотоп 8Be отсутствует в природе, поскольку является крайне нестабильным и имеет период полураспада 10−18 секунды. Что интересно - бериллий единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп.

Человечеству бериллий известен с древности в качестве бериллиесодержащих минералов - не одно тысячелетие люди искали и разрабатывали месторождения аквамаринов, изумрудов и бериллов. Так, например, существуют упоминания о том, что еще во времена фараонов разрабатывались изумрудные прииски в Аравийской пустыне. Однако за привлекательной внешностью бериллов «разглядеть» новый элемент удалось лишь в конце XVIII века. Как новый элемент бериллий был открыт в виде берилловой земли (оксида ВеО) французским химиком Луи Вокленом в 1798 году. Металлический бериллий (в виде порошка) действием металлического калия на хлористый бериллий впервые получили в 1828 году Фридрих Велер и Антуан Бюсси независимо друг от друга, однако металл содержал очень большое количество примесей. Чистый бериллий удалось выделить лишь в 1898 году путем электролиза бериллиево-фтористого натрия, сделал это П. Лебо.

Несмотря на то, что открыт элемент был в конце XVIII века, реальное применение бериллий нашел лишь в 40-х годах XX века. Элемент № 4 используют в качестве легирующей добавки в медных, никелевых, магниевых, железных и многих других сплавах. Бериллиевые бронзы очень прочны и применяются для изготовления пружин и других ответственных деталей. Сплавы бериллия с никелем по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а порой и превосходят их. Бериллиевые сплавы широко используются в космической, ракетной и авиационной технике. Бериллий - один из лучших замедлителей и отражателей нейтронов в высокотемпературных ядерных реакторах. Элемент № 4 применяется и в других областях современной техники, в том числе в радиоэлектронике, в горном деле, рентгенотехнике. Широкое применение нашли и соединения бериллия. Например, окись этого металла BeO используется при производстве стекла, футеровке индукционных печей. Некоторые соединения бериллия выступают в роли катализаторов в ряде химических процессов. В перспективе бериллий рассматривается в качестве высокоэнергетического ракетного топлива, так как при его горении выделяется колоссальное количество тепла (15 000 ккал/кг).

Бериллий обнаружен в тканях многих растений и животных. Хотя биологическое значение данного элемента ученым еще предстоит выяснить, но установлено, что он принимает участие в обмене магния и фосфора в костной ткани. При повышенном содержании солей бериллия в организме начинает развиваться бериллиевый рахит, приводящий к ослаблению и разрушению костей. Большинство соединений элемента номер четыре ядовиты. Многие из них могут стать причиной воспалительных процессов на коже и бериллиоза - специфического заболевания, вызываемого вдыханием бериллия и его соединений.

Биологические свойства

Биологическая роль бериллия изучена слабо, установлено лишь то, что этот элемент участвует в обмене магния (Mg) и фосфора (P) в костной ткани и играет определенную роль в поддержании иммунного статуса организма. Бериллий постоянно присутствует в тканях растений, животных и человека. Концентрация четвертого элемента в тканях растений напрямую зависит от его процентного содержания в почвах, в которых содержание бериллия колеблется от 2∙10-4 до 1∙10-3 %, при этом в золе растений содержится порядка 2∙10-4 % этого элемента. У животных бериллий распределяется во всех органах и тканях, содержание элемента номер четыре в костной золе составляет от 5∙10-4 до 7∙10-3 %. Почти половина усвоенного животным бериллия выделяется с мочой, треть поглощается костями, порядка 8 % концентрируется в печени и почках. Избыток бериллия в кормовом рационе животных приводит к связыванию в кишечнике ионов фосфорной кислоты в неусвояемый фосфат бериллия. Вследствие чего возникает недостаток фосфора, развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических провинциях, богатых бериллием. В тоже время, для растений бериллий совершенно безвреден.

Содержание бериллия в организме среднего человека (масса тела 70 кг) составляет 0,036 мг. Подсчитано, что ежедневное поступление данного элемента в организм человека составляет около 0,01 мг. Бериллий попадает в человеческий организм, как с пищей, так и через легкие. При поступлении в растворимой форме в желудочно-кишечный тракт, бериллий взаимодействует с фосфатами и образует практически нерастворимый Be3(PO4)2 или связывается белками эпителиальных клеток в прочные протеинаты. По этой причине всасываемость элемента номер четыре в ЖКТ невелика (4-10 % от поступившего объёма). Кроме того, значимым фактором, влияющим на усвояемость бериллия в желудочно-кишечном тракте, является кислотность желудочного сока. Четвертый элемент периодической системы постоянно присутствует в крови, костной и мышечной тканях (0,001-0,003 мкг/г), ряде других органов. Выявлено, что бериллий способен накапливаться в печени, почках, лимфе, легких, костях и миокарде. Выводится металл преимущественно с мочой (порядка 90 %). Установлено, что в человеческом организме механизм действия бериллия схож с влиянием на организм животных - даже небольшое количество этого металла в составе костей приводит к их размягчению. Кроме того, соли бериллия в концентрации 1 мкмоль/л способны тормозить активность ряда ферментов (щелочной фосфатазы, аденозинтрифосфатазы). Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки, вызывают дерматозы, конъюнктивиты, назофарингит и другие заболевания кожи и слизистых, заболевания легких и бронхов - трахеобронхит, пневмонию и опухоли легких. Его присутствие в атмосферном воздухе приводит к тяжелому профессиональному заболеванию органов дыхания - бериллиозу (химический пневмонит). При кратковременном вдыхании больших концентраций растворимых соединений бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма. Следует отметить, что эти заболевания могут возникнуть через 10-15 лет после прекращения контакта с бериллием!

Установлено, что выведение соединений бериллия из организма (особенно из органов лимфоидной системы, где они аккумулируются), происходит чрезвычайно медленно, в течение более 10 лет. По этой причине для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их быстрому выведению из организма. Допустимые пределы содержания бериллия в воздухе очень малы - всего 0,001 мг/м3, в питьевой воде 0,0002 мг/л.

Большое количество ученых считает, что изотопы бериллия 10Be и 7Be образуются не в недрах земли, как у прочих элементов, а в атмосфере - в результате воздействия космических лучей на ядра азота и кислорода. Подтверждением данной теории можно считать обнаружение примесей этих изотопов в дожде, снеге, воздухе, метеоритах и морских отложениях. Причем суммарно весь 10Be, находящийся в атмосфере, водных бассейнах (в том числе в донных отложениях) и почве составляет порядка 800 тонн. Зарождаясь в атмосфере (на высоте 25 километров), атомы 10Be вместе с осадками попадают в океан и оседают на дне. 10Be концентрируется в морских илах и ископаемых костях, которые вбирают металл из природных вод. Таким образом, зная концентрацию 10Be во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана. Теоретически это должно относиться и к определению возраста органических останков. Всемирно известный и всеми принятый радиоуглеродный метод не пригоден для определения возраста образцов в интервале 105-108 лет (всё дело в большой разнице между периодами полураспада 14C и долгоживущих изотопов 40K, 82Rb, 232Th, 235U и 238U). 10Be способен заполнить данный промежуток.

Другой радиоизотоп бериллия - 7Be, «проживает» гораздо более короткую жизнь (период полураспада у него всего 53 дня). По этой причине количество его на Земле измеряется в граммах, а область применения ограничивается несколькими специфическими предназначениями: в метеорологии исследуя концентрацию этого изотопа, определяют промежуток времени от начала движения воздушных масс; в химии 7Be используется в качестве радиоактивного индикатора; в медицине - для изучения возможностей борьбы с токсичностью самого бериллия.

Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Кстати, именно с этими швейцарскими пружинами связан любопытный эпизод из истории второй мировой войны. Промышленность фашистской Германии была изолирована от всех основных источников бериллиевого сырья, практически вся мировая добыча этого ценного стратегического металла находилась в руках США. Немецкое руководство решило использовать нейтральную Швейцарию для контрабандного ввоза бериллиевой бронзы - вскоре американские фирмы получили от швейцарских «часовщиков» заказ на такое ее количество, которого хватило бы на часовые пружины всему миру лет на пятьсот вперед. Естественно, что такая слабо прикрытая ложь была уличена, и заказ не был выполнен, однако всё же в новейших марках скорострельных авиационных пулеметов, поступавших на вооружение фашистской армии, появлялись пружины из бериллиевой бронзы.

Несмотря на то, что бериллий относится к токсичным химическим элементам и многие его соединения ядовиты, этот металл был обнаружен в составе одного очень известного целебного средства. В 1964 году группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К. Т. Порошиным провела химический анализ древнего целебного средства «мумие». Как оказалось - это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

Оказывается, получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Дело в том, что берилл - сложное комплексное соединение. И всё же учёные смогли имитировать природные условия, при которых «зарождается» минерал: процесс происходит при очень высоком давлении (150 тысяч атмосфер) и высокой температуре (1 550 °C). Изумруды, полученные искусственным путем, могут использоваться в электронике.

В Горном музее Санкт-Петербурга имеется интересный экспонат - полутораметровый кристалл берилла. Интересен он не только своими внушительными размерами, но и историей. В блокадную зиму 1942 года немецкий авиационный снаряд пробил крышу здания и разорвался в главном зале. Осколки сильно повредили минерал, и казалось, что ему уже никогда не найдется места в экспозиции музея. Однако после многолетней кропотливой работы художников-реставраторов камень был восстановлен в первоначальном виде. Сейчас о том случае напоминают лишь два поржавевших осколка, вмонтированных в пластину из органического стекла, да пояснительная табличка, рассказывающая об этом экспонате.

Бериллий обладает массой уникальных качеств, одно из которых - поразительная «звукопропускная» способность. Как известно, в воздухе скорость звука составляет 340 метров в секунду, в воде - 1 490 метров в секунду. В бериллии же звук побивает все рекорды, преодолевая за секунду 12 500 метров!

Название бериллия произошло от названия минерала - берилла (древнегреческое βήρυλλος, beryllos), в свою очередь это название происходит от имени города Белур (Веллуру) в Южной Индии, недалеко от Мадраса. С древних времен в Индии были известны богатые месторождения изумрудов (разновидность берилла).

Историки пишут, что римский император Нерон обожал смотреть в цир¬ке на борьбу гладиаторов через боль¬шой кристалл зеленого изумруда. И даже когда горел подожженный им Рим, он восторгался бушующим огнем, смотря на него через свой изумруд, и краски огня сливались с зеленым цветом камня в темные, зловещие языки.

История

Бериллий справедливо называют металлом будущего, однако история его идет из глубины веков. Минералы, содержащие элемент номер четыре известны человеку, в качестве драгоценных камней, уже на протяжении нескольких тысяч лет - с давних пор люди искали и разрабатывали месторождения аквамаринов, изумрудов и бериллов. Некоторые из них добывали на территории Древнего Египта еще в XVII веке до н. э. В безжизненной нубийской пустыне - в богатых изумрудных копях царицы Клеопатры - невольники ценой своих жизней добывали прекрасные кристаллы зеленого цвета. Драгоценные камни на караванах доставляли к берегам Красного моря, откуда они попадали во дворцы властителей стран Европы, Ближнего и Дальнего Востока - византийских императоров, персидских шахов, китайских ванов, индийских раджей. Название берилл встречается у греческих и римских (beryll) античных авторов. Сходство между бериллом и изумрудом отметил еще Плиний Старший в своей «Естественной истории»: «Берилл, если подумать, имеет ту же природу, что и смарагд (изумруд), или, по крайней мере, очень похожую». Даже в далекой от Нубии Руси был известен этот драгоценный камень - в «Изборнике» Святослава берилл отмечен под именем «вируллион».

Однако металл, сокрытый в драгоценных камнях, долгое время не удавалось обнаружить. Подобный факт не вызывает удивления - даже современному ученому, имеющему на вооружении новейшее оборудование, с помощью которого он может применить любой метод исследования (от радиохимического до спектрального анализа), довольно сложно обнаружить бериллий. Дело в том, что этот металл по многим своим свойствам напоминает алюминий и его соединения, прячась в минералах за их спинами. Представьте трудности, с которыми столкнулись первые исследователи в XVIII веке! Многие ученые пытались анализировать берилл, однако никто не смог обнаружить содержащийся в нем новый металл. Даже семьдесят лет спустя после открытия сходство бериллия и алюминия доставило немало проблем самому Д. И. Менделееву - именно из-за своего сходства с тринадцатым элементом бериллий считался трёхвалентным металлом с атомной массой 13,5, следовательно, место его в таблице должно быть между углеродом и азотом. Однако такая ситуация вносила явную путаницу в закономерное изменение свойств элементов и ставило под сомнение правильность Периодического закона. Дмитрий Иванович, убежденный в своей правоте, настаивал на том, что атомный вес бериллия определен неверно, а элемент не трех, а двухвалентный, имеющий магнезиальные свойства. Рассуждая так, Менделеев расположил бериллий во второй группе, присвоив ему атомный вес 9. Так получилось, что довольно скоро все предположения великого русского химика подтвердили его бывшие оппоненты - шведские химики Ларе Фридерик Нильсон и Отто Петерсон, которые ранее были твердо убеждены в трехвалентности бериллия. Их тщательные исследования показали, что атомный вес этого элемента равен 9,1. Так, благодаря бериллию - «возмутителю спокойствия» в Периодической системе - восторжествовал один из важнейших химических законов.

Однако вернемся к факту открытия этого металла. Французский кристаллограф и минералог Рене Жюст Гаюи, сравнивая образцы зеленовато-голубых кристаллов берилла из Лиможа и зеленых кристаллов изумруда из Перу, отметил сходство их твердости, плотности и внешнего вида. Заинтригованный этим, он предложил французскому химику Никола Луи Воклену провести анализ этих минералов на химическую идентичность. Результаты опытов Воклена были потрясающи - химик установил, что оба минерала содержат не только оксиды алюминия и кремния, как было известно и раньше, но также и новую «землю», которая очень напоминала оксид алюминия, но, в отличие от него, реагировала с карбонатом аммония и не давала квасцов. Воспользовавшись данным отличием, Воклен разделил оксиды алюминия и неизвестного элемента. 15 февраля 1798 года на заседании французской Академии наук Воклен сделал сенсационное сообщение о том, что в берилле и изумруде содержится новая «земля», отличная по своим свойствам от глинозема, или окиси алюминия. Открытый элемент Воклен предложил назвать «глицинием» из-за сладковатого привкуса его солей (по-гречески «гликос» - сладкий), однако известные химики Мартин Генрих Клапрот и Андерс Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В работах этих ученых «земля», открытая Вокленом, именуется берилловой. Тем не менее, в научной литературе XIX века новый элемент называется «глиций», «глициний» или «глюциний». В России до середины XIX века оксид этого элемента называли «сладкоземом», «сладимой землей», «сладоземом», а сам элемент именовался глицинием, глицинитом, глицием, сладимцем. Сейчас это название сохранилось только во Франции. Интересно отметить, что с предложением называть элемент номер четыре бериллием еще в 1814 году выступал харьковский профессор Ф. И. Гизе.

В виде простого вещества элемент, открытый Вокленом, впервые получил немецкий химик Фридрих Вёлер в 1828 году, восстановливая хлорид бериллия калием. Независимо от него в этом же году тем же методом металлический бериллий был выделен французским химиком Антуаном Бюсси. Однако полученный порошкообразный бериллий содержал большое количество примесей, лишь спустя семь десятилетий француз П. Лебо электролизом расплавленных солей смог получить чистый металлический бериллий.

Нахождение в природе

Бериллий - типично редкий элемент, среднее содержание данного металла в земной коре (кларк) по разным оценкам колеблется от 6∙10-4 % до 2∙10-4 %. Ученые объясняют столь малую распространенность способностью бериллия взаимодействовать с протонами и нейтронами высоких энергий. В подтверждение данной теории говорит тот факт, что бериллия мало в атмосфере солнца и звезд, а в межзвездном пространстве, где условия для ядерных реакций неблагоприятны, его количество резко возрастает. В то же время бериллий не является рассеянным элементом, ведь он входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними сформировались в гранитных куполах. Данный факт подтверждается находками в гранитных пегматитах (которые, к слову, имеются во всех странах) гигантских бериллов - длиною от метра до девяти метров и весом несколько тонн. Большая часть элемента номер четыре в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни грамм на тонну). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах - пегматитах и пневматолито-гидротермальных телах. В кислых пегматитовых породах формирование значительных концентраций бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (порядка 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (кварце, слюдах, микроклине, альбите). В щелочных пегматитах бериллий присутствует в малых количествах в составе редких минералов: чкаловита, эвдидимита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием.

О количестве собственных минералов бериллия однозначного мнения нет, но точно установлено, что их более тридцати, однако только шесть из них считаются более-менее распространёнными. Важнейший из них - берилл 3BeO Al2O3 6SiO2, у которого много цветовых разновидностей. Так, например, изумруд содержит около 2 % хрома, придающего ему зеленый цвет, а розовый цвет воробьевита обусловлен примесью соединений марганца (II). Аквамарин своей голубой окраской обязан примеси железа (II), а золотисто-желтый гелиодор окрашен ионами железа (III). Известны и другие разновидности берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Кроме берилла промышленно важными минералами бериллия считаются фенакит 2BeO SiO2, бертрандит 4BeO 2SiO2 H2O, гельвин (Mn,Fe,Zn)43S, хризоберилл и даналит.

Содержание бериллия в морской воде чрезвычайно низкое - 6∙10-7 мг/л. Оксиды и гидроксиды бериллия почти не растворимы в воде, поэтому он встречается в грунтовых водах в основном в виде взвесей (часто в комплексных соединениях с органическими веществами) и лишь частично в растворенном состоянии. По этим причинам содержание бериллия в природных водах невелико - на уровне следов (0,01-0,07 мкг/л). В кислых водах содержание бериллия выше, в щелочных - ниже. Повышенное содержание в воде фтора и органики способствует накоплению бериллия, а наличие кальция, наоборот препятствует его накоплению.

Мировые природные ресурсы бериллия оцениваются более чем в 80 тысяч тонн (по содержанию бериллия), из которых около 65 % сосредоточено в США, где основным бериллиевым сырьем является бертрандитовая руда. Из других стран наибольшими запасами бериллия обладают Китай, Россия и Казахстан. Причем в советские времена бериллия на территории современной России добывалось больше - Малышевское (Свердловская область), Завитинское (Читинская область), Ермаковское (Бурятия), Пограничное (Приморский край) месторождения. Однако после сокращения военно-промышленного комплекса и свертывания программ по строительству новых АЭС, добыча бериллия резко сократилась, из-за чего были прекращены разработки на Малышевском и Ермаковском и значительно сокращены на Завитимском месторождениях. Причем большая часть добываемого бериллия идет на продажу в зарубежные страны, основными потребителями этого металла являются Европа и Япония.

Применение

По причине того, что бериллий в чистом виде был получен лишь в самом конце XIX века, он долгое время не мог найти достойного применения. По этому в различных справочниках и энциклопедиях начала XX века о бериллии говорилось: «Практического применения не имеет». Для того чтобы уникальные свойства элемента номер четыре нашли своё применение, требовалось время - время для развития современного уровня технологий. И если в тридцатых годах XX века советский академик А.Е. Ферсман называл бериллий металлом будущего, то сейчас он может по праву называться металлом настоящего.

Огромное количество бериллия расходуется в качестве легирующей добавки к различным сплавам на основе алюминия, никеля, магния, меди и других металлов. Такая добавка обеспечивает высокую твердость, хорошую электрическую проводимость теплопроводность и прочность сплавов, коррозионную устойчивость поверхностей изделий изготовленных из этих сплавов. Наиболее известны и применяемы в технике - бериллиевые бронзы (в США в 80-х годах до 80 % от производимого бериллия) - сплавы меди с бериллием. Из них изготавливают многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Одним из потребителей этого сплава является авиационная промышленность - подсчитано, что в современном тяжелом самолете свыше тысячи деталей сделано из бериллиевой бронзы. Благодаря своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из этого материала практически не знают усталости: они способны выдерживать до 20 миллионов циклов нагрузки, при том, что рессоры из обычной углеродистой стали выходят из строя уже после 800-850 циклов. Кроме того, бериллиевые бронзы не искрятся при ударе о металл или камень, по этой причине их используют для изготовления специального инструмента, применяемого на взрывоопасных работах - в шахтах, на пороховых заводах, нефтебазах. Добавки бериллия облагораживают и другие сплавы, например, на основе магния и алюминия: весьма малые количества бериллия (достаточно 0,005 %) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Не менее интересными свойствами обладают и бериллиды - интерметаллические соединения бериллия с танталом, ниобием, цирконием и другими тугоплавкими металлами. Подобные соединения обладают исключительной твердостью и стойкостью против окисления, они могут проработать более десяти часов при температуре 1 650 °C. Перспективным считается получение сплавов бериллия с литием - они будут легче воды.

Повысить жесткость, прочность и жаростойкость других металлов можно и без введения бериллия в сплав. В таких случаях используют бериллизацию - насыщение поверхности стальной детали бериллием путем диффузии. После чего поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом. Это прочное защитное покрытие толщиной всего 0,15...0,4 мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.

Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов (0,009 барн на атом), большого сечения их рассеивания и достаточной стойкости в условиях радиации делает бериллий одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. Изготовление замедлителей и отражателей из бериллия и его окиси позволяет намного уменьшить АЗ реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Из бериллия изготовляют окошки рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). В смесях с некоторыми α-радиоактивными нуклидами (радия, полония, актиния, плутония) бериллий используют в ампульных нейтронных источниках, так как он обладает свойством интенсивного излучения нейтронов при бомбардировке α-частицами.

Бериллий и некоторые его соединения (в виде раствора в жидком аммиаке, в виде гидрида бериллия, раствора боргидрида бериллия в жидком аммиаке) рассматриваются как перспективное твёрдое ракетное топливо с наиболее высокими удельными импульсами. Соединения бериллия нашли не меньшее применение, чем сам металл: в лазерной технике используется алюминат бериллия при изготовлении твердотельных излучателей (стержней, пластин). Боргидрид бериллия и тонкодисперсный бериллиевый порошок пропитанные жидким кислородом либо окисью фтора, иногда применяются как особо мощные взрывчатые вещества (ВВ). Фторид бериллия используется в атомной технике для варки стекла применяемого для регулирования небольших потоков нейтронов. Множеством ценных свойств обладает окись бериллия - благодаря высокой огнеупорности (температура плавления 2 570 °С), значительной химической стойкости и большой теплопроводности этот материал используется для футеровки индукционных печей, изготовления тиглей для плавки различных металлов и сплавов. Оксид бериллия - основной материал для оболочек тепловыделяющих элементов (твэлов) атомных реакторов. Ведь именно в этих оболочках особенно велика плотность нейтронного потока и самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из оксида бериллия.

Производство

Извлечение бериллия из его природных минералов (главным образом из берилла) - сложный и дорогостоящий процесс, состоящий из нескольких стадий. Причем основная сложность заключается в отделении элемента номер четыре от сходного с ним по свойствам постоянного спутника - алюминия. Существует несколько методов подобного разделения. Например, один из способов заключается в том, что оксиацетат бериллия Be4O(CH3COO)6, в отличие от оксиацатата алюминия +CH3COO–, имеет молекулярное строение и легко возгоняется при нагревании. Однако в промышленности используются другие методы очистки бериллия от алюминия.

Первый - сульфатный метод разделения, заключается в спекании концентрата при температуре 750 °C с карбонатом натрия Na2CO3 (сода) или кальция СаСО3 (мел) с последующей обработкой спека концентрированной горячей серной кислотой H2SO4. Из образовавшегося раствора сульфатов бериллия, алюминия и других элементов, содержащихся в исходном рудном концентрате, действием сульфата аммония (NH4)2SO4 отделяют алюминий в виде алюмоаммониевых квасцов, оставшийся раствор обрабатывают избытком гидроксида натрия NaOH. В результате чего образуется раствор, содержащий Na2 и алюминаты натрия. В дальнейшем, при кипячении этого раствора, в результате разложения гидроксобериллата осаждается гидроксид бериллия Ве(ОН)2, а алюминаты остаются в растворе. Гидроксид бериллия очищают от примесей экстракцией трибутилфосфатом.

Сульфатный метод используют также для извлечения бериллия из другого бериллиевого минерала - бертрандита. При этом сернокислый раствор экстрагируют керосином, содержащим диэтил-гексил фосфорную кислоту. Органическую фракцию обрабатывают водным раствором (NH4)2CO3, при этом осаждаются гидроксиды и гидроксокарбонаты железа и алюминия, а бериллий остается в растворе в виде (NH4)2, который при нагревании раствора до 95 °С количественно разлагается, образуя осадок 2ВеСО3∙Ве(ОН)2. При прокаливании последнего при 165 °С получают гидроксид бериллия.

Второй метод разделения Be и Al - фторидный. Технология данного способа такова: концентрат (измельченный берилл) спекают (при температуре около 750 °C) с гексафторосиликатом натрия Na2SiF6:

Be3Al2(SiO3)6 + 12Na2SiF6 → 6Na2SiO3 + 2Na3AlF6 + 3Na2 + 12SiF4

В результате сплавления образуются криолит Na3AlF6 - плохо растворимое в воде соединение, а также растворимый в воде фторобериллат натрия Na2, который далее подвергается выщелачиванию водой. Из полученного раствора, действием гидроксида натрия NaOH осаждают Ве(ОН)2, при прокаливании которого образуется ВеО. Порой гидроксид бериллия дополнительно очищают, растворяя его в серной кислоте в присутствии комплексонов и затем осаждая аммиаком. К оставшемуся после действия гидроксида натрия раствору, содержащему NaF, для утилизации последнего добавляют Fe2(SO4)3, при этом осаждается Na3, который также используется для разложения берилла, частично заменяя Na2.

Кроме вышеперечисленных методов разделения, известен и такой способ переработки берилла. Исходный минерал сначала сплавляют с поташем K2CO3. При этом образуются бериллат K2BeO2 и алюминат калия KAlO2:

Be3Al2(SiO3)6 + 10K2CO3 → 3K2BeO2 + 2KAlO2 + 6K2SiO3 + 10CO2

После выщелачивания водой полученный раствор подкисляют серной кислотой. В результате в осадок выпадает кремниевая кислота. Из фильтрата далее осаждают алюмокалиевые квасцы, после чего в растворе из катионов остаются только ионы Ве2+.

Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведётся с целью получения BeF2 или BeCl2.

Из полученных тем или иным способом оксида ВеО либо гидроксида бериллия Ве(ОН)2 получают хлорид ВеС12 или фторид BeF2. Фторид восстанавливают до металлического бериллия магнием при 925-1325° С:

BeF2 + Mg → MgF2 + Be

Расплав смеси ВеС12 с NaCl подвергают электролизу при температуре 350° С. Ранее бериллий получали электролизом расплава фторобериллата бария Ba:

Ba → BaF2 + Be + F2

Полученный тем или иным методом металл переплавляют в вакууме. Очищают бериллий до чистоты 99,98 % вакуумной дистилляцией, в небольших количествах пластичный бериллий, содержащий не более 10-4 % примесей, получают зонной плавкой. Иногда при очистке применяют электролитическое рафинирование.

Для получения заготовок и изделий из бериллия используют, в основном, методы порошковой металлургии (в связи с трудностью производства качественных отливок из этого хрупкого металла). При этом в инертной среде бериллий измельчают в порошок и подвергают горячему прессованию в вакууме при 1 140-1 180 °С. Трубы, прутки и прочие профили из бериллия получают выдавливанием при 800-1 050 °С (горячее выдавливание) либо при 400-500 °С (тёплое выдавливание). Листы из бериллия получают прокаткой горячепрессованных заготовок или выдавленных полос при 760-840 °С. Применяются и другие виды обработки - ковка, штамповка, волочение.

Физические свойства

Бериллий - хрупкий, но в то же время очень твердый металл светло-серого цвета с металлическим блеском. Бериллий имеет две кристаллические модификации: α-бериллий (низкотемпературная модификация) имеет гексагональную плотноупакованную решетку типа Mg (что приводит к анизотропии свойств) с параметрами a = 0,22866 нм, с = 0,35833 нм, z = 2; β-бериллий (высокотемпературная модификация) имеет кубическую объемно-центрированную решетку типа Fe с параметром a = 0,25515 нм. Температура перехода от α-модификации к β-модификации приблизительно 1 277 °С. Температура плавления элемента номер четыре (tпл) 1 285 °С, температура кипения (tкип) 2470° С. Бериллий один из самых легких элементов, его плотность в твердом состоянии всего 1,816 г/см3, даже такой легкий металл, как алюминий (плотность 2,7 г/см3), почти в полтора раза тяжелее бериллия. Причем в жидком состоянии плотность бериллия еще ниже (при 1 287 °С плотность равна 1,690 г/см3). Бериллий обладает наиболее высокой из всех металлов теплоемкостью - 1,80 кДж/(кг К) или 0,43 ккал/(кг °С), высокой теплопроводностью - 178 Вт/(м К) или 0,45 кал/(см сек °С) при температуре 50 °С, низким электросопротивлением - 3,6-4,5 мкОм см при комнатной температуре; коэффициент линейного расширения бериллия 10,3-131 (25-100 °С).

Как и у большинства других элементов, многие физические свойства бериллия зависят от качества и структуры металла и заметно меняются с температурой. Например, даже небольшие количества посторонних примесей сильно охрупчивают бериллий. Механические свойства бериллия зависят от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Бериллий плохо обрабатывается резанием и требует применения твердосплавного инструмента. По сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств. По удельной прочности и жесткости он превосходит все другие металлы, сохраняя эти преимущества до температур 500-600 °С. Модуль продольной упругости (модуль Юнга) для бериллия составляет 300 Гн/м2 или 3,104 кгс/мм2 (в 4 раза больший, чем у алюминия, в 2,5 раза превышающий соответствующий параметр титана, и на треть выше, чем у стали). Предел прочности бериллия при растяжении 200-550 Мн/м2 (20-55 кгс/мм2), удлинение 0,2-2 %. Обработка давлением приводит к определённой переориентации кристаллов бериллия, вследствие чего возникает анизотропия, становится возможным значительное улучшение свойств. Предел прочности в направлении вытяжки доходит до 400-800 Мн/м2 (40-80 кгс/мм2), предел текучести 250-600 Мн/м2 (25-60 кгс/мм2), а относительное удлинение до 4-12 %. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Как говорилось ранее - бериллий хрупкий металл - его ударная вязкость 10-50 кДж/м2 (0,1- 0,5 кгс∙м/см2). Температура перехода бериллия из хрупкого состояния в пластическое 200-400 °С. Твердость по Бринеллю для бериллия равна 1 060-1 320 МПа. Бериллий отличается высокими ядерными характеристиками - самое низкое среди металлов эффективное поперечное сечение захвата тепловых нейтронов и самое высокое поперечное сечение их рассеяния.

При огромном количестве достоинств, у бериллия всё же есть несколько недостатков. Во-первых, это высокая стоимость данного металла, связанная с дефицитностью исходного сырья и сложностью его переработки, во-вторых, у бериллия очень низкая хладноломкость. Ударная вязкость технического бериллия ниже 5 Дж/см2. И всё же, уникальная совокупность технических достоинств бериллия делает его незаменимым материалом в различных областях.

Химические свойства

В химических соединениях бериллий двухвалентен (конфигурация внешнего электронного слоя 2s2). По своим химическим свойствам бериллий в значительной степени сходен с алюминием, находящимся в третьем периоде и в третьей группе периодической системы, то есть правее и ниже бериллия. Это явление, носящее название диагонального сходства, наблюдается и у некоторых других элементов, например, бор по многим химическим свойствам сходен с кремнием. Близость свойств бериллия и алюминия объясняется почти одинаковым отношением заряда катиона к его радиусу для ионов Be2+ и Al3+. Элемент номер четыре типично амфотерен - обладает свойствами металла и неметалла, однако металлические свойства преобладают. Компактный металлический бериллий химически мало активен при комнатной температуре - не окисляется на воздухе (до температуры 600 °С), не взаимодействует с горячей и холодной водой, а также водяным паром благодаря образованию на его поверхности защитной пленки оксида бериллия ВеО, придающей бериллию матовый цвет. Однако при нагревании выше температуры 800 °С быстро окисляется. Оксид бериллия BeO встречается в природе в виде редкого минерала - бромеллита. Бериллий легко растворяется в соляной (HCl), разбавленной серной (H2SO4), плавиковой кислотах, слабо реагирует с концентрированной серной и разбавленной азотной при нагревании (HNO3) кислотами и не реагирует с концентрированной азотной - в последнем случае кислота пассивирует металл. В водных растворах щелочей бериллий тоже растворяется с выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH + 2H2O → Na2 + H2

При проведении реакции с расплавом щелочи при 400-500 °С образуются диоксобериллаты:

Be + 2NaOH → Na2BeO2 + H2

Металлический бериллий быстро растворяется в водном растворе бифторида аммония NH4HF2. Эта реакция имеет технологическое значение для получения безводного BeF2 и очистки бериллия:

Be + 2NH4HF2 → (NH4)2 + H2

При взаимодействии бериллия с азотом и аммиаком при 500-900° С получается нитрид Be3N2. При комнатной температуре бериллий реагирует с фтором, а при нагреве с прочими галогенами (образуя галогениды, типа ВеНаl2) и сероводородом. Из галогенидов бериллия наибольшее значение имеют его фторид (BeF2) и хлорид (BeCl2), используемые в процессе переработки бериллиевых руд. С углеродом при 1 700-2 100 °С бериллий образует карбид Ве2С, с фосфором выше 750 °С - фосфид Ве3Р2. В вакууме выше 700 °С бериллий восстанавливает КОН, при 270 °С - ВаО, при 1075° C - MgO, при 1 400 °С - ТiO2 до соответствующих металлов и при 270 °C - SiCl4 до Si. С водородом бериллий практически не реагирует во всем диапазоне температур, однако косвенным путем восстановлением хлорида бериллия с помощью LiAlH4 получен гидрид бериллия (ВеН2), это вещество устойчиво до 240 °С, затем при нагревании оно начинает выделять водород. При высоких температурах элемент №4 взаимодействует с большинством металлов, образуя бериллиды. В жидком состоянии бериллий растворяется во многих металлах (Zn, Al, Fe, Co, Cu, Ni и др.) исключением является магний. С алюминием и кремнием бериллий образует эвтектические сплавы. Твердые растворы элемент номер четыре образует лишь с немногими металлами, наиболее растворим в сплавах с медью (2,75 % по массе), хромом (1,7 %), никелем (2,7 %). Растворимость сильно уменьшается с понижением температуры, в результате чего сплавы, содержащие бериллий, способны к дисперсионному твердению. Растворимость примесных элементов в бериллии чрезвычайно мала.

Мелкодисперсный порошок бериллия сгорает в парах серы, селена, теллура. При поджигании в атмосферном воздухе порошок бериллия горит ярким пламенем, при этом образуются оксид и нитрид. Расплавленный бериллий взаимодействует с большинством оксидов, нитридов, сульфидов и карбидов. Единственно пригодным материалом тиглей для плавки бериллия служит оксид бериллия.

Соли бериллия сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, их водные растворы вследствие гидролиза имеют кислую реакцию. Известен ряд сложных бериллийорганических соединений, гидролиз и окисление некоторых из них протекают с взрывом.

Бериллий относят к группе металлов. И, несмотря на то, что в природе он довольно редкое явление, его часто используют в промышленности. Кто знает, возможно, без него не осуществилась бы давняя мечта человечества — полёт в космос, ведь этот серебристо-серый металл практически незаменим в строении ракет и в аэрокосмической отрасли.

В поисках названия — от Велура до Берилловой земли

Несложно догадаться, что свое наименование бериллий получил от минерала берилла. Но что известно о происхождении корня слова — «берилл»? Предполагается, что название минерала связано с торговым городом Велур на юге Индии, в окрестностях которого было найдено месторождение изумрудов — разновидностей берилла. Берилл означает «кристалл», «жемчуг», или «отбелить, становиться бледным».

В 1798 известный французский химик Луи Никола Воклен выявил в минерале берилле окись неизвестного ранее металла бериллия. Его работа была опубликована в научном журнале. Редактор издания решил дать элементу название «глицина» (с древнегреческого. «глюциний» означает сладкий), так как при растворении в воде его соединения принимали сладковатый вкус. Однако немецкому химику Мартину Клапроту и шведскому минералогу Андерсу Экебергу такое название хим.элемента пришлось не по душе, и приведя в аргумент то, что у солей иттрия также сладкий вкус и дали свое название элементу – «берриловая земля».

Тем не менее, примерно до середины 19 века бериллий все равно называли «глицинием» или «глюцинием». Стоит отметить, что в выявлении этого элемента оставлен и русский след. Русский горный инженер И. В. Авдеев в ходе своих исследований выявил точный состав соединений бериллия. Данные этого ученого пригодилось Дмитрию Менделееву при составлении знаменитой Периодической таблицы, в ней Менделеев отнес бериллий ко 2-ой группе элементов.

Еще один важный факт — Вокленом металл был выделен не в чистом виде, а лишь в виде оксида ВеО, а беспримесный бериллий получили лишь в 1828 году.

Насколько опасен бериллий для организма человека

Бериллий , в отличие от своего минерала бериллонита, для магов, литотерапевтов и астрологов не представляет никакого интереса. Все дело в ядовитых качествах элемента, из-за которых человеку попросту опасно работать с ним без использования специальных приборов.

Известно, что в организм человека с пищей и водой бериллий поступает в малых количествах, в основном он присутствует в томатах и листовом салате.

Преимущественно бериллий попадает в организм человека ингаляционно, через органы дыхания в виде дыма и пара. Поэтому люди, чья работа сопряжена с частым вдыханием пыли, содержащей бериллий, рискуют приобрести такое профессиональное заболевание как бериллиоз (саркоидоз легких). Печальная статистика гласит, что из 100 отравлений бериллием, 10 случаев заканчивались летальным исходом для человека. Первый случай со смертельным исходом был зафиксирован в 1930 году, тогда в воздухе на 1 кубический метр было всего 25 мг бериллия.

При чрезмерной насыщенности бериллия в пище может произойти процесс, вследствие чего разовьется неизлечимый бериллиевый рахит. От него страдают животные, чья область обитания попадает под провинции, богатые бериллием.

Агентство по охране окружающей среды США заявило, что преимущественно поступление элемента в среду обитания и деятельности человека происходит через сжигание каменного угля. Чаще всего он загрязняет почву, поступление его в воду невелико.

В ходе исследований, проведенных Международным агентством по изучению рака, и связанных с влиянием бериллия на здоровье человека, этот химический элемент причислен к потенциально канцерогенным веществам.

Где применяется бериллий

Наибольшие запасы бериллия находятся в США, преимущественно в Юте, кроме того залежи бериллия имеются в Бразилии и России. Бериллий используют для надобностей оборонной промышленности. К примеру, этот металл применяют в производстве реакторов для атомных подлодок, кораблей — в электронном, оптическом и спутниковом оборудовании.

Находят применение бериллию в атомной отрасли. Распространено использование этого металла в нефтедобывающей и газовой промышленностях, а также в изготовлении компьютеров. Может быть использован бериллий для изготовления медицинского оборудования, в частности для ренгтен-аппаратов.

Пик частого применения бериллия в производстве самолетов выпал на 40-ые, военные годы, так как во время Второй Мировой выросла необходимость в быстром и высококачественном изготовлении боевых воздушных кораблей.

Кроме того бериллий незаменим при изготовлении тормозов для аэрокосмического оборудования, тепловых экранов.

Материалы, созданные на основе бериллия, ценны множеством свойств: они и легки, и прочны, и стойки к высоким температурам.

Биогенные элементы 2А группы

бериллий магний кислотность биогенный

Разрушитель костей

1. Бериллий относится к токсичным ультрамикроэлементам. Физиологическая роль бериллия в организме человека изучена недостаточно, однако известно, что бериллий может участвовать в регуляции фосфорно-кальциевого обмена, поддержке иммунного статуса организма.Суточная потребность организма человека точно не установлена, однако есть данные, что оптимальное среднесуточное поступление бериллия составляет 10-20 мкг.

В организм человека бериллий может попадать как с пищей, так и через легкие. При введении в растворимой форме в желудочно-кишечный тракт бериллий взаимодействует с фосфатами и образует плохо растворимый Be3 (PO4) 2 или связывается с белками эпителиальных клеток в прочные протеинаты. Поэтому всасываемость бериллия в желудочно-кишечном тракте невелика и колеблется от 4 до 10% от поступившего количества. Следует отметить, что этот показатель зависит также и от кислотности желудочного сока.

Биологическая роль в организме человека. В основном бериллий участвует в обмене магния и фосфора в ткани. Установлено, что активность соединений бериллия отчетливо проявляется в различных биохимических превращениях, связанных с участием неорганических фосфатов.

Синергисты и антагонисты бериллия. Антагонистом бериллия является магний. Магний в организме преимущественно находится внутри клеток, где образует соединения с белками и нуклеиновыми кислотами, содержащими связи Mg-N и Mg-O. Сходство физико-химических характеристик ионов Be2+ и Mg2+ обусловливает их способность к взаимному замещению в таких соединениях. Это объясняет, в частности, ингибирование магнийсодержащих ферментов при попадании в организм бериллия.

Признаки недостаточности бериллия. Научные данные отсутствуют.

Основные проявления избытка бериллия: поражение легочной ткани (фиброз, саркоидоз), поражение кожи - экзема, эритема, дерматоз (при контактах соединений бериллия с кожей), бериллиоз, лихорадка литейная (раздражение слизистых оболочек глаз и дыхательных путей); эрозии слизистых оболочек желудочно-кишечного тракта, нарушение функций миокарда, печени, развитие аутоиммунных процессов, опухоли.

Бериллий необходим: в древности бериллом (силикат алюминия и бериллия) лечили огромное количество женских заболеваний. Бытовало мнение, что с помощью порошка берилла можно избежать опущения матки, зубной и головной боли, а бериллиевые браслеты защищают от заболеваний яичников и мочевого пузыря. Врачи-литотерапевты современности рекомендуют носить берилл в случае расстройств нервной системы и хронических болезней дыхательной системы.

Пищевые источники бериллия: поступление бериллия с пищей и водой незначительно, значительные количества накапливаются в томатах.

Основной путь поступления бериллия в организм - ингаляционный, т.е. через дыхательные пути. У людей, которые работают в условиях, где есть вероятность вдыхания пыли, содержащей бериллий, может развиться профессиональное заболевание - бериллиоз (бериллиевая или химическая пневмония).

2. Магний.

Magnifique - значит великолепный. От этого французского слова получил название элемент периодической таблицы - магний. На открытом воздухе горит это вещество очень эффектно, великолепным ярким пламенем. Отсюда и магний. Однако великолепен магний не только тем, что горит красиво.

Необычайно важна роль магния в организме человека для обеспечения протекания различных жизненных процессов. И, к счастью, с горением это не связано никак. А какие это процессы? Давайте рассмотрим.

Организма человека содержит, в среднем, 20 - 30 миллиграммов магния. 70% этого количества включают в себя кости скелета, остальной объём содержится в мышцах, железах внутренней секреции. Небольшое количество магния присутствует в крови. Магний успокаивает нервную систему, и центральную, и периферическую. Вообще, магний необходим для регулировки равновесия в мышечной и нервной тканях. Магний как бы обеспечивает «внутренний покой» организма.

Магний является кофактором и активатором некоторых ферментов - энолазы, щелочной фосфатазы, карбоксилазы, гексокиназы. Установлено участие магния в фосфорном и углеводном обмене. Элемент оказывает асептическое и сосудорасширяющее действие. Под воздействием соединений магния усиливается перистальтика кишечника, лучше отделяется желчь и выводится холестерин, снижается нервно-мышечная возбудимость. Магний участвует в синтезе белка. Наряду с вышеперечисленным роль магния в организме человека заключается в оказании щелочного действия на органы и ткани.

С участием магния протекает более трёх сотен ферментативных реакций. Особенно активно магний участвует в процессах, которые связаны с утилизацией энергии, в частности, с расщеплением глюкозы и удалением из организма отработанных шлаков и токсинов. В процессах синтеза белка роль магния - производство ДНК. Получено подтверждение, что тиамин (В1), пиридоксин (В6) и витамин С полноценно усваиваются именно в присутствии магния. Благодаря магнию более устойчивой становится структура клеток во время их роста, эффективнее проходит регенерация и обновление клеток тканей и органов. Магний, этот «великолепный» элемент, стабилизирует костную структуру и придаёт костям твёрдость.

Нехватка магния в организме

К сожалению, человек редко обращает внимание на дефицит магния в организме. А между тем, постоянная нехватка магния в организме вызывает масштабные функциональные нарушения во всех органах. О недостаточности магния говорят судороги в мышцах и дрожь, повышенная раздражительность, ухудшение концентрации. Из-за того, что при недостатке магния снижается уровень кальция, возникает остеопороз костей. Нарушение функционирования паращитовидной железы и сбои в работе сердца тоже являются проявлениями недостатка магния. Начальные симптомы нехватки магния заметить несложно - раздражительность и тремор, внезапные головокружения, сопровождаемые потерей равновесия, упомянутые уже мышечные судороги, покалывающие ощущения в ногах, выпадают волосы, повышается ломкость ногтей. Все эти симптомы наблюдаются у алкоголезависимых людей, а так же у тех, кто в больших объёмах употребляет чёрный чай, кофе, чрезмерно солёные или сладкие блюда. Специалисты уверены, что инфаркт людей в возрасте от 30 до 40 лет вызывается именно недостаточным содержанием магния в сердечной мышце. 50%-ная недостаточность магния может привести к летальному исходу.

Установить, грозит ли вам нехватка магния в организме со всеми вытекающими последствиями, сравнительно просто. Необходимо принять вертикальное положение, напрячь мышцы или с усилием потянуться. Болезненные ощущения в лодыжках - первый тревожный «звонок». Необходимо предпринять меры к восстановлению магниевого баланса. Однако не переусердствуйте. Ибо избыток магния в организме вреден не меньше, чем недостаток.

Избыток магния в организме.

Избыточный «запас» магния в тканях и органах создать довольно непросто, ведь магний эффективно отфильтровывается почками. Передозировка магния часто возникает при неумеренном приеме магнийсодержащих лекарственных средств при прохождении курсов терапии. Наиболее распространенные симптомы избытка магния «на глазок» определить достаточно сложно. Очень трудно увидеть, угнетены ли у человек рефлексы и усилены ли тормозные процессы в ЦНС. Остеопороз вообще диагностируется только по рентгеновскому снимку, а брадикардия - по результатам кардиографии. Однако существуют и видимые проявления. Значительный избыток магния в организме подозревается, если человека постоянно тошнит, человек вялый, у него наблюдается тяжёлая диарея, нарушение ритмов сердцебиения.

В каких продуктах содержится магний.

Наиболее богаты магнием орехи, фасоль, да и вообще, семена всех бобовых культур. К примеру, половина стакана свежей фасоли содержит около 150 миллиграммов магния. Тот же объём бобов сои - более 200 миллиграммов. Сваренные овощи - шпинат, ботва свёклы, капуста кольраби тоже богаты магнием. Однако при длительной обработке овощей в большом количестве воды магний вымывается. Наверное, стоит упомянуть, в каких продуктах содержится магний в малых количествах. Это все мучные изделия, содержащие сдобу. Овощи содержат магний в разных количествах, и зависит оно от почв и от внесения удобрений.

Большое количество магния зафиксировано в какао, овсяной крупе, отрубях пшеницы, в сушеных абрикосах, черносливе, салате, укропе, яйцах.

3. Кальций.

Кальций играет огромную роль в жизнедеятельности человеческого организма. Можно смело сказать, что из всех элементов - кальций является главным, не только в количественном, но и в функциональном отношении. В организме человека содержится 1000-1200 г. кальция, 99% - включено в костную ткань, дентин, эмаль зубов, а 1% играет исключительно важную роль как внутриклеточный кальций, кальций крови и тканевой жидкости. Понятно, что кальций играет важнейшую роль в формировании костей. Кальций участвует в процессах передачи нервных импульсов, обеспечивает равновесие между процессами возбуждения и торможения в коре головного мозга, участвует в регуляции сократимости скелетных мышц и мышцы сердца, влияет на кислотно-щелочное равновесие организма, активность рада ферментов. Он является также важным элементом буферной системы организма, поддерживающей рН (водородный показатель) на необходимом для каждой системы и среды организма уровне. рН крови одна из самых жестких физиологических констант организма. В норме этот показатель может меняться в пределах 7,4 (±0,02). Сдвиг этого показателя хотя бы на 0,1 может привести к тяжелой патологии. При сдвиге рН крови на 0,2 развивается коматозное состояние, на 0,3 - человек погибает. Человеческий организм на 70% состоит из воды, поэтому все вещества, изменяющие ее состав и кислотность, оказывают глобальное воздействие на организм в целом. Практически все жидкости, находящиеся в системе человеческого организма, являются либо нейтральными, либо слабощелочными, за исключением желудочного сока: рН желудочного сока составляет 1,0; здоровой крови - 7,4; здоровой лимфы - 7,5; слюны - 7,4.

Сдвиг равновесия в сторону повышения кислотности системы является одной из основных причин многих заболеваний. Организм с трудом удаляет избыток кислот, поэтому, когда повышается кислотность крови или лимфы на длительное время, возникают различные заболевания. Пища, богатая кальцием, магнием, калием, является щелочеобразующей, тогда как пища, изобилующая фосфором, серой, хлором, - кислотообразующей. Наши повседневные продукты питания являются кислотообразующими, а значит соотношение кислот и щелочей в организме будет 4:1. А в идеале все должно быть как раз наоборот! В кислой среде интенсивно размножаются многие вирусы и бактерии, в щелочной же среде они, как правило, погибают. Когда система организма ощелачивается и возвращается нормальный кислотно-щелочной баланс, человек начинает выздоравливать. В наше время мы редко употребляем формирующую щелочную среду «натуральную» пищу, такую как - свежие фрукты, овощи, орехи. Например, у наших древних предков, первобытных охотников и собирателей, мясо составляло лишь 20% от всей потребляемой пищи. Сегодня многие едят его даже два раза в день, при этом кислотность еще более увеличивается при употреблении алкоголя и никотина. Нужно также еще заметить, что к сожалению, недостаточно просто употреблять пищу, богатую кальцием, его нужно еще и усвоить, а для этого необходимо перевести кальций в ионную форму. Этот процесс происходит в желудке в результате воздействия соляной кислоты, но при снижении её выработки нарушается усвоение кальция. Именно поэтому с возрастом развивается дефицит кальция в организме: к 40 годам он наблюдается у 50% людей, а к 60 годам уже у 90%, что проявляется утомляемостью, ранним старением, снижением концентрации внимания, судорогами икроножных мышц, заболеваниями сердечнососудистой системы, органов дыхания. Так развивается хроническая кальциевая недостаточность.

Недостаточное поступление кальция в организм усиливает выведение его из костей в кровь, вызывая деминерализацию костей и остеопороз.

В крови при этом, определяется нормальное или даже повышенное содержание кальция. Очень часто это смущает врачей, и они рекомендуют ограничить прием БАД и продуктов, содержащих кальций, чем еще больше усугубляют патологический процесс. Постоянное «вымывание» кальция из костей ведет к развитию остеопороза. Он проявляется болями в костях, нарушением двигательной активности и может привести к инвалидности…

Кальций является одним из ключевых элементов в поддержании здоровья организма и выполняет очень много функций. Так в частности, ионы кальция передают возбуждение на мышечное волокно, что обеспечивает сократительную способность мышц, в том числе и миокарда, обеспечивают нормальную проницаемость клеточных мембран, снижают повышенную чувствительность к аллергенам; участвуют в процессе свертывания крови, действуя как кровоостанавливающее средство; влияют на минеральный обмен и многие другие процессы в организме человека. Достаточно просто сказать, что дефицит кальция может стать причиной более чем 100 заболеваний (!).

При нейтрализации избыточной кислотности организма, а также снабжении его необходимыми микроэлементами - мы будем гораздо меньше подвержены таким дегенеративным заболеваниям, как сердечно-сосудистые болезни, рак, артрит, остеопороз и многие другие. Эти болезни можно смело назвать болезнями цивилизации, в частности, потому, что их причиной является наш быстрый образ жизни, ориентированный на готовую, часто замороженную пищу (мясо, рыбу, полуфабрикаты, изделия из муки и сахара, синтетические напитки, сигареты, алкоголь и кофеин.

4. Стронций.

Стронций - это химический элемент, который является составной частью микроорганизмов, в том числе растений и животных. Важно сразу определиться с тем, что природный стронций, который практически не токсичен, нерадиоактивен и применяется при лечении остеопороза, нельзя путать с радиоактивными изотопами стронция. Стабильный природный стронций выполняет незначительные функции в жизнедеятельности живых организмов, всегда присутствуя в тканях, как постоянный спутник кальция.

Стронций в организме человека.

Стронций - остеотроп, элемент избирательно накапливающийся в определенных тканях организмов живых существ. Такими тканями являются кости, то есть накопление стронция в организме человека происходит в скелете. Связано это с тем, что химические свойства стронция сходны со свойствами кальция, являющегося главным строительным элементом скелетов всех живых организмов. Поясняя избирательное накопление стронция в человеческом организме, стоит отметить, что в мышечных тканях этого элемента накапливается всего 1%, все остальное количество - в костных тканях.

Когда возникает дефицит кальция, а организм находится в среде содержащей радиоактивный стронций, то он начинает накапливать данный радионуклид в костях.

С накоплением стронция в костях связана особая проблема - этот радионуклид крайне медленно выводится из организма человека. К примеру, спустя 200 дней организм может избавиться лишь от половины всего накопленного им стронция.

Радиоактивный стронций, накапливаясь в костях, вызывает облучение такого важного органа в организме человека, как костный мозг, что может спровоцировать соответствующие заболевания.

В норме природный стронций быстро накапливается в детских организмах до 4-х лет, так как именно в этот период происходит активное формирование костной ткани и организм использует любой подходящий для этого «строительный материал».

Значение стронция для человека.

Стабильный природный стронций, который нерадиоактивен, играет свою роль в ходе формирования костно-мышечных тканей молодого организма. Его содержание в организме составляет - 0,024% на золу. При нарушении работы сердечно-сосудистой и пищеварительной систем отмечаются изменения обмена стронция. Известно использование стронция для лечения остеопороза, склеротических изменений и в качестве противоопухолевого средства. Главное биологическое значение стронция состоит в его участии в процессах оссификации (формирования костной ткани).

Исследования радиостронция с атомной массой 89 и 90 (Sr89 и Sr90) выявили, что его накапливание происходит с возрастом и напрямую связано с характером питания. Что позволило сделать выводы о том, что рацион питания, богатый кальцием ведет к незначительной задержке стронция в организме и наоборот, недостаток кальция в рационе провоцирует накопление излишков стронция в организме человека. В медицинских целях используется и радиоактивный стронций в виде аппликаторов для лечения глазных и кожных болезней.

Избыток стронция.

Высокая концентрация стронция крайне опасна, особенно для детского организма. Радиоактивный стронций негативно сказывается на растущей костной ткани, облучая ее и приводя к болезням суставов и их деформации, что также сопровождается задержкой в росте ребенка. Такое заболевание называется стронциевым рахитом.

Стронциевый рахит.

Принципиальное отличие стронциевого рахита от обычного в том, что он не излечивается с помощью препаратов витамина D, коррекции питания с оптимальным балансом кальция и фосфора. Однако сам процесс механизма угнетающего воздействия стронция на образование костной ткани еще окончательно не изучен. Стронциевый рахит животных, возникающий в природных условиях известен ученым. Так в местах с высоким содержанием стронция в воде, почве и растительности, у животных отмечается ломкость и деформация костей. Повышенное содержание стронция в почве, а также стронциевый рахит животных непосредственно связан с возникновением уровской болезни (болезни Кашина-Бека) у людей, как разновидности стронциевого paхита. Высокое содержание стронция в костях ведет к облучению и поражению костного мозга. Если процесс облучения становится хроническим (постоянным), то начинает развиваться лучевая болезнь, возможно образование злокачественных опухолей в костных тканях и системах кровообразования. Избыток стронция провоцирует лейкемию, ведет к нарушению работы печени и мозга.

Пути поступления стронция в организм человека.

Попадая в окружающую среду, стронций накапливается в растительном покрове, и как следствие, в мясе и молоке домашних животных, поедающих эту растительность. Почва также накапливает стронций, который может попадать в человеческий организм с пылью.

Таким образом, в организм человека стронций может попасть через:

воду, предельно допустимое содержание стронция в воде - 8 мг/л в нашей стране, 4 мг/л - в США;

пищу, особенно много стронция накапливается в такой растительной пище, как укроп, петрушка, лук, томаты, свекла, редис, капуста, редька, рожь, пшеница и ячмень;

через кожу;

при дыхании через легкие.

Особому риску подвержены люди, работающие со стронцием в областях радиоэлектронной промышленности, металлургии, металлотермии, на производстве радиоактивных, магнитных материалов и др.

Воздействие нерадиоактивного стронция на организм.

Нерадиоактивный стронций может негативно повлиять на организм человека только в исключительных редких случаях при стечении таких факторов, как неполноценное питание, сопряженное с дефицитом витамина Д и кальция, а также при дисбалансе в организма некоторых элементов, таких как молибден, селен, барий и др. В этом случае особую группу риска составляют дети, которые больше подвержены риску поражения суставов, их деформации, возможной задержке рота и другим нарушениям. Однозначно опасен радиоактивный стронций, накапливающийся костными тканями человека, облучающий их и костный мозг, что в свою очередь может вызвать рак костного мозга и лучевую болезнь. Важным способом профилактики поступления в организм стронция с пищей является правильное ее приготовление, так как кулинарная обработка помогает значительно снизить концентрацию этого радионуклида.

Нехватка стронция.

Опыты, проводимые на морских свинках и крысах показали, что при потреблении животными пищи с намеренно низким содержанием стронция отмечалось угнетение их роста, нарушение нормальной кальцификации зубов и костей, увеличение количества случаев развития кариеса зубов. У людей достаточно редко наблюдается пониженное содержание в организме стронция, благодаря широкому распространению и повсеместному употреблению молочных продуктов, богатых кальцием. Иногда пониженное содержание стронция фиксируется у кормящих матерей. Важно понимать, что в организме человека все должно быть сбалансировано и то, что как избыток, так и дефицит какого-либо элемента может вести к нарушению работы организма и возникновению связанных с этим заболеваний.

5. Барий.

В 1774 году известным шведским фармацевтом Карлом Шееле был открыт такой химический элемент, как барий. И это большая досада, что такое важное открытие затянулось, ведь его могли сделать еще в средние века, если бы местные алхимики уделяли больше внимания научным рудам, а не изобретению философского камня. Многие из них мечтали научиться получать чистое золото из дешевых металлов, но тщетные попытки так ни к чему и не привели. Однако именно эти эксперименты и стали предпосылками к открытию бария. В семнадцатом веке Винченцио Касциороло, итальянский алхимик и сапожник в одном лице, обнаружил в горах крупный тяжелый камень и попытался его проверить на наличие золота. С помощью угля и олифы незадачливый золотоискатель прокалил камень, но ничего ценного в нем не обнаружилось, зато произошло кое-что интересное. Камень стал светиться красным светом, причем это свечение не пропадало даже после полного остывания. Винченцио рассказал о своем открытии коллегам, которые принялись проводить различные опыты над подобными камнями, желая получить золото. И только через 170 лет Шееле открыл оксид бария. А вот в чистом виде этот металл удалось получить английскому химику Хэмфри Дэви лишь в 1808 году. Свое название барий получил, благодаря своей тяжести, ведь по-гречески «барий» значит «тяжелый». И в самом деле, среди всех легких металлов (а именно к ним барий и относится) этот элемент обладает самым значительным весом. Так что название вполне оправданно.

Барий - это щелочноземельный металл, он обладает серебристо-белым цветом, а по текстуре этот элемент мягкий и немного вязкий. В чистом виде в природе его не найти. Барий получают искусственно из сульфатов, карбонатов, силикатов, а также из барита и тяжелого шпата. Кроме того, данный металл может содержаться в воде и живых организмах: растениях и органах животных.

Биологическая роль

Какова же роль бария в жизни человека. По заявлениям ученых, этот металл еще недостаточно тщательно изучен. И, по их дружному мнению, жизненно важной ценностью он не обладает. Но процесс изучения металла еще не окончен, так что все может в корне измениться, а сейчас барий относят к токсичным ультрамикроэлементам. При различных заболеваниях ЖКТ, а также сердечнососудистых заболеваниях в организме резко снижается уровень бария. Также стало известно, что малое количество этого минерала способно оказывать влияние на гладкую мускулатуру кишечника, например, при отравлениях барием могут появиться мышечная слабость и даже мышечные спазмы.

Симптомы передозировки и дефицита бария

В человеке с массой тела около 70 кг содержится не менее 20-22 мг бария. В кишечнике в самых малых количествах всасываются соли бария, а вот в дыхательных путях этого элемента в 5-6 раз больше. Барий содержится не только в мышечных тканях, он есть и в головном мозге, и в селезенке, и в хрусталике глаза, и в крови, в костях и зубах. Последние содержат наибольшее количество бария, по сравнению с остальными органами и тканями. В зубах и костях - около 90% от общего количества. Этот элемент очень удачно гармонирует с кальцием, при необходимости даже может заменить его, так как эти минералы очень близки по своим химически свойствам. Но при чрезмерном количестве бария, к примеру, когда превышено его содержание в почвах, может произойти нарушение обмена кальция. А вследствие этого можно заработать уровскую болезнь - тяжелейшее заболевание, на фоне которого из-за быстрого вымывания кальция замедляются процессы окостенения, а опорно-двигательный аппарат скорейшим образом изнашивается. Доза бария, наносящая вред здоровью человека, примерно 200 мг. А смертельно опасная доза определена нечетко, по одним источникам она начинается от 0,8 г, по другим - от 3,8 г. Но все-таки более вероятным кажется первый вариант. Барий не вызывает онкологических заболеваний или мутаций, однако его опасность кроется в его токсичности. Безопасен лишь сульфат бария, который применяется в медицине, его применяют для рентгена. Когда содержание бария в организме превышено, он начинает поражать клетки крови, мышечные ткани, нейроны, ткани сердца и другие важные органы. Избыточное поступление бария в человеческий организм в большинстве случаев связано с производственными или бытовыми отравлениями. По крайне мере, так это явление объясняют ученые. Многие отрасли промышленности применяют этот металл. Среди них можно выделить нефтяную, электрическую, бумажную, стекольную, лакокрасочную, металлургическую, резиновую, керамическую, полиграфическую и многие другие. При обработке древесины и при производстве инсектицидных средств применяют фторид бария. Таким образом, он используется и в сельскохозяйственной сфере, а ведь это вещество токсично для людей, животных и растений в равной степени. Вот почему его нужно как следует изучать. По мнению ученых, в тех районах сельской местности, где активно применяют барий для борьбы с вредителями, намного чаще встречается такое заболевание, как лейкоз. И даже такие банальные вещи, как штукатурка, содержат соединения того металла, а значит строители также имеют риск заработать какое-либо заболевание на фоне избытка бария.

Очень опасны водорастворимые соли бария: карбонаты, сульфаты, нитраты и хлориды. Безопасными считаются только фосфаты и сульфаты бария.

При отравлении солями бария появляются следующие симптомы: ощущение жжения во рту, обильное выделение слюны, рвота, кишечные колики, диарея, обильное потоотделение и бледность кожных покровов. Нервная система тоже подает сигналы бедствия: появляется шум в ушах, нарушается координация, расстраивается мозговая деятельность. Пульс слабеет, могут произойти аритмия или брадикардия. Существует и хроническая форма отравления барием. Правда, ее проявление не столь резкое, как при острой форме, но она не менее опасна для человека. Подобная проблема может возникнуть только у людей, работающих на производстве, где воздух загрязнен соединениями бария. Дело в том, что вдыхание пыли с такими соединениями приводит к многочисленным заболеваниям дыхательных путей, которые отягощаются фиброзным процессом. Рубцы и утолщения в тканях приводят к тяжелой одышке, которая постоянно прогрессирует, принося с собой сухой неудержимый кашель и боли в груди. Последствиями могут стать не только изменение дыхательных путей и легочная недостаточность, но и пневмония, различные бронхиты и туберкулез. Избыток бария довольно сложно скорректировать. В некоторых ситуациях благополучный исход практически невозможен. Чтобы нейтрализовать соли бария, нужно ввести сернокислые соли кальция и магния. Только они способны преобразовать соли бария в сульфаты, которые потом можно спокойно вывести из организма. При тяжелой степени отравления помощь должна быть молниеносной, что порой бывает невозможным, в таких ситуациях летальный исход может наступить в течение 24 часов. Уже 0,2-0,5 г этих веществ могут вызвать тяжелейшее отравление, не говоря уже о 0,8 г, которые могут привести к смерти. При таком сильном отравлении необходимо в срочном порядке сделать промывание желудка и клизму с раствором сульфата магния и натрия. С помощью рвотных средств можно удалить нерастворимые соли бария, но это уже должно происходить в условиях стационара, как и последующее лечение. Мало кому придет в голову принять барий внутрь, однако в медицинской практике были случаи, когда его употребляли ошибочно вместо другого препарата. Вот почему нужно знать, как вести себя в подобной ситуации.

Если говорить о работе на вредном производстве, то здесь главное - это вовремя сделать спектральный анализ волос, специальная процедура, которая поможет определить наличие хронического отравления солями бария. Ведь можно долгие годы не замечать проблемы, пока однажды не наступит кризис. Конечно, цена процедуры немаленькая, но здоровье все равно дороже. Так что стоит обезопасить себя и провериться, а в придачу к этому желательно время от времени проводить анализ питьевой воды в своем регионе.

Суточная потребность в барии

Несмотря на то, что свойства бария изучены плохо, существует суточная норма этого минерала. Она равна 0,3-0,9 мг в сутки. Воздействие бария на человеческий организм не всегда имеет негативный характер. Когда он работает вместе с ацетилхолином (это один из главных нейромедиаторов), их совместное действие расслабляет сердечную мышцу.

Человеческий организм получает барий вместе с водой и пищей. Этим минералом очень богаты морепродукты, в них его во много раз больше, чем в морской воде, а в морских водорослях его еще больше. То же самое касается и растений: если почва богата барием, то выросшее на ней растение будет в разы превышать это количество. В воде тоже может быть много бария, все зависит от местонахождения источника, а вот в воздухе этого элемента немного.

6. Радий.

Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию - около 80% поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон - газообразный радиоактивный продукт распада радия.

Радий (лат. Radium), Ra, радиоактивный химический элемент II группы периодической системы Менделеева, атомный номер 88. Известны изотопы радия с массовыми числами 213, 215, 219-230. Самым долгоживущим является a-радиоактивный 226Ra с периодом полураспада около 1600 лет. В природе как члены естественных радиоактивных рядов встречаются 222Ra (специальное название изотопа - актиний-икс, символ AcX), 224Ra (торий-икс, ThX), 226Ra и 228Ra (мезоторий-I, MsThI).

Радий в организме. Из естественных радиоактивных изотопов наибольшее биологическое значение имеет долгоживущий 226Ra. Радий неравномерно распределён в различных участках биосферы. Существуют геохимические провинции с повышенным содержанием радия. Накопление радия в органах и тканях растений подчиняется общим закономерностям поглощения минеральных веществ и зависит от вида растения и условий его произрастания. Как правило, в корнях и листьях травянистых растений радия больше, чем в стеблях и органах размножения; больше всего радия в коре и древесине. Среднее содержание радия в цветковых растениях 0,3-9,0×10-11 кюри/кг, в мор. водорослях 0,2-3,2×10-11 кюри/кг.

В организм животных и человека поступает с пищей, в которой он постоянно присутствует (в пшенице 20-26×10-15 г./г, в картофеле 67-125×10-15 г./г, в мясе 8×10-15 г./г), а также с питьевой водой. Суточное поступление в организм человека 226Ra с пищей и водой составляет 2,3×10-12 кюри, а потери с мочой и калом 0,8×10-13 и 2,2×10-12 кюри. Около 80% поступившего в организм радия (он близок по химическим свойствам Ca) накапливается в костной ткани. Содержание радия в организме человека зависит от района проживания и характера питания. Большие концентрации радия в организме вредно действуют на животных и человека, вызывая болезненные изменения в виде остеопороза, самопроизвольных переломов, опухолей. Содержание радия в почве свыше 1×10-7-10-8 кюри/кг заметно угнетает рост и развитие растений.


Выводы


Элементы 2А группы т. Менделеева играют важную роль в развитии, жизнедеятельности, осуществлении различных физиологических и патологических процессов организма человека. Они влияют как положительно, так и отрицательно на организм. Многие элементы укрепляют здоровье человека, а при передозировке некоторых могут быть тяжелые последствия, в основном они поступают в организм через пищу. Можно сказать, что некоторые элементы группы составляют основу организма, такие как Са и Мg.

Это важно, т.к. микроэлементы составляют единую систему и дефицит одних элементов, вызывает накопление других, и происходит их взаимное замещение.

Как Вы могли понять, Наш проект полностью посвящен спектральному анализу и разъяснению его принципа в рамках контроля здоровья человека. Мы с радостью поможем Вам пройти данное исследование, разъясним полученные результаты и при необходимости дадим рекомендации по восстановлению элементного статуса Вашего организма.

Наши специалисты с радостью ответят на возникшие у Вас вопросы, относительно исследования методом спектрального анализа!

Уникальность данного метода, позволяет исследовать образцы с любой части Нашей страны и региона мира , в виде обычного письма, это действительно уникальный инструмент по контролю здоровья организма.

Помните, что систематический контроль показателей организма, это пол дела, на пути к здоровью и долголетию.

Спасибо за Ваше внимание, с уважением, компания 33 Элемента!

Публикации

Вредно ли есть серебряной посудой детям и взрослым? Миф или реальная опасность для организмаЧитать >>

Как пройти исследование если Вы территориально находитесь не в Санкт-Петербурге?Читать >>

Данный обзор акцентирует внимание на заглавие статьи – “Почему люди выбирают клинику МЧС России?”.Читать >>

Концепция контроля здоровья, как фактор правильного понимания и отношения человека к организмуЧитать >>