В состав атомов входят протоны нейтроны и. Протоны и нейтроны: столпотворение внутри материи


Что такое "атом"?

До начала 20 века в науке бытовало мнение, что атом - неделимая частица. Однако, это оказалось не так. На самом деле в атом входят, так называемые, субатомные частицы. Для химиков особый интерес представляют: протон , нейтрон и электрон :

В основе атомной единицы массы (а.е.м.) лежит углеродная шкала-12. Атом углерода состоит из 6 протонов и 6 нейтронов и имеет атомную массу = 12 а.е.м. Отсюда, 1 а.е.м. = 1/12 части атома углерода.

Массы протонов и нейтронов практически равны. Масса электрона в 2000 раз меньше.

Несмотря на тот факт, что атом содержит как положительно заряженные частицы, так и отрицательно, его заряд нейтрален. Это объясняется тем, что в атоме одинаковое количество протонов и электронов. Разнозаряженные частицы нейтрализуют друг друга.

Эрнест Резерфорд в 1911 году предложил следующую модель атома: В центре находится положительно заряженное ядро, состоящее из протонов и нейтронов. Вокруг ядра вращаются электроны. Основная часть массы атома сосредоточена в ядре, которое имеет малый размер и чрезвычайно большую плотность (диаметр атома равен 10 -10 м; диаметр ядра атома = 10 -15 м). Говоря языком аллегорий: если представить атом в виде Олимпийского стадиона в Пекине, то ядро атома - это футбольный мяч, которым играют в футбол на этом стадионе.

Внимательный читатель задаст вопрос: "Если в ядре атома находятся положительно заряженные протоны, а одноименные заряды, как известно, отталкиваются, то почему ядро атома не разрушается?" Ученые пришли к выводу, что в ядре атома действуют некие, "склеивающие протоны", силы, которые и удерживают в целости ядро.

Т.к. ядро атома составляет основную массу атома, то массу атома можно считать равной сумме масс нейтронов и протонов.

Исходя из всего вышесказанного, глядя на структурный символ кислорода, можно смело сказать, что в его атоме присутствует 8 электронов.

  • O - химический символ элемента (кислород);
  • 16 - массовое число;
  • 8 - порядковый (атомный) номер.

Атомы одного элемента, имеющие один и тот же заряд ядра, но различные массовые числа, называются изотопами .

Изотопы водорода:

  • 1 1 H - протий;
  • 1 2 H - дейтерий;
  • 1 3 H - тритий;

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .

Протон -- стабильная частица из класса адронов, ядро атома водорода.

Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906--1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона, подтвердив открытие искусственного превращения элементов. В этих опытах?-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона mp = (938,2796 ± 0,0027)МэВ или ~ 1,6-10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами -- глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры ~ 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия -- протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино (для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (?, ?, ?, ?) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число -- барионный заряд, равный 1 для барионов, - 1 -- для антибарионов и О -- для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона. Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (~ 2*1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона ~ 1032 лет в объеме воды в 100 м3 (1 м3 содержит ~ 1030 протонов) следует ожидать распада одного протона в год. Остается всего лишь зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природы.

Нейтрон -- нейтральная частица, относящаяся к классу адронов. Открыт в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона qn равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что |qn| <10-20e (здесь е -- элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку |qn|< 2?10-22 е. Спин нейтрона равен 1/2. Как адрон с полуцелым спином, он относится к группе барионов. У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен +1.Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного u-кварка с электрическим зарядом +2/3 и двух d-кварков с зарядом - 1/3, связанных между собой глюонным полем.

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон -- нестабильная частица, распадающаяся на протон (р), электрон (е-) и электронное антинейтрино. Время жизни нейтрона составляет (917 ?14) с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: mn-mp(1,29344 ±0,00007) МэВ. Из сопоставления ее с массой протона получим массу нейтрона: mn = 939,5731 ± 0,0027 МэВ; это соответствует mn ~ 1,6-10-24.Нейтрон участвует во всех видах фундаментальных взаимодействий. Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия -- бета-распад нейтрона.

Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса. Это лишь один из примеров его электромагнитного взаимодействия. Большой интерес приобрели поиски дипольного электрического момента нейтрона, для которого была получена верхняя граница. Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР; поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах.

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии:

медленные нейтроны (<105эВ, есть много их разновидностей),

быстрые нейтроны (105?108эВ), высокоэнергичные (> 108эВ).

Весьма интересными свойствами обладают очень медленные нейтроны(10-7эВ), которые получили название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов. Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне в институте ядерных исследований спустя почти десятилетие.

Недавно ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

Структура атома

Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Что такое ядро?

В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

Размер атомного ядра

Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

Расположение протонов и нейтронов в ядре

Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

Протон, нейтрон и электрон

Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

  • Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
  • Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
  • Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
  • Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Общее представление о методе молекулярных орбиталей.
  • Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
  • Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
  • 11.Металлические связи. Металлические связи как предельный случай делокализации валентных электронных орбиталей. Кристаллические решетки металлов.
  • 12. Межмолекулярные связи. Взаимодействия Ван-дер-Ваальса – дисперсионное, диполь-дипольное, индуктивное). Водородная связь.
  • 13. Основные классы неорганических соединений. Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.
  • 14. Основания.Номенклатура оснований. Химические свойства оснований. Амфотерные основания, реакции их взаимодействия с кислотами и щелочами.
  • 15. Кислоты.Бескислородные и кислородные кислоты. Номенклатура (название кислот). Химические свойства кислот.
  • 16. Соли как продукты взаимодействия кислот и оснований. Типы солей: средние (нормальные), кислые, основные, оксосоли, двойные, комплексные соли. Номенклатура солей. Химические свойства солей.
  • 17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
  • 18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
  • 20. Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.
  • 22. Влияние температуры на скорость химической реакции. Энергия активации.
  • 23. Химическое равновесие. Константа равновесия, ее зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
  • 1)Кислота – сильный электролит.
  • 36. А) Стандартный водородный электрод. Кислородный электрод.
  • 37. Уравнение Нернста для расчета электродных потенциалов электродных систем различных типов. Уравнение Нернста для водородного и кислородного электродов
  • 3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
  • I – величина тока
  • 49. Кислотно-основной метод титрования.Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе
    1. Атом. Представление о строении атома. Электроны, протоны, нейтроны

    Атом - элементарная частица вещества (хим. элемента), состоящая из определенного набора протонов и нейтронов (ядро атома), и электронов.

    Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов). Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-). Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

    1. Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения

    Атом – микромир, в котором действуют законы квантовой механики.

    Волновой процесс движения электрона в атоме вокруг ядра описывается с помощью волновой функции пси (ψ), которая должна иметь три параметра квантования (3 степени свободы).

    Физический смысл – трехмерная амплитуда эл. волны.

    n– главное квантовое число, характ. энергетич. уровень в атоме.

    l– побочное (орбитальное к.ч.)l=0…n-1, характеризует энергетич. подуровни в атоме и форму атомной орбитали.

    m l – магнитное к.ч.ml= -l… +l, характеризует ориентацию элемента в м.п.

    ms- спиновое число. Исп. Т.к. каждый электрон имеет свой момет движения

    1. Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.

    Пр. Гунда : заполнение происходит последовательно таким образом, чтобы сумма спиновых чисел (момент движения) было максимально.

    Принцип Паули : в атоме не может быть 2х эл., у которых все 4 квант. Числа были бы одинаковы

    Х n – макс кол-во эл. на энерг. ур.

    Начиная с 3его периода наблюдается эффект запаздывания, который объясняется принципом наименьшей энергии: формирование электронной оболочки атома происходит таким образом, что эл. занимают энергетически выгодное положение, когда энергия связи с ядром максимально возможна, а собственная энергия электрона – минимально возможна.

    Пр. Кличевского – наиболее энергетически выгодны те подур., у кот. сумма квантовых чиселnиlстремится к мин.

    1. Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.

    Энергия ионизации атома - Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации.

    Сродство к электрону - Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону (Е).

    Энергия ионизации возрастает в периодах от щелочных металлов к благородным газами уменьшается в группах сверху вниз.

    Для элементов главных подгрупп сродство к электрону возрастает в периодах слева направои уменьшается в группах сверху вниз.

    1. Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.

    Электроотрицательность – способность атома хим.эл. в соединении притягивать к себе электроны

    Методы оценки:

    ЭО=I+E(кДж/моль) - полусумма энергий ионизации и сродства(по Маликену)

    Относительная шкала по Полингу

    Используя относ шкалу э.о. и приняв э.о. F= 4в периоде с увеличением заряда ядра э.о. увелич. и увелич немет. св-ва.

    В группе увеличение заряда ядра сопровождается уменьшение э.о. и усиление мет. св-в

    Степень окисления (окислительное число) – воображаемый заряд атома электронного соединения, который определяется из предположения, что соединение состоит из ионов

    С.о. простых веществ =0

    С.о кислорода = -2 (искл. Пероксиды H2O2(-1) и соединения со фтором)

    С.о. водорода и щелочных металлов = +1

    Отриц С.о. имеют только немет и только одну

    В любом ионе алгебраич сумма всех с.о. = заряду иона, а в нейтральных молекулах = 0

    Если хим соед сост из мет и немет, то мет +, немет –

    Если хим соед сост из 2х немет, то отриц с.о. имеет тот, у кот > э.о.

      Периодический закон и периодическая система элементов Д.И.Менделеева. Периоды, группы и подгруппы периодической системы. Связь периодической системы со строением атомов. Электронные семейства элементов.

    формулировка периодического закона такова:

    «свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

    Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

    Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

    В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

    Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).

    Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n - одинаково).