Славянская крепость. Славянская крепость раддуш. Археология в Нижней Лужице

В организме человека содержится более 40 эле­ментов периодической системы Менделеева. В наибольшем количестве в тканях находятся углерод, водород, кислород, азот, фосфор и сера. Эти вещества называются органогенами, поскольку они входят в состав органических компонентов клеток. Меньше в клетках натрия, калия, кальция, магния, марганца, кобальта, железа, меди, селена. Все перечислен­ные элементы должны поступать в организм из внешней среды. Органогены соединяются между собой и с другими элементами, образуя белки, нуклеиновые кислоты, липи-ды, углеводы и другие сложные вещества.

Углерод является центром органических соединений. Он образует стабильные молекулы разнообразной конфигурации с большим числом функциональных групп.

Азот часто ошибочно называют безжизненным, потому что он не поддерживает горения, однако без этого элемента жизнь невозможна, поскольку он входит в состав белков, нук­леиновых кислот и многих других соединений, составляю­щих основу жизнедеятельности организма. Азот легко меняет валентность; в организме он находится в трех- или пятива­лентном состоянии. При изменении валентности азот присо­единяет или теряет электрон, что обусловливает его роль в обмене веществ.

Кислород участвует в образовании кислотных, спирто­вых и других групп в органических соединениях. Без него не­возможны биохимические процессы. Благодаря реакции с кислородом осуществляется дыхание в клетках, протекают энергетические процессы, необходимые для жизнедеятель­ности.

Водород - не только пластический компонент органи­ческих соединений, но и «горючее» для растительного и жи­вотного мира: при его соединении с кислородом выделяется большое количество энергии.

Сера принимает участие в образовании легкоокисляю­щихся тиоловых групп, дисульфидных мостиков, которые стабилизируют структуру определенных участков молекул белков. Она - один из компонентов процессов обезврежива­ния токсических веществ.

Фосфор широко представлен в организме как в свобод­ном виде, так и в соединении с различными веществами (бел­ками, жирами, углеводами). Он входит в состав фосфолипинок, фосфопротеинов, мононуклеотидов АТФ, ГТФ, является частью буферной системы крови. Находящийся в организме фосфор участвует в активации различных соединений, в фор­мировании костной системы и зубов.

Живая материя состоит из веществ, имеющих молекулы огромных размеров (макромолекулы), благодаря чему они приобретают одновременно и стабильность, и высокую реакционную способность. Такими соединениями являются белки, нуклеиновые кислоты, липиды, углеводы. С ними связаны мсс жизненно важные процессы.

Не менее ответственную роль в живой материи играют вода и минеральные вещества. Соли и вода составляют около 2/3 человеческого тела. Большая часть минеральных веществ приходится на долю костей, в состав которых входит не раствори-млн и коде соль - фосфорнокислый кальций. Жидкости в теле человека и животных представляют собой растворы электролитов. Они обеспечивают постоянство осмотического давле­нии и жидких фазах организма, кислотно-щелочное равновесие в тканях. В этих процессах преобладают катионы натрия и калия, анионы хлора, карбонаты, фосфаты.

Минеральные вещества, входящие в состав живых организмов, условно делят на три группы: макро-, микро- и ультрамикроэлементы. К макроэлементам относят те химические элементы, содержание которых превышает 0,001 % (О, С, Н, Са, К, N, Р, S, Мg, Na, Сl, Fе и др.). Если содержание химического элемента в организме составляет от 0,001 до 0.000001 %, то его причисляют к микроэлементам (Сu, Мn, Co и др.). Вещества, находящиеся в еще меньших количествах, называют ультрамикроэлементами (Рb, V, Аu, Нg и др.).

Вода. За небольшим исключением (кости, эмаль зубов) они ниляется преобладающим компонентом в структуре клетки. Вода служит естественным растворителем для многих веществ, а мкже дисперсионной средой, играющей важную роль в коллоидной системе цитоплазмы. Все химические процессы в организме происходят в водной среде, вода принимает не­посредственное участие и во многих реакциях. Кроме того, она выводит из организма различные вещества.

О значении воды для жизнедеятельности организма крас­норечиво говорит тот факт, что потеря даже пятой части ее неминуемо приводит к гибели.

СТРУКТУРА КЛЕТКИ

Клетка - одна из форм организации живой материи, лежащей в основе строения и развития растений и животных.

Размеры, форма и строение клеток, входящих в состав органов и тканей, различны. Они зависят от стадии развития и функции клетки, их видовой принадлежности и т. д, В основ­ном диаметр клеток составляет от 1 микрона до нескольких сантиметров. Однако некоторые из них имеют большую вели­чину, например, нервные клетки с длинными отростками, достигающими 1 м. Наиболее типичны для клеток шаровид­ная, овальная, цилиндрическая, кубическая формы. Количе­ство клеток в организме и даже в отдельных его органах может быть огромно, например, в коре больших полушарий голов­ного мозга человека содержится 14-15 миллиардов нервных клеток, а в крови - до 25 биллионов красных кровяных телец.

По своему строению клетки растений, животных и чело­века, подобно атомам, сходны между собой. Каждая из них содержит в середине плотное образование - ядро, которое плавает в «полужидкой» цитоплазме. Клетка окружена кле­точной мембраной.

Клетка состоит из многих элементов, совокупность кото­рых имеет определенное значение не только для нее самой, но и для всего организма в целом. Если каким-то образом нару­шится структура клетки, то изменятся ее функции, она поте­ряет свои свойства как организованная единица и погибнет.

Содержимое клетки представляет собой очень сложную систему разнообразных компонентов. Схема строения клет­ки, полученная с помощью электронного микроскопа, пред­ставлена на рисунке 1.

Цитоплазматическая мембрана. Внутренняя среда клетки отличается от наружной. Естественным барьером между ними служит клеточная мембрана, основная функция которой зак­лючается в регуляции обмена веществ между клеткой и окру­жающей средой (рис. 2).

Цитоплазматическая мембрана обеспечивает постоянство состава внутриклеточного содержимого. По своей структуре мембрана представляет вязкую липидную фазу (липидный слой) с погруженными в нее белками. Липидный слой состо­ит в основном из фосфолипидов, холестерина, гликолипи-дов и является двойным слоем молекул. При этом длинные остатки жирных кислот одного и другого слоя липидных мо­лекул обращены друг к другу и образуют жидкую гидрофоб­ную фазу, а гидрофильные группы этих липидов (холин, фосфорная кислота, этаноламин и др.) расположены снару­жи. Строение мембраны обусловливает ее основное свойство - избирательную проницаемость, т. е. регулирование поступле­ния в клетку необходимых питательных веществ и выведение из нее продуктов обмена. Такая избирательность обеспечива­ет постоянство внутренней среды клетки, поддерживает нуж­ное осмотическое давление, значение рН и т. д.

Белки, входящие в состав мембраны, располагаются на периферии (периферические) или пронизывают всю ее тол­щу (интегральные).

Функции мембранных белков разнообразны. Одни из них являются ферментами, выступающими катализаторами мно­гих важных реакций, другие транспортируют различные ве­щества (жирные кислоты, холестерин) через мембрану. Осо­бая группа белков образует в мембране «поры» для переноса ионов (водорода, натрия, калия и др.). Поверхностно распо­ложенные белки и гидрофильные группы липидов связаны с углеводами и образуют участки, способные «узнавать» дру­гие клетки или вещества. Такие участки называются рецепто­рами. Соединяясь со специфическими рецепторами, вещества (например, гормоны) передают свои сигналы внутрь клетки. Мембраны эластичны и обладают способностью самопроиз­вольно восстанавливать свою целостность при повреждении.

Цитоплазма. Внутреннее пространство клетки заполнено цитоплазмой, в которой расположены органоиды клетки. Цитоплазма пронизана многочисленными каналами, кото­рые называют эндоплазматической сетью (ретикулумом).

Эндоплазматический ретикулум является продолжением ядерной мембраны. Он представляет собой сеть мембран, об­разующих трубочки и пузырьки; по эндоплазматической сети осуществляется транспорт различных веществ из клетки во внешнюю среду и обратно, здесь же протекают процессы синтеза и распада химических веществ.

Различают два типа ретикулума - гладкий и шерохова­тый. «Шероховатость» последнего обусловлена расположен­ными на его поверхности многочисленными мелкими части­цами сферической формы - рибосомами.

Рибосомы - мелкие плотные гранулы небольших разме­ров. Они состоят из двух частей (субъединиц) округлой фор­мы, соединение которых можно образно представить в виде гриба или восьмерки. Они рассеяны по всей клетке. Часть их связана с зндоплазматической сетью, другие находятся в сво­бодном состоянии в цитоплазматическом матриксе. Рибосо­мы выполняют важнейшую функцию - участвуют в процес­се синтеза белка.

Аппарат Гольджи представлен тонкими плоскими мешоч­ками. Он играет двоякую роль: участвует в синтезе углеводных компонентов гликопротеидов и осуществляет вынос готовых молекул из клетки.

Митохондрии (от греч. mitos - нить, сhondrion - зерныш­ко, крупинка) являются крупными органоидами клетки, по форме напоминающими зерно фасоли.

Митохондрии окружены двумя мембранами, образован­ными белками и липидами различной природы. Внутрен­няя мембрана имеет множество направленных внутрь вы­пячиваний - крист, которые тем многочисленнее, чем

к дыхательная активность клетки. Внутреннее простран­ство митохондрий заполняет мелкозернистое вязкое веще­ство. Митохондрии - в высшей степени специализирован­ные частицы: именно в них протекают процессы дыхания и окисления различных веществ. Их главная функция екать заключен­ную з органических веществах энергию и накапливать ее в фосфатных связях аденозинтрифосфата (АТФ), который не­обходим для осуще­ствления различных процессов жизнедеятельности. Митохондрии называют «силовыми подстанциями»


Следует отметить и еще одну особенность митохондрий. В их матриксе обнаружены ДНК. Кроме тото, здесь находятся рибосомы и ряд других веществ, необходимых для синтеза мембранных белков, основная масса которых является фер­ментами, принимающими участие в образовании АТФ,

Еще одни важные органоиды клетки - лизосомы (от греч. 1у515 - растворение, зота - тело). Эти структуры представля­ют собой ограниченные мембраной тельца, содержащие про-теолитические ферменты. Неповрежденная лизосомная мем­брана очень прочна и устойчива к действию ферментов. Они опасны для клетки и заключены как бы в мешочек, образо­ванный мембраной. Назначение лизосом многообразно: они способны расщеплять уже использованные белки, жиры, уг­леводы и их промежуточные продукты. Мембрана лизосом полупроницаема и препятствует выходу ферментов в цито­плазму, если для этого нет необходимости. Когда в результате какого-либо воздействия нарушается целостность мембраны лизосом, то лизосомные ферменты разрушают клетку.

В растительных клетках содержатся пластиды - неболь­шие гранулы с двойной мембраной, в которых происходит синтез и накопление органических веществ. К ним относятся хлоропласты, лейкопласты и хромопласты. Хлоропласты со­держат зеленый пигмент хлорофилл, который способен син­тезировать энергию солнечного света. В хлоропластах солнеч­ная энергия превращается в химическую, которая запасается в виде химических связей различных пищевых веществ, об­разующихся в процессе фотосинтеза. Лейкопласты - бес­цветные пластиды, в них накапливаются крахмал и другие вещества. Хромопласты содержат различные пигменты, обус­ловливающие окраску плодов, овощей и цветков.

Содержание.

Введение______________________________________________________ 3

Глава 1.Химия как наука.


    1. Значение химии в жизни человека____________________________5
Глава 2. Химия здорового человека.

2.1. Химический состав человеческого тела. Его изучение_____________9

Следовательно, целью нашей работы нашей является:

Понять каким образом химия связана со здоровьем человека;

Выяснить влияние химических соединений и элементов на здоровье человека.

Для этого нам необходимо решить следующие задачи:

Изучить основные аспекты химии, связанные с человеком;

Изучить химический состав тела человека;

Проанализировать влияние химического состава тела человека на здоровье;

Понять, как химические знания помогают сохранять здоровье.

Глава 1. Химия как наука.


    1. Значение химии в жизни человека.
Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения. Зачатки химии возникли ещё со времён появления человека разумного. Поскольку человек всегда, так или иначе, имел дело с химическими веществами, то его первые эксперименты с огнём, дублением шкур, приготовлением пищи можно назвать зачатками практической химии. Постепенно практические знания накапливались, и в самом начале развития цивилизации люди умели готовить некоторые краски, эмали, яды и лекарства. Вначале человек использовал биологические процессы, такие как брожение, гниение, но с освоением огня начал использовать процессы горения, спекания, сплавления. Использовались окислительно-восстановительные реакции, не протекающие в живой природе - например, восстановление металлов из их соединений.

Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов . Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Есть даже мнение, что самое возвышенное чувство человека, любовь, это набор определённых химических реакций в организме.

Изучая поведение людей и особенно влияние на их поведение того, чем они питаются, можно сделать однозначное заключение. В натуральной здоровой пище содержатся вещества, которые могут не только повысить физическую отдачу организма, но и стимулировать его мозговую деятельность. Поэтому, применяя такую пищу в нужное время в нужных количествах, мы могли бы ускорить развитие человеческой цивилизации, не затрачивая на это больше ресурсов, чем сейчас.

Современная химия тесно связана как с др. науками, так и со всеми отраслями народного хозяйства. Качественная особенность химической формы движения материи и её переходов в др. формы движения обусловливает разносторонность химической науки и её связей с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с др. науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химией и химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии и сама испытывала и испытывает её влияние.

Химия нужна человеку, прежде всего для получения из природных веществ по возможности всех необходимых материалов - металлов, керамики, стекла, топлива и т.д. Для этого химия должна разрешить свою основную проблему: из каких химических элементов состоят вещества и каким образом следует осуществлять взаимные превращения веществ для получения необходимых материалов. Отсюда вытекают задачи химии - получение веществ с заданными свойствами и выявление путей управления свойствами вещества. На достижение первой из них направлена производственная деятельность человека, а второй - его познавательная деятельность.

Глава 2. Химия здорового человека .

2.1. Химический состав тела здорового человека.

Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу. В клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Сходство в строении и химическом составе разных клеток свидетельствует о единстве их происхождения.

Одни элементы содержатся в клетках в относительно большом количестве, другие - в малом. Особенно велико содержание в клетке четырех элементов - кислорода, углерода, азота и водорода (до 98%). Сера, фосфор, хлор, калий, магний, натрий, кальций, железо составляют вместе 1,9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%). В живых телах наряду с веществами , распространенными в неживой природе, содержится много веществ, характерных только для живых организмов.

Вода составляет почти 80% массы клетки. Ей принадлежит существенная многообразная роль в жизни клетки. Она определяет физические свойства клетки - ее объем, форму, упругость. Вода участвует в образовании структурных молекул органических веществ, в частности структуры белков. Большинство реакций, протекающих в клетке, могут идти только в водном растворе; многие вещества поступают в клетку из внешней среды в водном растворе и в водном же растворе отработанные продукты выводятся из клетки. Вода является непосредственным участником многих химических реакций (расщепление белков, углеводов, жиров и др.).

Биологическая роль воды определяется особенностью ее молекулярной структуры, полярностью молекул воды. Частица воды - диполь: в области атомов водорода (протона) преобладает положительный заряд, а в области атомов кислорода - отрицательный. Этим объясняется способность воды к ориентированию в электрическом поле и присоединению к различным молекулам и участкам молекул, несущим заряд, с образованием гидратов. Много веществ способно растворяться в воде: соли, кислоты, щелочи, а из органических веществ - многие спирты, амины, углеводы, белки и др.

Вещества, хорошо растворимые в воде, называются гидрофильными веществами (греч.

“гидрос” - вода, “филео” - люблю). Жиры, клетчатка и другие вещества плохо или вовсе не растворяются в воде, их называют гидрофобными (греч. “гидрос” - вода, “фобос” - страх, ненависть).

Гидрофильность объясняется наличием групп атомов, способных вступать с молекулами воды в

электростатическое взаимодействие или образованием с ними водородных связей. Гидрофильные вещества - это соли, углеводы, белки, низкомолекулярные органические соединения. Многие жиры - гидрофобны. Гидрофобные вещества входят в состав клеточных мембран, обусловливая их полупроницаемость.

Для процессов жизнедеятельности клетки наиболее важны такие катионы, как K+, Na+, Ca2+, Mg2+, из анионов - HPO42-, Cl-, HCO3-. Концентрация анионов и катионов в клетке и среде ее обитания , как правило, резко различна. К примеру, внутри клетки всегда довольно высокая концентрация ионов калия и очень малая - ионов натрия, а в окружающей среде (плазме крови, морской воде) мало ионов калия и много ионов натрия. Пока клетка жива, это соотношение ионов строго поддерживается, а после смерти клетки содержание ионов в среде и клетке выравнивается. Ионы клетки способствуют

поддержанию постоянного осмотического давления внутри клетки и рН. В норме реакция

клеток слабощелочная, почти нейтральная, обеспечиваемая содержащимися в клетке

анионами слабых кислот (НСО3-, НРО4-) и слабыми кислотами (Н2СО3), которые связывают и отдают ионы водорода, в результате чего реакция внутренней среды клетки практически не изменяется. Некоторые неорганические вещества содержатся в клетке не только в растворенном, но

и в твердом состоянии. Так, прочность и твердость костной ткани обеспечивается фосфатом кальция,

а раковин моллюсков - карбонатом кальция. Не все вещества, содержащиеся в клетке, специфичны для живой природы. Вода и соли

распространены и вне живого. Но в организмах и продуктах их жизнедеятельности обнаружено

большое количество углеродсодержащих соединений, характерных только для живых клеток и организмов, получивших название органических веществ.

3. Водород , как и кислород- составной элемент воздуха и питьевой воды. И он также относится к основным компонентам человеческого тела. 10% нашего веса состоят из водорода.

Несмотря на то, что азот также содержится в воздухе, он более известен как теплоноситель, в жидкой форме. Всё же, его таинственно испаряющейся газы не должны вводить в заблуждение- 3 % массы нашего тела состоят из азота.

Даже если он и составляет всего 1,5 %, кальций - важный металл в нашем организме. Именно он придаёт прочность нашим костям и зубам.

4. Фосфор , как светящееся вещество, известен каждому. Но далеко не каждый знает, что именно благодаря фосфору в организме, происходит образование ДНК, основы человеческой жизни.

5 . Калий , со скромными 0,2 %, принимает небольшое участие в процессах организма. Он относится к электролитам, в которых наше тело нуждается, прежде всего, при спорте. Его недостаток может вызвать чувство истощения и судороги.

Может ли сера , с её неприятным видом и запахом, быть важной для нашего организма? Да, это именно так. Сера- существенная составная часть аминокислот и коферментов.

Сначала сера, теперь хлор . Можно подумать, наш организм состоит из одних ядов . Разумеется, элементарного хлора в нашем теле нет, зато есть хлорид. И он для нас жизненно важен, так как, содержится, например, в плазме крови.

Натрий мы потребляем, прежде всего, в форме хлорида натрия, так же известного как поваренная соль. Элемент важен для защиты клеток и движения нервных сигналов.

Магний жизненно необходим для всех организмов на земле, естественно, для нас людей, тоже. Вопреки его незначительной части- 0,05 % массы нашего тела, недостаток магния ведет к отчётливо ощутимым последствиям: Нервозность, головные боли, усталость и судороги мышц являются только некоторыми из них.

Мужской организм содержит больше железа , чем женский. Одна из причин этому- разница в питании. Другая- женщины теряют железо во время менструации. Поэтому средняя масса этого элемента в человеческом теле варьирует от 2 до 5 грамм.

Кобальт - составная часть витамина B12, который необходим для существования человека. Передозировка кобальта ведёт к многочисленным болезням, к раковым опухолям в том числе.

Для микроорганизмов медь смертельна даже в незначительных количествах, но человеку она нужна для образования жизненно-важных ферментов. Тяжелый металл составляет 0,05 % массы нашего тела. Мы получаем её через овощи, шоколад и орехи.

Цинк относится к элементам, которые нужны всем живым существам на земле. Он важен для обмена веществ и содержится во многих важных ферментах.

Йод - составляющая часть гормонов тироксин и трийодтиронин, которые производит щитовидная железа. Недостаток йода может вызвать тяжёлые нарушения в обмене веществ.

Селен относится к незаменимым микроэлементам. В тоже время , при передозировке, он сильно токсичен, поэтому его употребление как БАД, вызывает большие дискуссии в кругах учёных.

До сегодняшнего дня не выяснено до конца, насколько фтор необходим для нашего организма. Неоспоримый факт- большая часть фтора содержится в костях и зубах. Фтор, как и селен, сильно токсичен при передозировке.

Поликлиническая лаборатория при Карабановской районной поликлинике.

В рамках нашего исследования мы посетили поликлиническую лабораторию, где побеседовали с лаборантами. Они рассказали нам об основных способах качественного анализа, при помощи, которого можно изучить химический состав крови человека.

Химический состав крови в норме относительно постоянен. Это объясняется наличием в организме мощных регулирующих механизмов (ЦНС, гормональная система и др.), обеспечивающих взаимосвязь в работе таких важных для жизнедеятельности органов и тканей, как печень, почки, легкие и сердечнососудистая система.

Все случайные колебания в составе крови в здоровом организме быстро выравниваются. Напротив, при многих патологических процессах отмечаются более или менее резкие сдвиги в химическом составе крови .

Нам рассказали об основных способах анализа.



Тип анализа

Тип образца

Биохимический анализ

Обычно используются кровь и моча. Реже: фекалии; спинномозговая жидкость (СМЖ) - жидкость, которая окружает головной и спинной мозг; плевральная жидкость - жидкость, которая накапливается в плевральной полости при патологии; асцитическая жидкость - жидкость, которая накапливается в перитонеальной полости при патологии

Гематологический анализ

Кровь, реже костный мозг

Микробиологический анализ

Моча, кровь, фекалии, мокрота Различные выделения - из носа, горла, глаза, уха, влагалища, ран и т. п. Реже: СМЖ; плевральная жидкость; кожные соскобы; ногти; рвотные массы

Гистологический анализ

Только образцы тканей

Цитологический анализ

Клетки из соскобов с поверхности тканей (например, с шейки какого-либо органа) или из аспиратов патологических жидкостей (например, из кисты) Иногда моча или мокрота

Иммунологический анализ

Обычно кровь

2.2. Помощь химии в сохранении здоровья

Химия имела огромное место на протяжении всей истории. Будучи составной частью, в истории формирования общей естественнонаучной картины мира, история познания химических свойств вещества, история практического овладения им, тесно переплеталась с историей развития отношения человека с окружающим миром, с историей познания материальной и духовной стороны этих отношений. История химии убедительно свидетельствует о том, что многие крупные представители этой науки отличались высокой гносеологической культурой и в той или иной мере всегда проявляли интерес мировоззренческой, методологической и социальной стороне развития химии, а характер и уровень их позиции всегда отражался в направлениях, методах и результатах их исследований.


Вопросы общего мировоззренческого характера и вопросы, касающиеся законов познания, особенно тесно вплетены в повседневную деятельность химика. Химическая наука находится сейчас на пороге грандиозного взлета. Ей предстоит выяснить процессы образования минералов земной коры, химических соединений на других планетах и звездах, проникнуть в самые тайники биохимических превращений, вооружить промышленность, сельское хозяйство, здравоохранение новыми синтетическими препаратами. Те успехи, которые одерживала химия в познании природы , явились результатом тесного единства в развитии химической теории и практики.
Развитие химии убеждает в необходимости дальнейшего углубленного изучения механизмов научного мышления химиков, его «технологии», его особенностей на разных этапах химической науки..
Недостаточное понимание действия и природы средств познания, их происхождения и возможностей обычно оказывается причиной методологических ошибок в исследованиях и выводах, беспомощности перед натиском метафизических и идеалистических спекуляций на гносеологических трудностях при замене одних абстракций на другие, приводит к напрасной трате научных сил и материальных средств. В заключение можно сказать, что вопросы химии не являются вопросами, без решения которых эта наука может быстро и успешно развиваться. Эти вопросы, так или иначе, выступают как одна из составных частей и в разработке конкретных научных проблем современной химии, прежде всего ее больших теоретических проблем, и в повседневной деятельности химика по добыванию новых знаний о веществе , по преобразованию веществ природы в жизненно нужные людям материальные блага

Пища - это белки, жиры и углеводы, одним словом смесь химических соединений. Все эти вещества состоят, в основном, как раз из тех четырех элементов, о которых шла речь выше (кислород, углерод, водород и азот). Все органические вещества в конечном итоге обязаны своим происхождением фотосинтезу в растениях. Растения поглощают углекислый газ из воздуха, который под действием света и катализаторов (в роли последних выступают особые белковые структуры, так называемые энзимы) взаимодействует с водой, втягиваемой корневой системой, с образованием простейших "кирпичиков" органических веществ. Из этих "кирпичиков" также с помощью катализаторов - энзимов создаются сложные органические молекулы углеводов, жиров и белков.

Большую роль в медицине играют синтетические полимерные материалы. Из них делают многое: от одноразовых шприцов до искусственных клапанов сердца.

Заключение.

При выполнении работы мы выяснили, что тело человека особый живой организм, состоящий из химических соединений. Каждый день мы пополняем или теряем, какие-то из элементов. Вместе с пищей мы получаем незаменимые элементы питания, которые позволяю т поддерживать химический баланс в организме. Изучить химический состав организма в целом можно при помощи анализов (крови, кожи и других продуктов жизнедеятельности). Людям, которые заботятся о своем здоровье полезно знать какие химические элементы и соединения должна содержать пища, чтобы питание было сбалансированным, помогало поддерживать их здоровье. Химические знания могут помочь нам лучше ориентироваться при выборе продуктов питания, лекарственных препаратов, косметических средств, обезопасить себя тем самым от пищевых отравлений и прочих неприятностей. В общем, изучая химический состав человека, мы пришли к выводу, что он доказывает родство человека со всем окружающем его миром, говорит о его происхождении .

Список использованной литературы:


  1. Аналитическая химия. Физические и физико-химические методы анализа./ Под ред. О.М.Петрухина. - М., 2007

  2. Артеменко А.И. Органическая химия.- М., 2006

  3. Ахметов Н.С. Общая и неорганическая химия.- М., 2009

  4. Биологическая химия./Под ред.Ю.Б.Филипповича,Н.И.Ковалевская,Г.А.Севастьяновой. - М., 2008

  5. Биохимия./Под редакцией В.Г.Щербакова. - СПб., 2003

  6. Вольхин В.В. Общая химия. Избранные главы. - СПб, М, Краснодар., 2008

  7. Вольхин В.В. Общая химия. Основной курс. - СПб, М, Краснодар., 2008

  8. Гельфман М.И., Юстратов В.П. Химия. - СПб, М, Краснодар., 2008

  9. Глинка Н.Л. Общая химия. - М., 2005

  10. Говарикер В.Р., Васванатхан Н.В., Шридхар Дж.М. Полимеры. - М., 2000

  11. Гранберг И.И. Органическая химия. - М., 2002

  12. Дорохова Е.Н., Прохорова К.В. Аналитическая химия. Физико-химические методы. - М., 2004

  13. Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия. - М., 1990

  14. Зимон А.Д., Лещенко Н.Ф. Коллоидная химия.- М., 2003

  15. Зимон А.Д. Физическая химия.- М., 2003

  16. Ипполитов Е.Г., Артемов А.В., Батраков В.В. Физическая химия.- М., 2005
17.http//ru.wikipedia.org/wiki//yffj.

18.http//orghimija.org/ru/trek//.

19.http//ru .himijadliavseh/org/

Организм человека — открытая биологическая система. Организм человека является системой многоуровневой. Она состоит из систем органов, каждая система органов — из органов, каждый орган — из тканей, ткани — из клеток. Каждая клетка является системой взаимосвязанных органелл.

Организм человека является открытой системой, которая постоянно обменивается веществами и энергией с окружающей средой. Из него в организм во время газообмена поступает кислород, а вместе с едой — вода и питательные вещества. Наружу организм удаляет углекислый газ, непереваренные остатки пищи, мочу, пот, секрет сальных желез.

Внешне организм получает тепловую энергию и питательные вещества (белки, жиры, углеводы), молекулы которых аккумулируют химическую энергию. Она высвобождается при реакций расщепления этих веществ в организме. Часть химической энергии расходуется на процесс его жизнедеятельности, а избыток в виде тепла возвращается во внешнюю среду.

Неорганические вещества

Среди всех неорганических веществ содержание воды в организме человека является наибольшим. Она составляет до 90% массы эмбриона и до 70% массы организма пожилого человека. Вода является растворителем, который обеспечивает транспорт веществ в организме. Растворенные в воде вещества приобретают способность к взаимодействию. Вода участвует и в процессах теплообмена между организмом и окружающей средой.

В организме человека содержится немало неорганических веществ. Одни из них присутствуют в виде молекул, как, например, соединения кальция в костях, вещества — в виде ионов. Так, ионы железа участвуют в транспорте кислорода в крови, ионы кальция необходимы для сокращения мышц, а ионы калия и натрия — для образования и передачи нервных импульсов.

Органические вещества

Молекулы многих органических веществ состоят из блоков — простых органических молекул. Такое строение имеют все белки. Они образованы из молекул аминокислот. Обычно цепочка аминокислот сворачивается в волокнистые или клубоподобные структуры. Так белковая молекула становится компактнее и занимает меньше места в клетке.

В каждом процессе, происходящем в организме, участвуют десятки, а то и сотни различных белков. Доля белков составляет более 50% сухой массы клеток. Одни белки являются строительным материалом клеток, другие работают при сокращении мышц, третьи защищают организм от инфекций. С помощью ферментов — белков-катализаторов — происходят почти все химические реакции в организме.

Сложные углеводы

Как и белки, сложные углеводы образуются из молекул-блоков. Так, блоками гликогена являются молекулы простого углевода — глюкозы. Глюкоза в организме играет роль источника энергии, а в виде гликогена создаются запасы глюкозы. В соединениях с белками и другими органическими веществами углеводы выполняют структурную функцию.

Жиры

Жиры — нерастворимые в воде органические вещества. В состав молекулы жира обычно входят молекулы глицерина и жирных кислот. Жиры образуют плазматические мембраны клеток, они накапливаются в клетках жировой ткани, которая выполняет в организме защитные функции. Так же, как и глюкоза, жиры являются источником энергии. Молекула жира запасает больше энергии, чем молекула глюкозы, однако клетка добывает энергию из жиров значительно дольше, чем из углеводов.

Человек - самое уникальное создание на Земле. Его организм выдерживает каждодневные нагрузки, стрессы и сопротивление вирусам. Очень многие люди задают вопрос: из чего состоит человек? Естественно, интерес к этой теме вполне обоснован. Ответ вы найдете в этой статье.

Человек имеет уникальное средство, при помощи которого он не только читает текст, но и слышит музыку, чувствует запах различной пищи. Это мозг. Человек, в отличие от животных, может размышлять. Многие из нас не знают, что мозг отвечает за чувства и мысли, и вообще за всю деятельность организма. Именно он определяет, когда нужно ложиться спать, как восстановить организм после любой нагрузки, как сопротивляться вирусам.

Из чего состоит человек? На 80% из воды. Именно поэтому врачи советуют выпивать ежедневно взрослому человеку не менее двух литров жидкости. Это необходимо для того, чтобы восполнить ее запасы, которые расходуются в течение дня, например, при выделении пота.

Из чего состоит человек и его скелет?

Позвоночник служит каждому из нас для защиты спинного мозга. Грудина и ребра предотвращают повреждения легких, сердца и кровеносных сосудов.

Скелет является местом для прикрепления мышц. Когда последние сокращаются, тело начинает работать, то есть появляется возможность двигаться.

Состоит из 206 костей, которые в целом образуют опору для тела. Благодаря этому можно танцевать, стоять, лежать и совершать многочисленные действия. В разных расположены специальные соединенные таким образом, чтобы сохранить органы человека и обеспечить его движение.

Важная часть скелета любого из нас - это череп. Он служит защитой для головного мозга. Скелет головы состоит из 8 костей, он содержит являющийся органом кроветворения и участвующий в обмене минеральных веществ.

Самым большим костным соединением человека являются ребра, находящиеся немного выше живота и достигающие шеи.

Грудная клетка, состоящая из 12 больших ребер, является стенкой для защиты жизненно важных органов, таких как легкие, сердце, кровеносные сосуды.

Скелет выполняет функции опоры, то есть является устойчивым к сжатию и жестким каркасом для тела, который защищает внутренние органы. Благодаря ему тело сохраняет форму. Внутренние органы прикреплены к скелету.

Тело человека состоит из миллионов частиц, которые называются клетками. Каждая из них — живой организм: она размножается, питается и взаимодействует с себе подобными. Множество различных клеток одного типа образуют ткани. А из них состоят разные органы тела человека.

Внутри клетки имеется ядро, окруженное цитоплазмой и покрытое мембраной - тоненькой оболочкой.

Цитоплазма - это вода, в которой содержатся питательные вещества: белки, углеводы, жиры. Ядро имеет особое вещество - ДНК. В нем закодирована генетическая информация о человеке.

Надеюсь, что в этой статье вы нашли ответ на вопрос, из чего состоит человек и его тело. Удачи!

    Введение.

    Элементный состав организмов.

    Молекулы и ионы, входящие в состав организма человека, их содержание и функции.

    Уровни структурной организации химических соединений живых организмов.

    Общие закономерности обмена веществ и энергии в организме человека.

    Особенности протекания обменных процессов при различных состояниях организма.

    Введение. Чем занимается биохимия?

Биохимия изучает химические процессы, происходящие в живых системах. Иначе говоря, биохимия изучает химию жизни. Наука эта относительно молодая. Она родилась в 20 веке. Условно курс биохимии можно разделить на три части.

Общая биохимия занимается общими закономерностями химического состава и обмена веществ разных живых существ от мельчайших микроорганизмов и кончая человеком. Оказалось, что эти закономерности во многом повторяются.

Частная биохимия занимается особенностями химических процессов, протекающих у отдельных групп живых существ. Например, биохимические процессы у растений, животных, грибов и микроорганизмов имеют свои особенности, причем, в ряде случаев очень существенные.

Функциональная биохимия занимается особенностями биохимических процессов протекающих в отдельных организмах, связанных с особенностями их образа жизни. Направление функциональной биохимии, исследующее влияние физических упражнений на организм спортсмена называетсябиохимией спорта или спортивной биохимией .

Развитие физической культуры и спорта требует от спортсменов и тренеров хороших знаний в области биохимии. Это связано с тем, что без понимания того, как работает организм на химическом, молекулярном уровне трудно надеяться на успех в современном спорте. Многие методики тренировки и восстановления базируются в наше время именно на глубоком понимании того, как работает организм на субклеточном и молекулярном уровне. Без глубокого понимания биохимических процессов невозможно бороться и допингом – злом, которое может погубить спорт.

  1. Элементный состав организмов

Организм человека включает химические элементы, которые встречаются также и в неживой природе. Однако по количественному составу химических элементов живые организмы существенно отличаются от неживой природы. Так, например, количественное содержание железа и кремния в неживой природе существенно выше, чем в живых организмах. Характерной отличительной чертой живых организмов является высокое содержание углерода, что связано с преобладанием в них органических соединений.

Человеческий организм состоит из структурных элементов: С-углерод, О-кислород, Н-водород, N-азот, Ca-кальций, Mg-магний, Na-натрий, K-калий, S-сера, P-фосфор, Cl-хлор. Например, Н 2 О, молекула воды, состоит из двух атомов водорода и одного атома кислорода. 70-80% организма человека состоит из воды. Однако жидкости в теле человека, в его клетках, его крови включают кроме воды 0,9% поваренной соли NaCl, молекула которой состоит из натрия и хлора. Все биохимические процессы происходят именно в 0,9% водном растворе поваренной соли, который называют физиологическим раствором. Поэтому даже лекарства для уколов и капельниц растворяют в физиологическом растворе.

В организме человека содержится около 3 кг минеральных веществ, что составляет 4% массы тела. Минеральный состав организма очень разнообразен и в нем можно обнаружить почти всю таблицу Менделеева.

Минеральные вещества распределены в организме крайне неравномерно. В крови, мышцах, внутренних органах содержание минеральных веществ низкое – около 1%. А вот в костях на долю минеральных веществ приходится около половины массы. Эмаль зубов на 98% состоит из минеральных веществ.

Формы существования минеральных веществ в организме также разнообразны.

Во-первых в костях они встречаются в форме нерастворимых солей.

Во-вторых, минеральные элементы могут входить в состав органических соединений.

В-третьих, минеральные элементы могут находиться в организме в виде ионов.

Суточная потребность в минеральных веществах невелика и поступают они в организм с пищей. Их количества обычно в пище достаточно. Однако в редких случаях их может не хватать. Например, в некоторых местностях не хватает йода, в других избыток магния и кальция.

Выводятся из организма минеральные вещества тремя путями в составе мочи, кишечником – в составе кала и с потом – кожей.

Биологическая роль этих веществ этих веществ очень разнообразна.

В организме человека и животных обнаружен около 90 элементов таблицы Д.И. Менделеева. Биогенные химические элементы – химические элементы, присутствующие в живых организмах. По количественному содержанию их принято подразделять на несколько групп:

    Макроэлементы.

    Микроэлементы.

    Ультрамикроэлементы.

Если массовая доля элемента в организме превышает 10 -2 %, то его следует считатьмакроэлементом . Долямикроэлементов в организме составляет 10 -3 -10 -5 %. Если содержание элемента ниже 10 -5 %, его считаютультрамикроэлементом . Конечно, такая градация условна. По ней магний попадает в промежуточную область между макро- и микроэлементами.

Минеральные вещества в организме человека находятся в разном состоянии. В соответствии с этим проявляется и их дей­ствие.

Одна из форм - это когда они являются составной частью органических веществ. Так, например, сера вхо­дит в состав аминокислот цистеина и метионина, железо являет­ся составной частью гемоглобина, йод - гормона щитовидной железы - тироксина, фосфор присутствует в разнообразных ор­ганических соединениях - ATФ, АДФ, других нуклеотидах, нук­леиновых кислотах, фосфатидах (лецитины и кефалины), раз­личных эфирах с гексозами, триозами и т. д.

Вторая форма - это прочные нерастворимые от­ложения солей углекислого, фосфорнокислого кальция и маг­ния, фтористых и других солей в твердых тканях - в костях, зу­бах, рогах, копытах, пере и т. д. Они составляют их минераль­ный остов.

И третья форма - минеральные вещества, растворённые в тканевых жидкостях. Эта группа мине­ральных веществ обеспечивает ряд условий, необходимых для сохранения процессов жизнедеятельности организма. К числу этих условий относятся осмотическое давление, реакция среды, коллоидное состояние белков, состояние нервной системы и т. д. Эти условия в свою очередь зависят от количества минеральных элементов, их соотношения и качественных особенностей по­следних.

Все многообразие веществ животного и растительного мира построено из сравнительно небольшого количества исходных составных частей. Это химические элементы и химические вещества. Из 107 известных химических элементов в живых организмах обнаружено 60, однако в концентрациях, позволяющих не считать этот элемент случайной примесью, только 22. Все химические элементы, встречающиеся в живых организмах, в соответствии с их концентрацией в клетках делят на три группы:

Макроэлементы: C, H, O, N, P, S, Cl, Na, K, Ca.

На их долю приходится более 0,01%. Количество макроэлементов показано в таблице; Микроэлементы: Fe, Mg, Zn, Cu, Co, J, Br, V, F, Mo, Al, Si и др.

На их долю приходится от 0,01 до 0,000001%;

Ультрамикроэлементы: Hg, Au, Ag, Ra и др. На их долю приходится менее 0,000001%.

Элементы

Макроэлементы составляют около 99,9% массы клетки и могут быть подразделены на две группы.Главные биогенные химические элементы (кислород, углерод, водород, азот) составляют 98% от массы всех живых клеток. Они составляют основу органических соединений, а также образуют воду, которая присутствует во всех живых системах в значительных количествах.Во вторую группу макроэлементов входят фосфор, калий, сера, хлор, кальций, магний, натрий, железо, в сумме составляющие 1,9%. Они крайне важны для обеспечения жизнедеятельности организмов, без них невозможно существование любых живых существ.

Натрий и калий находятся в организме в виде ионов. Ионы натрия содержатся вне клеток, а ионы калия сосредоточены внутри клетки. Эти ионы играют важную роль в создании осмотического давления и клеточного потенциала, необходимы для нормальной работы миокарда.

Калий . Около 90% калия находится внутри клеток. Он вместе с другими солями обеспечивает осмотическое давление; участвует в передаче нервных импульсов;регуляции водно-солевого обмена; способствует выведению воды, а, следовательно, и шлаков из организма; поддерживает кислотно-щелочное равновесие внутренней среды организма; участвует в регуляции деятельности сердца и других органов; необходим для функционирования ряда ферментов.

Калий хорошо всасывается из кишечника, а его избыток быстро удаляется из организма с мочой. Суточная потребность в калии взрослого человека составляет 2000-4000 мг. Она увеличивается при обильном потоотделении, при употреблении мочегонных средств, заболеваниях сердца и печени. Калий не является дефицитным нутриентом в питании, и при разнообразном питании недостаточность калия не возникает. Дефицит калия в организме появляется при нарушении функции нервно-мышечной и сердечно-сосудистой систем, сонливости, снижении артериального давления, нарушении ритма сердечной деятельности. В таких случаях назначается калиевая диета.

Большая часть калия поступает в организм с растительными продуктами. Богатыми источниками его являются урюк, чернослив, изюм, шпинат, морская капуста, фасоль, горох, картофель, другие овощи и плоды (100 - 600 мг/100 г продукта). Меньше калия содержится в сметане, рисе, хлебе из муки высшего сорта (100 - 200 мг/100 г).

Натрий содержится во всех тканях и биологических жидкостях организма. Он участвует в поддержании осмотического давления в тканевых жидкостях и крови;в передаче нервных импульсов; регуляции кислотно-щелочного равновесия, водно-солевого обмена; повышает активность пищеварительных ферментов.

Кальций и магний находятся в основном в косной ткани в виде нерастворимых солей. Эти соли придают костям твердость. Кроме того в ионном виде они играют важную роль в сокращении мышц.

Кальций. Это основной структурный компонент костей и зубов; входит в состав ядер клеток, клеточных и тканевых жидкостей, необходим для свертывания крови. Кальций образует соединения с белками, фосфолипидами, органическими кислотами; участвует в регуляции проницаемости клеточных мембран, в процессах передачи нервных импульсов, в молекулярном механизме мышечных сокращений, контролирует активность ряда ферментов. Таким образом, кальций выполняет не только пластические функции, но и влияет на многие биохимические и физиологические процессы в организме.

Кальций относится к трудноусвояемым элементам. Поступающие в организм человека с пищей соединения кальция практически не растворимы в воде. Щелочная среда толстого кишечника способствует образованию трудноусвояемых соединений кальция, и лишь воздействие желчных кислот обеспечивает его всасывание.

Ассимиляция кальция тканями зависит не только от содержания его в продуктах, но и от соотношения его с другими компонентами пищи и, в первую очередь, с жирами, магнием, фосфором, белками. При избытке жиров возникает конкуренция за желчные кислоты и значительная часть кальция выводится из организма через толстый кишечник. На всасывание кальция отрицательно сказывается избыток магния; рекомендуемое соотношение этих элементов составляет 1: 0,5. Наиболее крепкие кости получаются при соотношении Ca:P - 1:1,7.Приблизительно такое соотношение в клубнике и грецких орехах.Если количество фосфора превышает уровень кальция в пище более чем в 2 раза, то образуются растворимые соли, которые извлекаются кровью из костной ткани. Кальций поступает в стенки кровеносных сосудов, что обуславливает их ломкость, а также в ткани почек, что может способствовать возникновению почечно-каменной болезни. Для взрослых рекомендовано соотношение кальция и фосфора в пище 1:1,5. Трудность соблюдения такого соотношения обусловлена тем, что большинство широко потребляемых продуктов значительно богаче фосфором, чем кальцием. Отрицательное влияние на усвоение кальция оказывает фитин и щавелевая кислота, содержащиеся в ряде растительных продуктов. Эти соединения образуют с кальцием нерастворимые соли.

Суточная потребность в кальции взрослого человека составляет 800 мг, а у детей и подростков - 1000 мг и более.

При недостаточном потреблении кальция или при нарушении всасывания его в организме (при недостатке витамина D) развивается состояние кальциевого дефицита. Наблюдается повышенное выведение его из костей и зубов. У взрослых развивается остеопороз - деминерализация костной ткани, у детей нарушается становление скелета, развивается рахит.

Лучшими источниками кальция являются молоко и молочные продукты, различные сыры и творог (100-1000 мг/100 г продукта), зеленый лук, петрушка, фасоль. Значительно меньше кальция содержится в яйцах, мясе, рыбе, овощах, фруктах, ягодах (20-40 мг/100 г продукта).

Магний. ,

При недостатке магния нарушается усвоение пищи, задерживается рост, в стенках сосудов откладывается кальций, развивается ряд других патологических явлений. У человека недостаток ионов магния, обусловленный характером питания, крайне маловероятен. Однако большие потери этого элемента могут происходить при диарее

Фосфор играет в организме важную роль. Он является составной частью солей, входящих в кости. Фосфорная кислота играет исключительно важную роль в энергетическом обмене. Фосфор. Фосфор входит в состав всех тканей организма, особенно мышц и мозга. Этот элемент принимает участие во всех процессах жизнедеятельности организма: синтезе и расщеплении веществ в клетках; регуляции обмена веществ; входит в состав нуклеиновых кислот и ряда ферментов; необходим для образования АТФ.

В тканях организма и пищевых продуктах фосфор содержится в виде фосфорной кислоты и ее органических соединений (фосфатов). Основная его масса находится в костной ткани в виде фосфорнокислого кальция, остальной фосфор входит в состав мягких тканей и жидкостей. В мышцах происходит наиболее интенсивный обмен соединений фосфора. Фосфорная кислота участвует в построении молекул многих ферментов, нуклеиновых кислот и т. д.

При длительном дефиците фосфора в питании организм использует собственный фосфор из костной ткани. Это приводит к деминерализации костей и нарушению их структуры - разрежению. При обеднении организма фосфором снижается умственная и физическая работоспособность, отмечается потеря аппетита, апатия.

Суточная потребность в фосфоре для взрослых составляет 1200 мг. Она возрастает при больших физических или умственных нагрузках, при некоторых заболеваниях.

Большое количество фосфора содержится в продуктах животного происхождения, особенно в печени, икре, а также в зерновых и бобовых. Его содержание в этих продуктах составляет от 100 до 500 мг в 100 г продукта. Богатым источником фосфора являются крупы (овсяная, перловая), в них содержится 300-350 мг фосфора/100 г. Однако из растительных продуктов соединения фосфора усваиваются хуже, чем при потреблении пищи животного происхождения.

Сера. Значение этого элемента в питании определяется, в первую очередь, тем, что он входит в состав белков в виде серосодержащих аминокислот(метионина и цистина), а также является составной частью некоторых гормонов и витаминов.

Как компонент серосодержащих аминокислот сера участвует в процессах белкового обмена, причем потребность в ней резко возрастает в период беременности и роста организма, сопровождающихся активным включением белков в образующиеся ткани, а также при воспалительных процессах. Серосодержащие аминокислоты, особенно в сочетании с витаминами С и Е, оказывают выраженное антиоксидантное действие. Наряду с цинком и кремнием сера определяет функциональное состояние волос и кожи.

Хлор. Этот элемент участвует в образовании желудочного сока, формировании плазмы, активирует ряд ферментов. Этот нутриент легко всасывается из кишечника в кровь. Интересна способность хлора отлагаться в коже, задерживаться в организме при избыточном поступлении, выделяться с потом в значительных количествах. Выделение хлора из организма происходит главным образом с мочой (90%) и потом.

Нарушения в обмене хлора ведут к развитию отеков, недостаточной секреции желудочного сока и др. Резкое уменьшение содержания хлора в организме может привести к тяжелому состоянию, вплоть до смертельного исхода. Повышение его концентрации в крови наступает при обезвоживании организма, а также при нарушении выделительной функции почек.

Суточная потребность в хлоре составляет примерно 5000 мг. Хлор поступает в организм человека в основном в виде хлористого натрия при добавлении его в пищу.

Магний. Этот элемент необходим для активности ряда ключевых ферментов, обеспечивающих метаболизм организма. Магний участвует в поддержании нормальной функции нервной системы и мышцы сердца; оказывает сосудорасширяющее действие; стимулирует желчеотделение; повышает двигательную активность кишечника, что способствует выведению шлаков из организма (в том числе холестерина).

Усвоению магния мешают наличие фитина и избыток жиров и кальция в пище. Ежедневная потребность в магнии точно не определена; считают, однако, что доза 200-300 мг/сут предотвращает проявление недостаточности (предполагается, что всасывается около 30% магния).

При недостатке магния нарушается усвоение пищи, задерживается рост, в стенках сосудов откладывается кальций.

Железо входит в составгема, составной части гемоглобина. Этот элемент необходим для биосинтеза соединений, обеспечивающих дыхание, кроветворение; он участвует в иммунобиологических и окислительно-восстановительных реакциях; входит в состав цитоплазмы, клеточных ядер и ряда ферментов.

Ассимиляции железа препятствует щавелевая кислота и фитин. Для усвоения этого нутриента необходим витамин В 12 .Усвоению железа способствует также аскорбиновая кислота, поскольку железо всасывается в виде двухвалентного иона.

Недостаток железа в организме может привести к развитию анемии, нарушаются газообмен, клеточное дыхание, то есть фундаментальные процессы обеспечивающие жизнь. Развитию железодефицитных состояний способствуют: недостаточное поступление в организм железа в усвояемой форме, понижение секреторной активности желудка, дефицит витаминов (особенно В 12 , фолиевой и аскорбиновой кислот) и ряд заболеваний, вызывающих кровопотери. Потребность взрослого человека в железе (14 мг/сут) с избытком удовлетворяется обычным рационом.Однако при использовании в пище хлеба из муки тонкого помола, содержащего мало железа, у городских жителей весьма часто наблюдается дефицит железа. При этом следует учесть, что зерновые продукты, богатые фосфатами и фитином, образуют с железом труднорастворимые соединения и снижают его ассимиляцию организмом.

Железо - широко распространенный элемент. Он содержится в субпродуктах, мясе, яйцах, фасоли, овощах, ягодах. Однако в легкоусвояемой форме железо содержится только в мясных продуктах, печени (до 2000 мг/100 г продукта), яичном желтке.

Микроэлементы (марганец, медь, цинк, кобальт, никель, йод, фтор) составляют менее 0,1% от массы живых организмов. Однако эти элементы необходимы для жизни организмов. Микроэлементы содержатся в сверхмалых концентрациях. Их потребность в сутки составляет микрограммы, то есть миллионные доли грамма. Из них есть незаменимые и условно незаменимые.

Незаменимые: Ag-серебро, Co-кобальт, Cu-медь, Cr-хром, F-фтор, Fe - железо, I -йод, Li - литий, Mn - марганец, Mo - молибден, Ni - никель, Se - селен, Si - кремний, V - ванадий, Zn - цинк.

Условно незаменимые: B - бор, Br - бром.

Возможно незаменимые: Al - алюминий, As - мышьяк, Сd - кадмий, Pb - свинец, Rb - рубидий.

Марганец оказывает благоприятное воздействие на нервную систему, способствует выработке нейромедиаторов - веществ, ответственных за передачу импульсов между волокнами нервной ткани, также способствует нормальному развитию костей, укрепляет иммунную систему, способствует нормальному протеканию пищеварительного процесса инсулинового и жирового обменов. К тому же, процесс обмена витаминов А, С и группы В может нормально происходить только в том случае, когда в организме присутствует достаточное количество марганца. Благодаря марганцу обеспечивается нормальный процесс образования и роста клеток, рост и восстановление хрящей, быстрейшее заживление тканей, хорошая работа головного мозга и правильный обмен веществ, обладает отличными антиоксидантными свойствами. Этот элемент регулирует баланс сахара в крови, а также способствует нормальному процессу образования молока у кормящих женщин. Оптимальное содержание марганца можно обеспечить благодаря употреблению сырых овощей, фруктов и зелени.

Роль меди в организме огромна. Прежде всего, она принимает активное участие в построении многих необходимых нам белков и ферментов, а также в процессах роста и развития клеток и тканей. Медь необходима для нормального процесса кроветворения и работы иммунной системы.Медь - входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Цинк - входит в состав ферментов, участвующих в спиртовом брожении, в составинсулина

Кобальт влияет на физиологическое и патофизиологическое состояние организма человека. Есть сведения о влиянии его на метаболизм углеводов и липидов, на функцию щитовидной железы, состояние миокарда. В состав витамина В12 входит кобальт.

Для организма человека и животных никель – необходимый питательный элемент, но учёные немного знают о его биологической роли. В животных и растительных организмах он участвует в ферментативных реакциях, а у птиц накапливается в перьях. У нас он содержится в печени и почках, поджелудочной железе, гипофизе и лёгких. Никель влияет на процессы кроветворения, сохраняет структуру нуклеиновых кислот и клеточных мембран; участвует в обмене витаминов С и В12, кальция и других веществ.

Йод очень важен для нормального роста и развития детей и подростков: он участвует в образовании костно-хрящевой ткани, синтезе белка, стимулирует умственные способности, улучшает работоспособность и уменьшает утомляемость. В организме йод участвует в процессе синтеза тироксина и трийодтиронина – гормонов, необходимых для нормальной работы щитовидной железы.

Фтор нужен для формирования эмали зубов, йод входит в состав гормонов щитовидной железы, кобальт является составной частью витамина В12.

К ультрамикроэлементам относятся большое количество химических элементов (литий, кремний, олово, селен, титан, ртуть, золото, серебро и многие другие), которые суммарно составляют менее 0,01% массы клетки. Для ряда из ультрамикроэлементов установлено их биологическое значение, для других нет. Возможно накопление некоторых из них в клетках и тканях человека и других организмов является случайным и связано с антропогенным загрязнением окружающей среды. С другой стороны, возможно, что биологическое значение ряда ультрамикроэлементов еще не выявлено.

Литий способствует снижению нервной возбудимости, улучшает общее состояние при заболеваниях нервной системы, оказывает антиаллергическое и антианафилактическое действие, имеет некоторое влияние на нейроэндокринные процессы, принимает участие в углеводном и липидном обменах, повышает иммунитет, нейтрализует действие радиации и солей тяжелых металлов на организм, а также действие этилового спирта.

Кремний участвует в усвоении организмом более 70 минеральных солей и витаминов, способствует усвоению кальция и росту костей, предупреждает остеопороз, стимулирует иммунную систему. Кремний необходим для здоровья волос, улучшает состояние ногтей и кожи, укрепляет соединительные ткани и сосуды, снижает риск сердечно-сосудистых заболеваний, укрепляет суставы - хрящи и сухожилия.

Известно, что олово улучшает процессы роста, является одним из составляющих желудочного фермента гастрина, воздействует на активность флавиновых ферментов (биокатализаторы некоторых окислительно-восстановительных реакций в организме), играет существенную роль в правильном развитии костных тканей.

Селен - участвует в регуляторных процессах организма. Селен, входя в состав фермента глютатионпероксидазы препятствует оседанию тромбов на стенках сосудов, благодаря чему является антиоксидантом и препятствует развитию атеросклероза. Не так давно выяснено, что недостаток селена приводит к развитию онкологических заболеваний.

Титан является постоянной составной частью организма и выполняет определенные жизненно важные функции: повышает эритропоэз, катализирует синтез гемоглобина, иммуногенез, стимулируют фагоцитоз и активируют реакции клеточного и гуморального иммунитета.

Ртуть обладает определенным биотическим эффектом и оказывает стимулирующее действие на процессы жизнедеятельности (в количествах, соответствующих физиологическим, т. е. нормальным для человека, концентрациям). Есть сведения о присутствии ртути в ядерной фракции живых клеток и о значении этого металла в реализации информации, заложенной в ДНК, и ее передаче при помощи транспортных РНК. Говоря проще, полное удаление ртути из организма, видимо, нежелательно, и те самые 13 мг, «заложенные» в нас природой, должны всегда содержаться в человеке (что, кстати, вполне согласуется с упомянутым выше законом Кларка-Вернадского о всеобщем рассеянии элементов).

Золото и серебро оказывают бактерицидное воздействие Многие микроэлементы и ультрамикроэлементы в больших количествах токсичны для человека.

Недостаток или избыток в питании каких-либо минеральных веществ вызывает нарушение обмена белков, жиров, углеводов, витаминов, что приводит к развитию ряда заболеваний. Наиболее распространенным следствием несоответствия в рационе количества кальция и фосфора является кариес зубов, разрежение костной ткани. При недостатке фтора в питьевой воде разрушается зубная эмаль, дефицит йода в пище и воде приводит к заболеваниям щитовидной железы. Таким образом, минеральные вещества очень важны для устранения и профилактики ряда заболеваний.

В представленных таблицах приведены характерные (типичные) симптомы при дефиците различных химических элементов в организме человека:

В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (табл. 5.2). Столько же химических элементов должно ежесуточно выводиться из организма, поскольку их содержание в нем находится в относительном постоянстве.

Роль минеральных веществ в организме человека чрезвычайно разнообразна, несмотря на то, что они не являются обязательным компонентом питания. Минеральные вещества содержатся в протоплазме и биологических жидкостях, играют основную роль в обеспечении постоянства осмотического давления, что является необходимым условием для нормальной жизнедеятельности клеток и тканей. Они входят в состав сложных органических соединений (например, гемоглобина, гормонов, ферментов), являются пластическим материалом для построения костной и зубной ткани. В виде ионов минеральные вещества участвуют в передаче нервных импульсов, обеспечивают свертывание крови и другие физиологические процессы организма.

Ионы макро -и микроэлементов активно транспортируютсяферментами через клеточную мембрану. Только в составе ферментов ионы макро- и микроэлементы могут выполнять свою функцию. Поэтому пищевые продукты и лекарственные травы предпочтительнее химиотерапевтическим препаратам для лечения гипомикроэлементоза. К тому же, если учесть, что из продуктов и растений человеческий организм берет микроэлемента ровно столько, сколько ему нужно, это помогает избежать гипермикроэлементоза. А превышение макро- и микроэлементов в организме бывает гораздо опаснее, чем их недостаток. При применении химических препаратов кальция типичным является отложение кальция в молочных железах, желчном пузыре, печени, почках, в общем, везде, где угодно, но не в костях

Ферменты - это маленькие частицы, которые активно обеспечивают работу всех функциональных систем. Они производят пищеварение, например, амилаза (диастаза) слюны переваривает крахмалы картофеля и злаков, липаза поджелудочной железы переваривает жиры, химотрипсин переваривает белки и т.д. Кроме того, ферменты «перетягивают» нужные вещества через клеточные мембраны, например, в почках осуществляется активный транспорт ионов кальция, натрия, хлора и других, а, следовательно, они регулируют кальциевый состав костей и артериальное давление. Фермент лизоцим «убивает» вредные микробы. Фермент цитохром Р-450 участвует во многих биохимических реакциях, например, разлагает химические лекарства и выводит их из клеток, окисляет холестерин до стероидных гормонов (т.е. производит гормоны) и т.д. Этих маленьких работяг, - ферментов, - в организме тысячи видов, и нет никаких биохимических и физиологических преобразований, в которых они бы не участвовали. Как и функциональный элемент микроциркуляции органа, так ифермент - это первичный элемент, первооснова любых процессов, и это должно всегда учитываться в лечении болезни. Очень важно знать, что в химическом лекарстве нет ферментов, а в травах и продуктах они есть. Например, корни хрена содержат фермент лизоцим. Кроме того, ферменты есть в меде, например, инвертаза, диастаза, каталаза, фосфатаза, пероксидаза, липаза и т.д. Мед нежелательно растапливать и нагревать выше 38 0 , потому что тогда ферменты распадаются.

В состав фермента входит несколько молекул белка, соединенных между собой и представляющих в микромире огромный размер и две маленьких части, одна из них - витамин, вторая - микроэлемент. Именно потому лечение травами предпочтительнее химии, что трава содержит и белки, и витамины, и микроэлементы, - этот гармоничный состав фермента создан Творцом. В натуральных продуктах, например, в меде, содержатся все 22 незаменимые аминокислоты, которые нужны для синтеза белков. В меде имеются макроэлементы, все незаменимые микроэлементы кроме фтора, йода и селена, а также почти все условно незаменимые микроэлементы. И наоборот, химические лекарства, вырабатываемые промышленностью, особым непостижимым образом связаны с отцом промышленности Каином. И следствием подобной связи является лишение фармакологических средств, состоящих из одной химической формулы, всего богатства мира, созданного Творцом, одной из маленьких трудолюбивых первочастиц которого являетсяфермент .