Амины проявляют основные свойства. Амины — понятие, свойства, применение

Амины — органические производные аммиака, содержащие аминогруппу NH 2 и органический радикал. В общем случае формула амина представляет собой формулу аммиака, в которой атомы водорода заменены на углеводородный радикал.

Классификация

  • По тому, сколько в аммиаке атомов водорода заменено радикалом, различают первичные амины (один атом), вторичные, третичные. Радикалы могут быть одинаковыми или разнотипными.
  • Амин может содержать не одну аминогруппу, а несколько. По этой характеристике их делят на моно, ди-, три-, … полиамины.
  • По типу радикалов, связанных с атомом азота, различают алифатические (не содержащие циклических цепей), ароматические (содержащие цикл, самый известный — анилин с бензольным кольцом), смешанные (жиро-ароматические, содержащие циклический и нециклический радикалы).

Свойства

В зависимости от длины цепочки атомов в органическом радикале, амины могут быть газообразными (три-, ди-, метиламин, этиламин), жидкими или твердыми веществами. Чем длиннее цепь, тем тверже вещество. Простейшие амины водорастворимы, но по мере перехода к более сложным соединениям водорастворимость уменьшается.

Газообразные и жидкие амины — вещества с выраженным запахом аммиака. Твердые практически лишены запаха.

Амины проявляют в химических реакциях сильные оснóвные свойства, в результате взаимодействия с неорганическими кислотами получаются алкиламмониевые соли. Реакция с азотистой кислотой является качественной для этого класса соединений. В случае первичного амина получается спирт и газообразный азот, со вторичным — нерастворимый желтый осадок с выраженным запахом нитрозодиметиламина; с третичным реакция не идет.

Реагируют с кислородом (горят на воздухе), галогенами, карбоновыми кислотами и их производными, альдегидами, кетонами.

Практически все амины, за редким исключением, ядовиты. Так, самый знаменитый представитель класса, анилин, легко проникает через кожный покров, окисляет гемоглобин, угнетает ЦНС, нарушает обмен веществ, что может привести даже к смерти. Токсичны для человека и пары.

Признаки отравления:

— одышка,
— синюшность носа, губ, кончиков пальцев,
— частое дыхание и усиленное сердцебиение, потеря сознания.

Первая помощь:

— смыть хим.реактив ватой со спиртом,
— обеспечить доступ к чистому воздуху,
— вызвать «Скорую помощь».

Применение

— В качестве отвердителя эпоксидных смол.

— Как катализатор в химпроме и металлургии.

— Сырье для получения полиамидных искусственных волокон, например, нейлона.

— Для изготовления полиуретанов, пенополиуретанов, полиуретановых клеев.

— Исходный продукт для получения анилина — основы для анилиновых красителей.

— Для производства лекарственных средств.

— Для изготовления фенолформальдегидных смол.

— Для синтеза репеллентов, фунгицидов, инсектицидов, пестицидов, минеральных удобрений, ускорителей вулканизации резины, антикоррозионных реактивов, буферных растворов.

— Как добавка к моторным маслам и топливам, сухое горючее.

— Для получения светочувствительных материалов.

— Уротропин используется как пищевая добавка, а также ингредиент косметических средств.

В нашем интернет-магазине можно купить реактивы, относящиеся к классу аминов.

Метиламин

Первичный алифатический амин. Востребован как сырье для производства лекарств, красителей, пестицидов.

Диэтиламин

Вторичный амин. Применяется в качестве исходного продукта при получении пестицидов, лекарств (например, новокаина), красителей, репеллентов, добавок к топливу и моторным маслам. Из него изготавливают реактивы для защиты от коррозии, для обогащения руд, отверждения эпоксидных смол, ускорения процессов вулканизации.

Триэтиламин

Третичный амин. Используется в химпроме в качестве катализатора при производстве резин, эпоксидных смол, пенополиуретанов. В металлургии — катализатор отвердения в безобжиговых процессах. Сырье в органическом синтезе лекарств, минеральных удобрений, средств для борьбы с сорняками, красок.

1-бутиламин

Третбутиламин, соединение, в котором с азотом связана трет-бутильная органическая группа. Вещество применяется при синтезе усилителей вулканизации резины, лекарств, красителей, дубильных веществ, препаратов против сорняков и насекомых.

Уротропин (гексамин)

Полициклический амин. Востребованное в экономике вещество. Используется как пищевая добавка, лекарство и компонент лекарств, ингредиент косметических средств, буферных растворов для аналитической химии; как сухое горючее, отвердитель полимерных смол, в синтезе фенолформальдегидных смол, фунгицидов, взрывчатых веществ, средств для защиты от коррозии.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Амины - это производные аммиака (NH 3), в молекуле которого один, два или три атома водорода замещены уг­леводородными радикалами.

По числу углеводородных радикалов, замещающих атомы водорода в молекуле NH 3 , все амины можно разделить на три типа:

Группа - NH 2 называется аминогруппой. Существуют также амины, которые содержат две, три и более аминогрупп

Номенклатура

К названию органических остатков, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке: CH3NC3H - метилпропиламин, CH3N(C6H5)2 - метилдифениламин. Для высших аминов название составляется, взяв за основу углеводород, прибавлением приставки «амино», «диамино», «триамино», указывая числовой индекс атома углерода. Для некоторых аминов используются тривиальные названия: C6H5NH2 - анилин (систематическое название - фениламин).

Для аминов возможна изомерия цепи, изомерия положения функциональной группы, изомерия между типами аминов

Физические свойства

Низшие предельные первичные амины - газообразные вещества, имеют запах аммиака, хорошо растворяются в воде. Амины с большей относительной молекулярной массой - жидкости или твердые вещества, растворимость их в воде с увеличением молекулярной массы уменьшается.

Химические свойства

По химическим свойствам амины похожи на аммиак.

1. Взаимодействие с водой - образование гидроксидов замещенного аммония. Раствор аммиака в воде обладает слабыми щелочными (основными) свойствами. Причина основных свойств аммиака - наличие у атома азота неподеленной электронной пары, которая участвует в образовании донорно-акцепторной связи с ионом водорода. По этой же причине амины также являются слабыми основаниями. Амины - органические основания.

2. Взаимодействие с кислотами - образование солей (реакции нейтрализации). Как основание аммиак с кислотами образует соли аммония. Аналогично при взаимодействии аминов с кислотами образуются соли замещенного аммония. Щелочи, как более сильные основания, вытесняют аммиак и амины из их солей.

3. Горение аминов. Амины являются горючими веществами. Продуктами горения аминов, как и других азотсодержащих органических соединений, являются углекислый газ, вода и свободный азот.

Алкилирование - введение алкильного заместителя в молекулу органического соединения. Типичными алкилирующими агентами являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы. Катализаторами алкилирования являются минеральные кислоты, кислоты Льюиса а также цеолиты.

Ацилирование. При нагревании с карбоновыми кислотами, их ангидридами, хлорангидридами или сложными эфирами первичные и вторичные амины ацилируются с образованием N-замещенных амидов, соединений с фрагментом -С(О)N<:

Реакция с ангидридами протекает в мягких условиях. Ещё легче реагируют хлорангидриды, реакция проводится в присутствии основания, чтобы связать образующийся HCl.

Первичные и вторичные амины взаимодействуют с азотистой кислотой различным образом. При помощи азотистой кислоты первичные, вторичные и третичные амины отличают друг от друга. Из первичных аминов образуются первичные спирты:

C2H5NH2 + HNO2 → C2H5OH + N2 +H2O

При этом выделяется газ (азот). Это признак того, что в колбе первичный амин.

Вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины - соединения, содержащие фрагмент >N-N=O:

(C2H5)2NH + HNO2 → (C2H5)2N-N=O + H2O

Вторичные амины сложно не узнать, по лаборатории распространяется характерный запах нитрозодиметиламина.

Третичные амины при обычной температуре в азотистой кислоте просто растворяются. При нагревании возможна реакция с отщеплением алкильных радикалов.

Способы получения

1.Взаимодействие спиртов с аммиаком при нагревании в присутствии Аl 2 0 3 в качестве катализатора.

2.Взаимодействие алкилгалогенидов (галогеналканов) с аммиаком. Образовавшийся первичный амин может вступать в реакцию с избытком алкилгалогенида и аммиака, в результате чего образуется вторичный амин. Аналогично могут быть получены третичные амины

    Аминокислоты. Классификация, изомерия, номенклатура, получение. Физические и химические свойства. Амфотерные свойства, биполярная структура, изоэлектрическая точка. Полипептиды. Отдельные представители: глицин, аланин, цистеин, цистин, а-аминокапроновая кислота, лизин, глутаминовая кислота.

Аминокислоты - это производные углеводородов, содержащие аминогруппы (-NH 2) и карбоксильные группы –СООН.

Общая формула: (NH 2) f R(COOH) n где m и n чаще всего равны 1 или 2. Таким образом, аминокислоты являются соединениями со смешанными функциями.

Классификация

Изомерия

Изомерия аминокислот, как и гидроксикислот, зависит от изомерии углеродной цепи и от положения аминогруппы по отношению к карбоксилу (a -, β - и γ- аминокислоты и т.д.). Кроме того, все природные аминокислоты, кроме аминоуксусной, содержат асимметрические атомы углерода, поэтому они имеют оптические изомеры (антиподы). Различают D- и L-ряды аминокислот. Следует отметить, что все аминокислоты, входящие в состав белков, относятся к L-ряду.

Номенклатура

Аминокислоты обычно имеют тривиальные названия (например, аминоуксусная кислота называется иначе гликоколом или иицином, а аминопропионовая кислота - аланином и т.д.). Название аминокислоты по систематической номенклатуре складывается из названия соответствующей карбоновой кислоты, производным которой она является, с добавлением в качестве приставки слова амино-. Положение аминогруппы в цепи указывается цифрами.

Способы получения

1.Взаимодействие α-галогенкарбоновых кислот с избытком аммиака. В ходе этих реакций происходит замещение атома галогена в галогенкарбоновых кислотах (об их получении см. § 10.4) на аминогруппу. Вьщеляющийся при этом хлороводород связывается избытком аммиака в хлорид аммония.

2.Гидролиз белков. При гидролизе белков обычно образуются сложные смеси аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

Физические свойства

Аминокислоты - бесцветные кристаллические вещества, хорошо растворяются в воде, температура плавления 230-300°С. Многие α-аминокислоты имеют сладкий вкус.

Химические свойства

1. Взаимодействие с основаниями и с кислотами:

а) как кислота (участвует карбоксильная группа).

б) как основание (участвует аминогруппа).

2. Взаимодействие внутри молекулы - образование внутренних солей:

а) моноаминомонокарбоновые кислоты (нейтральные кислоты). Водные растворы моноаминомонокарбоновых кислот нейтральны (рН = 7);

б) моноаминодикарбоновые кислоты (кислые аминокислоты). Водные растворы моноаминодикарбоновых кислот имеют рН < 7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н + ;

в) диаминомонокарбоновые кислоты (основные аминокислоты). Водные растворы диаминомонокарбоновых кислот имеют рН > 7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН - .

3. Взаимодействие аминокислот друг с другом - образование пептидов.

4. Взаимодействуют со спиртами с образованием сложных эфиров.

Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК": соответственно для аланина.

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК" для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой.

Полипептиды содержат более десяти аминокислотных остатков.

Глицин (аминоуксусная кислота, аминоэтановая кислота) - простейшая алифатическая аминокислота, единственная аминокислота, не имеющая оптических изомеров. Эмпирическая формула C2H5NO2

Аланин (аминопропановая кислота) - алифатическая аминокислота. α-аланин входит в состав многих белков, β-аланин - в состав ряда биологически активных соединений. Химическая формула NH2 -CH -CH3 -COOH. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-сульфанилпропановая кислота) - алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов. Эмпирическая формула C3H7NO2S.

Цисти́н (хим.) (3,3"-дитио-бис-2-аминопропионовая к-та, дицистеин) - алифатическая серосодержащая аминокислота, бесцветные кристаллы, растворимые в воде.

Цистин - некодируемая аминокислота, представляющая собой продукт окислительной димеризации цистеина, в ходе которой две тиольные группы цистеина образуют дисульфидную связь цистина. Цистин содержит две аминогруппы и две карбоксильных группы и относится к двухосновным диаминокислотам. Эмпирическая формула C6H12N2O4S2

В организме находятся в основном в составе белков.

Аминокапроновая кислота (6-аминогексановая кислота или ε-аминокапроновая кислота) - лекарственное гемостатическое средство, тормозит превращение профибринолизина в фибринолизин. Брутто-

формула C6H13NO2.

Лизин (2,6-диаминогексановая кислота) - алифатическая аминокислота с выраженными свойствами основания; незаменимая аминокислота. Химическая формула: C6H14N2O2

Лизин входит в состав белков. Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов.

Глутаминовая кислота (2-аминопентандиовая кислота) - алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене. Химическая формула C5H9N1O4

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

    Простые и сложные белки. Пептидная связь. Понятие о первичной, вторичной, третичной и четвертичной структуре белковой молекулы. Типы связей, определяющих пространственное строение молекулы белка (водородные, дисульфидные, ионные, гидрофобные взаимодействия). Физические и химические свойства белков (реакции осаждения, денатурации, цветные реакции). Изоэлектрическая точка. Значение белков.

Белки - это природные высокомолекулярные соединения (биополимеры), структурную основу которых составляют полипептидные цепи, построенные из остатков α-аминокислот.

Простые белки (протеины) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.

Сложные белки (протеиды) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа.

Пептидная связь - вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты.

Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.

Третичная структура - пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) - взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Физические свойства

Свойства белков так же разнообразны, как и функции, которые они выполняют. Одни белки растворяются в воде,-образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

В радикалах аминокислотных остатков белки содержат различные функциональные группы, которые способны вступать во многие реакции. Белки вступают в реакции окисления-восстановления, этерификации, алкилирования, нитрования, могут образовывать соли как с кислотами, так и с основаниями (белки амфотерны).

Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.

Амины

Классификация и номенклатура

Аминами являются органические производные аммиака, в молекуле которого один, два или три атома водорода заменены радикалами. По этому признаку различают первичные (RNH 2), вторичные (R 2 NH) и третичные (R 3 N) амины.

В зависимости от характера радикала амины могут быть предельными или ароматиче­скими, а также предельно-ароматическими (метиламин, анилин и метиланилин, соответ­ственно). С атомом азота может быть связан и разветвленный радикал (например, трет бутиламин), и поликонденсированный, что демонстрируется примером адамантиламина (аминоадамантана), обладающего биологическим действием и применяемого в медицине

По принципам рациональной номенклатуры название этого класса веществ складывает­ся из названия радикалов при атоме азота, именуемого амином. В названии первичных ами­нов по международной номенклатуре аминному атому азота присваивается название ами- но, употребляемое с указанием его местоположения перед названием углеводородной цепи. Впрочем, многие амины сохранили.свои тривиальные названия, например, анилин".

Кроме аминогруппы в молекулах органических веществ могут находиться и иные заме­стители, как это, к примеру, имеет место в случае сульфаниловой кислоты. Аминный атом азота может быть включен и в насыщенный цикл. К числу насыщенных гетероцикличес­ких аминов относится построенный с напряжением трехчленный этиленимин, обладающий сильным мутагенным действием. Этилениминовый цикл входит в состав молекул некото­рых лекарств. Без напряжения построены тетрагидропиррольный и пиперидиновый циклы, присутствующие в молекулах ряда алкалоидов (в том числе никотина и анабазина, см. разд. 20.4). С их участием, как и с помощью морфолинового кольца, построены молекулы многих лекарственных средств.

Гетероциклическими ароматическими аминами являются, к примеру, пиррол и пиридин. Наконец, аминогруппа может быть связана и с гетероциклом, что иллюстрируется приме­ром аденина (6-аминопурина) - незаменимого фрагмента нуклеиновых кислот.

К числу производных аммиака относятся и органические вещества, которые можно по­строить из солей аммония или его гидроксида замещением всех четырех атомов водорода различными углеводородными радикалами, как это видно на примере тетраметиламмоний гидроксида:

Другим примером тетразамещенных аммонийных производных - четвертичных аммо­ниевых оснований или их солей - служит нейрин, токсичное вещество, образующееся в про­цессе гниения тканей животного происхождения.

Четвертичный атом азота может входить в состав гетероциклов, например, соответству­ющей соли из ряда пиридина - N-алкилпиридиниевой соли. К таким четвертичным солям относятся некоторые алкалоиды. Кроме того, четвертичный атом азота входит в состав мно­гих лекарственных веществ и некоторых биомолекул.

Выше приведенные примеры демонстрируют многообразие аминосоединений и их боль­шое медико-биологическое значение. К этому необходимо добавить, что аминогруппа вхо­дит в состав таких классов биомолекул, как аминокислоты и белки, нуклеиновые кислоты, присутствует в ряде природных производных углеводов, именуемых аминосахарами. Ами­ногруппа является важнейшей функциональной группой алкалоидов и многочисленных ле­карственных препаратов самого различного назначения. Отдельные примеры таких веществ будут приведены ниже.

24.3.2. Амины как органические основания

Наличие свободной электронной пары азота сообщает аминам свойства оснований. Поэто­му характерной особенностью аминов является реакция с кислотами с образованием соответ­ствующих аммониевых солей, что видно из реакции для первичного предельного амина:

Аналогично из анилина образуется анилиниевая соль, из пиридина - пиридиниевая и т.д. Подобно аммиаку, амины в водных растворах создают щелочную среду, согласно урав­нению:

Количественно основность азотсодержащих оснований в водной среде отражается вели­чиной константы равновесия ь ) (чаще используют величинурК ь ) илир/С а (ВН +), характе­ризующей кислотность сопряженной кислоты данного основания.

Наиболее сильными основаниями будут соединения, содержащие атом азота, у которо­го неподеленная пара азота находится на неподеленной 5р 3 -гибридной орбитали (алифати­ческие амины, аммиак, аминокислоты), а наиболее слабыми - те, у которых эта пара уча­ствует в р,п-сопряжении (амиды, пиррол, пиридин).

Электронодонорные заместители, к которым относятся алкильные группы, должны уве­личивать основность аминов, поскольку увеличивают электронную плотность у атома азота. Так, метиламин (рК ь = 3,27) является более сильным основанием, чем аммиак (рК ь = 4,75), а диметиламин (рК ь = 3,02) - более сильное основание, чем метиламин. Однако при переходе к триметиламину, вопреки ожиданию, основность несколько падает (рК ь = 4,10). Причина это­го состоит в том, что с увеличением числа заместителей у атома азота подход протона все бо­лее затрудняется. Таким образом, здесь речь идет не об электронном, а пространственном вли­янии заместителей. Это воздействие заместителей называют стерическим фактором.

Ароматические амины - более слабые основания, чем предельные, из-за электроноак-цепторного эффекта ароматического кольца. Поэтому невысока основность и пиридина. Накопление фенильных заместителей заметно подавляет активность электронной пары атома азота. Так, рК, дифениламина составляет 13,12, а трифениламин совсем не прояв­ляет свойств основания.

Чрезвычайно низкая основность пиррола вызвана тем, что в его молекуле электронная пара атома азота вовлечена в образование бл-электронной ароматической связи. На ее свя­зывание с протоном требуется значительная дополнительная затрата энергии. В результа­те образования пирролиевых солей ароматическая связь, а, следовательно, и стабильность молекулы исчезают. Этим объясняется то, что пиррол в кислой среде быстро осмоляется.

Интересно отметить, что сильный электроноакцепторный эффект, оказываемый пир-рольным циклом на атом азота, приводит к ослаблению связи N-H, в силу чего пиррол спо­собен проявлять свойства слабой кислоты (рК а = 17,5).

Под действием такого активного металла, как калий, может быть приготовлена его кали­евая соль - пиррол-калий.

Кислотные свойства связи N-H пиррольного цикла объясняют, в частности, способность порфина и его природных производных к образованию солей с катионами металлов. Два пиррольных кольца молекулы порфирина координируются с катионом за счет электронных пар своих атомов азота, а два других - заменяя атомы водорода, как и молекула самого пир­рола при образовании пиррол-калия. Именно такими солями и являются хлорофилл и ге­моглобин

I. По числу углеводородных радикалов в молекуле амина:


Первичные амины R-NH 2


(производные углеводородов, в которых атом водорода замещен на аминогруппу -NH 2),


Вторичные амины R-NH-R"

II. По строению углеводородного радикала:


Алифатические, например: C 2 H 5 -NH 2 этиламин




Предельные первичные амины

Общая формула C n H 2n+1 NH 2 (n ≥ 1); или C n H 2n+3 N (n ≥ 1)

Номенклатура

Названия аминов (особенно вторичных и третичных) обычно дают по радикально-функциональной номенклатуре, перечисляя в алфавитном порядке радикалы и добавляя название класса - амин. Названия первичных аминов по заместительной номенклатуре составляют из названия родоначального углеводорода и суффикса - амин.


CH 3 -NH 2 метанамин (метиламин)


CH 3 -CH 2 -NH 2 этанамин (этиламин)




Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:


H 2 N-CH 2 -CH 2 -CH 2 -CH 2 -NH 2 1,4-диаминобутан.


Анилин (фениламин) C 6 H 5 NH 2 в соответствии с этим способом называется аминобензолом.

Гомологический ряд предельных аминов

СН 3 NH 2 - метиламин (первичный амин), (СН 3) 2 NH - диметиламин (вторичный амин), (СН 3) 3 N - триметиламин (третичный амин) и т.д.

Изомерия

Структурная изомерия


Углеродного скелета, начиная с С 4 H 9 NH 2:






Положения аминогруппы, начиная с С 3 H 7 NH 2:



Изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:




Пространственная изомерия


Возможна оптическая изомерия, начиная с С 4 H 9 NH 2:


Оптические (зеркальные) изомеры - пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение (как левая и правая руки).


Физические свойства

Низшие предельные амины - газообразные вещества; средние члены гомологического ряда - жидкости; высшие амины - твердые вещества. Метиламин имеет запах аммиака, другие низшие амины - резкий неприятный запах, напоминающий запах селедочного рассола.


Низшие амины хорошо растворимы в воде, с ростом углеводородного радикала растворимость аминов падает. Амины образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организмах человека и животных из аминокислот (биогенные амины) .

Химические свойства

Амины, как и аммиак, проявляют ярко выраженные свойства оснований, что обусловлено наличием в молекулах аминов атома азота, имеющего неподеленную пару электронов.


1. Взаимодействие с водой



Растворы аминов в воде имеют щелочную реакцию среды.


2. Взаимодействие с кислотами (образование солей)



Амины выделяются из их солей при действии щелочей:


Cl + NaOH → СН 3 CH 2 NH 2 + NaCl + Н 2 O


3. Горение аминов


4CH 3 NH 2 + 9O 2 → 4СO 2 + 10Н 2 O + 2N 2


4. Реакция с азотистой кислотой (отличие первичных аминов от вторичных и третичных)


Под действием HNO 2 первичные амины превращаются в спирты с выделением азота:


C 2 H 5 NH 2 + HNO 2 → С 2 Н 5 OН + N 2 + Н 2 O

Способы получения

1. Взаимодействие галогеналканов с аммиаком


СН 3 Вr + 2NH 3 → CH 3 NH 2 + NH 4 Br





2. Взаимодействие спиртов с аммиаком



(Практически в этих реакциях образуется смесь первичных, вторичных, третичных аминов и соли четвертичного аммониевого основания.)