Специальность машиностроение. Компьютерное интегрированное производство

Системы компьютеризированного интегрированного производства (CIM) - естественный этап развития информационных технологий в области автоматизации производственных процессов, связанный с интеграцией гибкого производства и систем управления ими. Исторически первым решением в области развития систем управления технологическим оборудованием была технология Numerical Control (NC), или числового программного управления. В основу автоматизации производственных процессов закладывался принцип максимально возможной автоматизации, почти полностью исключающей участие человека в управлении производством. Первые системы прямого числового программирования (Direct Numerical Control - DNC) позволяли компьютеру передавать данные программы в контроллер станка уже без участия человека. В условиях динамичных производств станки и агрегаты с жесткой функциональной структурой и компоновкой заменяются на гибкие производственные системы (Flexible Manufacturing System - FMS), а позже - на реконфигурируемые производственные системы (Reconfigurable Manufacturing System - RMS). В настоящее время ведутся работы по созданию реконфигурируемых производств и предприятий (reconfigurable enterprises).

Развитие компьютерного управления производством было реализовано в нескольких областях управления, таких как планирование производственных ресурсов, учет, маркетинг и продажи, а также в области развития технологий, поддерживающих интеграцию CAD/CAM/CAPP-систем, обеспечивающих техническую подготовку производства. Информационные системы этого класса существенно отличались от систем автоматизации в технических системах, трудно формализуемые и неформализуемые задачи управления производством, преобладающие в сложных производственно-экономических системах, не могли быть решены без участия человека. Полный потенциал компьютеризации в производственных системах не может быть получен, когда все сегменты управления производством не интегрированы. На практике это поставило задачу общей интеграции производственных процессов с другими информационными системами управления предприятием. Возникла потребность в возможности передачи данных через различные функциональные модули системы управления производством, объединении основных компонентов интегрированной автоматизированной системы управления производством. Понимание этого привело к появлению концепции компьютеризированного интегрированного производства (CIM), реализация которой потребовала развития целой линейки компьютерных технологий в системах управления производством на основе принципов интеграции.

Основное различие между комплексной автоматизацией производства и компьютеризированным интегрированным производством заключается в том, что комплексная автоматизация касается непосредственно технических производственных процессов и работы оборудования. Автоматизированные системы управления производственными процессами предназначены для выполнения сборки, обработки материалов и контроля производственных процессов практически без участия человека. CIM включает в себя использование компьютерных систем для автоматизации не только основных (производственных), но и обеспечивающих процессов, таких как, например, информационные, процессы управления в финансово-экономической области, процессы принятия проектных и управленческих решений.

Концепция компьютеризированного интегрированного производства (CIM) подразумевает новый подход к организации и управлению производством, новизна которого состоит не только в применении компьютерных технологий для автоматизации технологических процессов и операций, но и в создании интегрированной информационной среды для управления производством. В концепции CIM особую роль играет интегрированная компьютерная система, ключевыми функциями которой является автоматизация процессов проектирования и подготовки производства изделий, а также функции, связанные с обеспечением информационной интеграции технологических, производственных процессов и процессов управления производством.

Компьютеризированное интегрированное производство объединяет следующие функции:

  • проектирование и подготовку производства;
  • планирование и изготовление;
  • управление снабжением;
  • управление производственными участками и цехами;
  • управление транспортными и складскими системами;
  • системы обеспечения качества;
  • системы сбыта;
  • финансовые подсистемы.

Таким образом, компьютеризированное интегрированное производство охватывает весь спектр задач, связанных с развитием продукта и производственной деятельности. Все функции осуществляются с помощью специальных программных модулей. Данные, необходимые для различных процедур, свободно передаются от одного программного модуля к другому. В CIM используется общая база данных, которая позволяет с помощью интерфейса обеспечивать доступ пользователя ко всем модулям производственных процессов и связанных с ним бизнес-функций, которые интегрируют автоматизированные сегменты деятельности или производственного комплекса. При этом CIM снижает и практически исключает участие человека в производстве и тем самым позволяет ускорить производственный процесс и снижает коэффициент сбоев и ошибок.

Существует немало определений CIM. Наиболее полное из них - определение Ассоциации компьютерных автоматизированных систем (CASA/ SEM), разработавшей концепцию компьютеризированного интегрированного производства. Ассоциация определяет CIM как интеграцию общего производственного предприятия с управленческой философией, которая улучшает организационную и кадровую эффективность . Дэн Эпплтон, президент Dacom Inc., рассматривает CIM как философию управления производственным процессом .

Компьютеризированное интегрированное производство рассматривается как целостный подход к деятельности производственного предприятия в целях оптимизации внутренних процессов. Этот методологический подход применяется ко всем видам деятельности: от проектирования продукта до сервисного обслуживания на комплексной основе с использованием различных методов, средств и технологий для того, чтобы добиться улучшения производства, снижения затрат, выполнения плановых сроков поставки, улучшения качества и общей гибкости в производственной системе. При таком целостном подходе экономические и социальные аспекты имеют такое же значение, как технические аспекты. CIM также охватывает смежные области, в том числе автоматизирует процессы общего управления качеством, реинжиниринга бизнес-процессов, параллельного проектирования, документооборота, планирования ресурсов предприятия и гибкого производства.

Динамическая концепция производственного предприятия с точки зрения развития систем компьютеризированного интегрированного производства рассматривает производственную среду компании как совокупность аспектов, включая:

  • особенности внешней среды предприятия. Рассматриваются такие характеристики, как глобальная конкуренция, забота об окружающей среде, требования к системам управления, сокращение цикла производства продукции, инновационные способы производства изделий и необходимость быстрого реагирования на изменения внешней среды;
  • поддержку принятия решений , что определяет необходимость углубленного анализа и применения специальных методов для принятия эффективных управленческих решений. Для того чтобы оптимально распределить инвестиции и оценить эффект от внедрения сложных систем в виртуальном территориально-распределенном производстве, компания должна нанимать высококвалифицированных специалистов - группу поддержки принятия решений. Такие специалисты должны принимать решения, основываясь на данных, получаемых из внешней среды и из производственной системы, используя подходы к решению слабоструктурированных задач;
  • иерархичность. Все процессы управления в производственной системе разбиваются по сферам автоматизации;
  • коммуникационный аспект. Отражает необходимость в обмене данными между различными системами и в поддержании глобальных коммуникационных и информационных связей как по каждому контуру управления, так и между различными контурами;
  • системный аспект , который отражает саму систему компьютерноинтегрированного производства как инфраструктуру, лежащую в основе сознания единой компьютерно-интегрированной среды предприятия.

Практический опыт создания и эксплуатации современных CIM показывает, что система CIM должна охватывать процессы проектирования, изготовления и сбыта продукции. Проектирование должно начинаться с изучения конъюнктуры рынка и кончаться вопросами доставки продукции потребителю. Рассматривая информационную структуру CIM (рис. 2.4), можно условно выделить три основных, иерархически связанных между собой уровня. К подсистемам CIM верхнего уровня относятся подсистемы, выполняющие задачи планирования производства. Средний уровень занимают подсистемы проектирования производства. На нижнем уровне находятся подсистемы управления производственным оборудованием.

Рис. 2.4.

Различают следующие основные компоненты информационной структуры CIM.

  • 1. Верхний уровень (уровень планирования ) :
    • PPS (Production Planning Systems) - системы планирования и управления производством;
    • ERP (Enterprise Resource Planning) - система планирования ресурсов предприятия;
    • MRP II (Manufacturing Resource Planning) - система планирования потребностей в материалах;
    • CAP (Computer-Aided Planing) - система технологической подготовки;
    • САРР (Computer-Aided Process Planning) - автоматизированная система проектирования технологических процессов и оформления технологической документации;
    • AMHS (Automated Material Handling Systems) - автоматическая система перемещения материалов;
    • ASRS (Automated Retrieval and Storage Systems) - автоматизированная складская система;
    • MES (Manufacturing Execution System) - система управления производственными процессами;
    • AI, KBS, ES (Artificial Intelligence/Knowledge Base Systems/Expert Systems) - системы искусственного интеллекта/системы баз знаний/экс- пертные системы.
  • 2. Средний уровень (уровень проектирования изделия и производства)-.
  • PDM (Project Data Management) - система управления данными об изделиях;
  • CAE (Computer-Aided Engineering) - система автоматизированного инженерного анализа;
  • CAD (Computer-Aided Design) - система автоматизированного проектирования (САПР);
  • САМ (Computer-Aided Manufacturing) - автоматизированная система технологической подготовки производства (АСТПП);
  • модификации указанных выше систем - интегрированные технологии CAD/CAE/CAM;
  • ETPD (Electronic Technical Development) - система автоматизированной разработки эксплуатационной документации;
  • IETM (Interactive Electronic Technical Manuals) - интерактивные электронные технические руководства.
  • 3. Нижний уровень {уровень управления производственным оборудованием)-.
  • CAQ (Computer Aided Quality Control) - автоматизированная система управления качеством;
  • SCADA (Supervisory Control And Data Acquisition) - диспетчерское управление и сбор данных;
  • FMS (Flexible Manufacturing System) - гибкая производственная система;
  • RMS (Reconfigurable Manufacturing System) - реконфигурируемая производственная система;
  • CM (Cellurar Manufacturing) - автоматизированная система управления производственными ячейками;
  • AIS (Automatic Identification System) - система автоматической идентификации;
  • CNC (Computer Numerical Controlled Machine Tools) - числовое программное управление (ЧПУ);
  • DNC (Direct Numerical Control Machine Tools) - прямое числовое программное управление;
  • PLCs (Programmable Logic Controllers) - программируемый логический контроллер (Г1ЛК);
  • LAN (Local Area Network) - локальная сеть;
  • WAN (Wide Area Network) - распределенная сеть;
  • EDI (Electronic Data Interchange) - электронный обмен данными.

Почти все современные производственные системы реализуются сегодня

с помощью компьютерных систем. Основные области, автоматизируемые системами класса CIM, подразделяют на следующие группы.

  • 1. Планирование производственных процессов :
    • планирование ресурсов предприятия;
    • планирование выпуска продукции;
    • планирование потребностей в материалах;
    • планирование продаж и операций;
    • объемно-календарное планирование;
    • планирование потребности в производственных мощностях.
  • 2. Проектирование изделия и производственных процессов :
    • получение проекта для различных конструкторских решений;
    • выполнение необходимых функций на различных этапах подготовки производства:
      • - анализ чертежей конструкции,
      • - моделирование изготовления,
      • - отработка технологических звеньев предприятия,
      • - определение правил изготовления для каждого конкретного задания на каждом рабочем месте;
    • решение задач проектирования с учетом факторов, связанных с решением задач организации производства и управления;
    • разработка конструкторской документации;
    • разработка технологических процессов;
    • проектирование средств технологического оснащения;
    • временное планирование производственного процесса;
    • принятие в процессе проектирования наиболее рациональных и оптимальных решений.
  • 3. Контроль производственных процессов :
    • входной контроль сырья;
    • диспетчерское управление и сбор данных;
    • контроль процесса производства;
    • контроль готового изделия по окончанию производственного процесса;
    • контроль продукции при эксплуатации.
  • 4. Автоматизация процессов производства :
    • основных - технологические процессы, в ходе которых происходят изменения геометрических форм, размеров и физико-химических свойств продукции;
    • вспомогательных - процессы, которые обеспечивают бесперебойное протекание основных процессов, например, изготовление и ремонт инструментов и оснастки, ремонт оборудования, обеспечение всеми видами энергий (электрической, тепловой, пара, воды, сжатого воздуха и т.д.);
    • обслуживающих - процессы, связанные с обслуживанием как основных, гак и вспомогательных процессов, но в результате которых продукция не создается (хранение, транспортировка, технический контроль и т.д.).

В рамках методологического подхода к компьютеризированному интегрированному производству выделяют следующие его основные функции:

  • а) закупки;
  • б) поставки;
  • в) производство:
    • планирование производственных процессов,
    • проектирование изделия и производства,
    • автоматизация управления производственным оборудованием;
  • г) складская деятельность;
  • д) управление финансами;
  • е) маркетинг;
  • ж) управление информационно-коммуникационными потоками.

Закупки и поставки. Отдел закупок и поставок отвечает за размещение

заказов на поставку и следит, обеспечивается ли качество поставляемой поставщиком продукции, согласовывает детали, договаривается об осмотре товара и последующей поставке в зависимости от производственного графика для последующего снабжения производства.

Производство. Организуется деятельность производственных цехов но производству продукта с дальнейшим пополнением базы данных информацией о производительности, используемом производственном оборудовании и состоянии выполненных производственных процессов. В С1М осуществляется программирование ЧПУ на основе автоматизированного планирования производственной деятельности. Важно то, что все процессы должны контролироваться в режиме реального времени, учитывая динамичность расписания и актуальную изменяемую информацию о продолжительности изготовления каждого из изделий. Например, после прохождения продукции через единицу оборудования система передает в базу данных его технологические параметры. В системе CIM единица оборудования - это то, что управляется и конфигурируется компьютером, например, станки с ЧПУ, гибкие производственные системы, роботы, управляемые компьютерами, системы обработки материалов, системы сборки с компьютерным управлением, гибкие автоматизированные системы контроля. Отдел планирования производственного процесса принимает параметры изделия (спецификации) и производства, введенные отделом проектирования, и формирует производственные данные и информацию для разработки плана по производству продукции с учетом состояния и возможностей производственной системы.

Планирование включает в себя несколько подзадач, касающихся потребностей в материалах, производственных мощностей, инструментов, рабочей силы, организации технологического процесса, аутсорсинга, логистики, организации контроля и т.д. В системе CIM процесс планирования учитывает как издержки производства, так и возможности производственного оборудования. Также CIM предоставляет возможность изменения параметров для оптимизации производственного процесса.

Отдел проектирования устанавливает начальную базу параметров для производства предлагаемого продукта. В процессе проектирования система собирает информацию (параметры, размеры, особенности продукта и др.), необходимую для изготовления продукта. В системе CIM это решается возможностью геометрического моделирования и автоматизированного проектирования. Это помогает оценить требования к продукту и эффективность его производства. Процесс проектирования предотвращает затраты, которые могли бы быть понесены в реальном производстве в случае неправильной оценки производственных возможностей оборудования и неэффективной организации производства.

Управление складом включает в себя управление хранением сырья, комплектующих, готовой продукции, а также их отгрузку. В настоящее время, когда аутсорсинг в логистике очень развит и есть необходимость поставки компонентов и изделий «точно в срок», система CIM особенно необходима. Она позволяет оценить время поставки, загруженность склада.

Финансы. Основные задачи: планирование инвестиций, оборотного капитала, контроль денежных потоков, реализация поступлений, учета и распределения средств являются основными задачами финансовых отделов.

Маркетинг. Отделом маркетинга инициируется потребность в определенном продукте. CIM позволяет описать характеристики продукта, проекцию объема производства к возможностям производства, необходимые для производства объемы выпуска продукта и стратегию маркетинга продукта. Также система позволяет оценить производственные затраты на определенный продукт и оценить экономическую целесообразность его производства.

Управление информационно-коммуникационными потоками. Управление информацией является, пожалуй, одной из главных задач в CIM. Оно включает в себя управление базами данных, коммуникации, интеграцию производственных систем и ИС управления.

Старая экономическая модель предприятия противоречит современным тенденциям развития производственных предприятий. В нынешнем конкурентном мировом рынке выживание любой отрасли зависит от умения завоевать клиента и своевременно выводить на рынок продукцию высокого качества, и производственные компании не являются исключением. Любая производственная компания стремится непрерывно снижать стоимость продукта, сокращать затраты на производство, чтобы оставаться конкурентоспособной в условиях глобальной конкуренции. Кроме того, существует необходимость постоянного улучшения качества и уровня эксплуатации изготавливаемой продукции. Другим важным требованием выступает время доставки. В условиях, когда любое производственное предприятие зависимо от внешних условий, в том числе аутсорсинга и длинных цепочек поставок, возможно, с пересечением международных границ, задача постоянного сокращения сроков выполнения заказов и доставки является действительно важной задачей. CIM представляет собой высокоэффективную технологию для достижения основных задач управления производством - повышения качества продукции, уменьшения стоимости и времени изготовления продукта, а также повышения уровня логистического сервиса. CIM предлагает интегрированные ИС для удовлетворения всех этих потребностей.

От внедрения CIM ожидают экономических эффектов:

  • увеличения коэффициента использования оборудования и снижения накладных расходов;
  • значительного уменьшения объемов незавершенного производства;
  • сокращения затрат на рабочую силу, обеспечения «безлюдного» производства;
  • ускорения сменяемости моделей выпускаемой продукции в соответствии с требованиями рынка;
  • сокращения сроков поставок продукции и повышения ее качества.

Внедрение ОМ дает ряд преимуществ, экономический эффект от внедрения обеспечивается за счет:

  • увеличения производительности труда конструкторов и технологов;
  • сокращения запасов;
  • сокращения затрат на продукт;
  • сокращения отходов и количества брака;
  • улучшения качества;
  • сокращения длительности циклов производства;
  • минимизации числа ошибок конструирования - повышения точности проектирования;
  • визуализации процедур анализа сопряжений элементов изделий (оценка собираемости);
  • упрощения анализа функционирования изделия и сокращения количества испытаний опытных образцов;
  • автоматизации подготовки технической документации;
  • стандартизации проектных решений всех уровней;
  • повышения производительности процесса проектирования инструмента и оснастки;
  • уменьшения числа ошибок при программировании изготовления на оборудовании с ЧПУ;
  • обеспечения задач технического контроля сложных изделий;
  • изменения корпоративных ценностей и работы с персоналом в производственной компании; обеспечения более эффективного взаимодействия между инженерами, конструкторами, технологами, руководителями различных проектных групп и специалистов по системам управления на предприятиях;
  • увеличения гибкости в производстве для достижения немедленного и быстрого реагирования на изменение продуктовых линеек, технологий управления производством.

Недостатком CIM является отсутствие четкой методологии внедрения и сложность оценки эффективности от внедрения CIM и создания решений по интеграции, связанных с высокими первоначальными инвестициями в крупномасштабные проекты информатизации на производственных предприятиях.

  • Laplante Р. Comprehensive dictionary of electrical engineering. 2nd ed. Boca Raton, Florida:CRC Press, 2005. P. 136.
  • Ibid.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. CALS ехнологии как основа современного производства

Современная промышленность все больше переходит на выпуск продукции индивидуально под конкретную группу потребителей. Стремление к индивидуальному удовлетворению конкретного клиента требует производств, имеющих гибкую структуру бизнес-процессов, что вызывает к жизни новые подходы, концепции и методологии. Одна из таких концепций, CALS (Continuous Acquisition and Life cycle Support), превратилась сегодня в целое направление информационных технологий.

Жизненный цикл изделия - совокупность этапов или последовательность бизнес-процессов, через которые проходит это изделие за время своего существования: маркетинговые исследования, составление технического задания, проектирование, технологическая подготовка производства, изготовление, поставка, эксплуатация, утилизация. Идеология CALS состоит в отображении реальных бизнес-процессов на виртуальную информационную среду, где эти процессы реализуются в виде компьютерных систем, а информация существует только в электронном виде.

2. Основные термины, структура КСПИ

Необходимо, прежде всего, ввести русскоязычный термин, адекватно отражающий суть подхода CALS - Компьютерное Сопровождение Процессов жизненного цикла Изделий (КСПИ). Можно выделить три основных аспекта данной концепции:

Компьютерная автоматизация, повышающая производительность основных процессов и операций создания информации;

Информационная интеграция процессов, т.е. совместное и многократное использование одних и тех же данных. Интеграция достигается минимизацией числа и сложности вспомогательных процессов и операций поиска, преобразования и передачи информации. Один из инструментов интеграции - стандартизация способов и технологий представления данных, благодаря которой результаты предшествующего процесса могут быть использованы в последующих процессах с минимальными преобразованиями;

Переход к безбумажной модели организации бизнес-процессов, многократно ускоряющей доставку документов, обеспечивающей параллелизм обсуждения, контроля и утверждения результатов работы, сокращающей длительность бизнес-процессов. В этом случае ключевое значение приобретает электронно-цифровая подпись (ЭЦП).

Применение технологий КСПИ возможно, если выполнены следующие условия:

Наличие современной инфраструктуры передачи данных;

Введение понятия электронного документа, как полноценного объекта производственно-хозяйственной деятельности и обеспечение его легитимности;

Наличие средств и технологий ЭЦП и защиты данных;

Реформирование бизнес-процессов с учетом новых возможностей информационных технологий;

Создание системы стандартов, дополняющих или заменяющих традиционные ЕСКД, ЕСТД, ЕСПЛ, СРПП и т.п.;

Наличие на рынке программных средств и компьютерных систем, соответствующих требованиям стандартов.

В составе КСПИ можно выделить два крупных блока (рис. 1):

Компьютеризированное интегрированное производство и система логистической поддержки изделия.

К первому относятся:

Системы автоматизированного проектирования (САПР-К или CAD), инженерного анализа и расчетов (СИАР или CAE) и технологической подготовки производства (САПР-Т или CAM);

Системы автоматизированной разработки эксплуатационной документации (Electronic Technical Publication Development - ETPD);

Системы управления данными об изделиях (Product Data Management - PDM);

Системы управления проектами и программами (Project Management - РМ);

Автоматизированные системы управления производственно-хозяйственной деятельности предприятия (АСУП).

Система интегрированной логистической поддержки (ИЛП) изделия, предназначенная для информационного сопровождения бизнес-процессов на постпроизводственных стадиях жизненного цикла - относительно новый элемент производственной и управленческой структуры для предприятий России. ИЛП представляет собой совокупность процессов, организационно-технических мероприятий и регламентов, осуществляемых на всех стадиях жизненного цикла изделия от его разработки до утилизации. Цель внедрения ИЛП - сокращение «затрат на владение изделием», которые для сложного наукоемкого изделия равны или превышают затраты на его закупку.

Типовой перечень задач ИЛП включает в себя :

Логистический анализ на стадии проектирования (Logistics Support Analysis), предусматривающий определение требований к готовности изделия; определение затрат и ресурсов, необходимых для поддержания изделия в нужном состоянии; создание баз данных для отслеживания перечисленных параметров в ходе жизненного цикла изделия;

Создание электронной технической документации для закупки, поставки, ввода в действие, эксплуатации, обслуживания и ремонта изделия;

Создание и ведение «электронных досье» на эксплуатируемые изделия, с целью накопления и использования фактических данных для оперативного определения реального объема работ по обслуживанию и потребности в материальных ресурсах;

Применение стандартизованных процессов поставки изделий и средств материально-технического обеспечения, создание компьютерных систем информационной поддержки этих процессов (Integrated Supply Support Procedures);

Применение стандартизованных решений по кодификации изделий и предметов снабжения (Codification). В условиях России эта задача имеет более широкий смысл и трактуется как задача каталогизации - создание федерального реестра предметов снабжения, поставляемых для государственных нужд. Цель создания реестра - оптимизация госзаказа, в том числе исключение дублирования производства функционально и конструктивно эквивалентных предметов снабжения. В ходе каталогизации получают коды, используемые для их идентификации в процессах материально-технического снабжения; - создание и применение компьютерных систем планирования потребностей в средствах материально-технического обеспечения, формирования заявок (Order Administration) и управления контрактами (Invoicing) на поставку средств материально-технического обеспечения.

Рис. 1. Структура КСПИ

3. Виртуальное предприятие

Развитие КСПИ и обусловило появление новой организационной формы выполнения масштабных наукоемких проектов, связанных с разработкой, производством и эксплуатацией сложной продукции - так называемого «виртуального предприятия». Виртуальное предприятие создается посредством объединения на контрактной основе предприятий и организаций, участвующих в жизненном цикле продукции и связанных общими бизнес-процессами. Информационное взаимодействие участников виртуального предприятия осуществляется на основе общих хранилищ данных через общую корпоративную или глобальную сеть. Срок жизни виртуального предприятия определяется длительностью проекта или жизненного цикла продукции. Задача информационного взаимодействия особенно актуальна для временно создаваемых виртуальных предприятий, состоящих из географически удаленных друг от друга подрядчиков, субподрядчиков, поставщиков с разнородными компьютерными платформами и программными решениями.

Создание виртуальных предприятий требует проработки общей схемы совместного функционирования и взаимодействия составных частей. Это выводит на первый план вопросы проектирования, анализа и, при необходимости, реинжиниринга внутренних и совместных бизнес-процессов, юридического взаимодействия и интеллектуальной собственности.

Информацию, используемую в ходе жизненного цикла, можно условно разделить на три класса: о продукции, о выполняемых процессах и о среде, в которой эти процессы выполняются. На каждой стадии создается набор данных, который используется на последующих стадиях. При наличии бумажной копии документа его подпись не вызывает никаких проблем, но в данном случае, когда сообщение идет полностью с помощью компьютера, появляется еще одна проблема - как заверять все необходимые документы. То есть практическая организация безбумажных бизнес-процессов возможна только при обеспечении легитимности электронного документа, заверенного ЭЦП. Техническим комитетом 431 «CALS-технологии» Госстандарта РФ в настоящее время разрабатывается проект соответствующего ГОСТа, в кагором электронный технический документ трактуется как «оформленная надлежащим образом в установленном порядке и зафиксированная на машинном носителе техническая информация, которая может быть представлена в форме, пригодной для ее восприятия человеком». Электронный технический документ логически состоит из двух частей: содержательной и реквизитной. Первая представляет собой собственно информацию, а вторая содержит аутентификационные и идентификационные данные электронного технического документа, в том числе набор обязательных атрибутов, одну или несколько электронно-цифровых подписей (рис. 2).

Рис. 2. Структура электронного технического документа

ЭЦП представляет собой набор знаков, генерируемый по алгоритму, определенному ГОСТ Р 34.0-94 и ГОСТ Р 34. - 94. ЭЦП является функцией от содержимого, подписываемого электронного технического документа и секретного ключа. Секретный ключ (код) имеется у каждого субъекта, имеющего право подписи и может храниться на дискете или смарт-карте. Второй ключ (открытый) используется получателями документа для проверки подлинности ЭЦП. При помощи ЭЦП можно подписывать отдельные файлы или фрагменты баз данных. В последнем случае программное обеспечение, реализующее ЭЦП, должно встраиваться в прикладные автоматизированные системы.

Примером базового средства, реализующего основные функции ЭЦП, является система «Верба», сертифицированная ФАПСИ.

4. Стандарты

Данные об изделии занимают значительную часть общего объема информации, используемой в ходе жизненного цикла. На их основе решаются задачи производства, материально-технического снабжения, сбыта, эксплуатации, ремонта и др. Информационная интеграция этих процессов и совместное использование данных обеспечиваются применением соответствующих стандартов. Представление конструкторско-технологических данных об изделии регламентируется стандартами серии ISO 10303 и ISO 13584 . В 1999-2000 годах Госстандартом РФ выпущена серия ГОСТ Р ИСО 10303, представляющая собой аутентичный перевод некоторых стандартов ISO 10303 , который поддерживается большинством современных зарубежных и отечественных систем CAD/САМ и PDM.

В соответствии с ISO 10303 электронная конструкторская модель изделия включает ряд компонентов:

1) Геометрические данные (твердотельные поверхности с топологией, фасеточные поверхности, сетчатые поверхности с топологией и без топологии, чертежи и т.п.).

2) Информация о конфигурации изделия и административные данные (идентификаторы страны, отрасли, предприятия, проекта, классификационные признаки и т.п., данные о вариантах состава и структуры изделия; данные об изменениях конструкции и информацию о документировании этих изменений; данные для контроля различных аспектов проекта или решения вопросов, связанных с особенностями и вариантами состава и конфигурации изделия; данные о контрактах, в соответствии с которыми ведется проектирование; сведения о секретности; условия обработки, в том числе финишной, данные о применяемости материалов, указанные проектировщиком для данного изделия; данные для контроля и учета выпущенной версии разработки; идентификаторы поставщиков и их квалификации).

3) Инженерные данные в неструктурированной форме, подготовленные с помощью различных программных систем в различных форматах.

Некоторые части стандарта ISO 10303 используются в качестве готовой модели данных для системы PDM (например, ISO 10303-203), а другие описывают конкретную технологию представления данных для информационного обмена между предприятиями (ISO 10303-21).

Для представления информации, необходимой при эксплуатации и техническом обслуживании изделия, используются технологии, регламентируемые стандартами ISO 8879 (Standard Generalized Markup Language), ISO 10744 (HyTime), а также спецификациями ассоциаций производителей аэрокосмической техники AECMA-1000D и АЕСМА-2000М (www. aecma.org).

В соответствие с требованиями стандартов эксплуатационная и ремонтная документация создается в форме интерактивных электронных технических руководств, интегрирующих данные и программные средства поддержки обслуживания, планирования потребностей в материальных ресурсах, контроля и диагностики, накопления данных о ходе эксплуатации.

5 . Экспорт промышленного бизнеса

Для владельцев бизнес инициативы - обладателей интеллектуальной собственности на производство с применением данной торговой марки, продаваемым товаром стала не только сама продукция, но и право на ее производство, как правило, ограниченное сроками или объемом выпуска. Оно подразумевает возможность экспорта лицензионного производства на удаленные территории, где имеются для этого благоприятные экономические условия.

Раньше было достаточно снабдить удаленное предприятие оборудованием, инструкциями и ресурсами, но сегодня возникла необходимость не просто копировать продукт, а поддерживать еще ряд его модификаций, оптимизированных под местный рынок. Разработка, подготовка производства, изготовление и поддержка адаптированного продукта все более возлагаются на региональное предприятие. Чтобы полноценно обеспечить его такой возможностью, хозяин торговой марки должен «экспортировать» самодостаточную модель бизнес процесса, со всеми его составляющими, только в уменьшенном масштабе. Для этого сами бизнес процессы должны быть хорошо формализованы и масштабируемы. В таком виде они представляют собой более дорогой вил интеллектуальной собственности, потому что для этого должна быть лучше развита среда его существования - информационные технологии. Это серьезный вызов для разработчиков информационных технологий.

6. Средства описания и анализа

Внедрение технологий КСПИ и создание интегрированной информационной системы на промышленном предприятии и, тем более, в условиях виртуального предприятия связано с глубокими исследованиями разнообразных бизнес-процессов, составляющих жизненный цикл изделия, что требует специальных средств их описания и анализа. Для этого применяется методология моделирования IDEF , позволяющая исследовать структуру, параметры и характеристики процессов в производственно-технических и организационно-экономических системах. Общая методология IDEF состоит из частных методологий, основанных на графическом представлении систем:

· IDEF0 для создания функциональной модели, отображающей процессы и функции системы, а также потоки информации и материальных объектов, преобразуемые этими функциями;

· IDEF1 для построения информационной модели, отображающей структуру и содержание информационных потоков, необходимых для поддержки функций системы.

Обе методологии получили в США статус федеральных стандартов, а сегодня ведется работа по их стандартизации и в России .

Основу методологии IDEF0 составляет графический язык описания (моделирования) процессов. Базовыми элементами языка являются блоки, изображающие функции (операции, действия) в составе моделируемых процессов, и стрелки, изображающие информационные и материальные связи между блоками. С помощью блоков и стрелок составляются диаграммы, описывающие процессы, операции и действия. Каждый блок на любой диаграмме может быть подвергнут декомпозиции с целью более подробного раскрытия его содержания. Результатом декомпозиции является новая, дочерняя, диаграмма. Множество всех диаграмм образует собственно функциональную модель.

Функциональная модель может иметь любую необходимую глубину декомпозиции, вплоть до описания действий, выполняемых отдельными специалистами на конкретных рабочих местах, с указанием условий выполнения и перечня используемых ресурсов.

Описания бизнес-процессов в форме функциональных моделей имеют ряд преимуществ.

· Модель является своеобразной «программой управления» персоналом, поскольку определяет, кто, при каких условиях и с использованием каких ресурсов выполняет те или иные функции.

· Модель определяет материальные потоки и документооборот и позволяет установить регламенты обмена результатами различных процессов.

· Модель служит методической основой для настройки прикладных программных систем.

· Модель является удобным средством анализа, пригодным для поиска путей совершенствования организации и управления процессами.

Кроме данных, относящихся к изделиям и бизнес-процессам, в интегрированной информационной системе должна содержаться информация о производственной и управленческой структуре, технологическом и вспомогательном оборудовании, персонале, финансах и т.д. Номенклатура этих данных хорошо известна специалистам, создающим и эксплуатирующим АСУП. С позиций методического единства можно считать, что в рамках концепции КСПИ эти данные должны быть организованы и управляемы средствами, аналогичными системам PDM.

7. Преимущества, обеспечиваемые применением КСПИ

Применение концепции КСПИ в процессах разработки, производства и эксплуатации продукции обеспечивает:

· расширение области деятельности предприятий путем кооперации с другими предприятиями. Эффективность взаимодействия достигается стандартизацией способов представления информации на разных стадиях и этапах жизненного цикла и возможности ее последующего использования. Современные ИТ позволяют строить производственную кооперацию в форме «виртуальных предприятий». Становится возможной кооперация не только посредством поставки готовых компонентов, но и посредством выполнения отдельных этапов и задач в процессах проектирования, производства и эксплуатации;

· повышение эффективности деятельности предприятий за счет использования информации, подготовленной партнерами; сокращения затрат на документооборот; преемственности результатов работы в комплексных проектах и возможности изменения состава участников без потери уже достигнутых результатов;

· повышение «прозрачности» и «управляемости» бизнес-процессов, их анализа и реинжиниринга на основе функциональных моделей;

· гарантию качества продукции.

Литература

компьютерный электронный документ изделие

Компьютеризированные интегрированные производства и CALS-технологии в машиностроении. Под ред. д.т.н., проф. Б.И. Черпакова. ГУП «ВИМИ», М., 1999, 512 c.

NATO CALS Handbook, 2000

DEF-STAN-0060. Integrated Logistic Support, 1999

ГОСТ Р 34.10-94 Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма

ГОСТ Р 34.11-94 Информационная технология. Криптографическая защита информации. Функция хэширования

Методология функционального моделирования. Рекомендации по стандартизации (Проект). М.: Госстандарт РФ. 2001

Александр Громов, Мария Каменнова, Александр Старыгин. Управление бизнес-процессами на основе технологии Workflow. «Открытые системы», 1997, №1

Размещено на Allbest.ru

Подобные документы

    Описание жизненного цикла изделия. Анализ возможных видов отказов, их последствий и критичности, учет риска внезапных отказов. Разработка предложений по материально-техническому снабжению. Комплексные показатели надежности и логистической поддержки.

    курсовая работа , добавлен 22.09.2015

    Сущность процессного подхода. Этапы планирования жизненного цикла продукции. Анализ ассортимента и качества продукции предприятия, проведение маркетинговых исследований. Проектирование и разработка новых колбасных изделий, технология их производства.

    дипломная работа , добавлен 27.06.2012

    Изучение негативных экологических аспектов и опасных производственных факторов. Миссия и политика деятельности предприятия. Характеристика специальных процессов интегрированной системы менеджмента. Описание процесса "Планирование производства продукции".

    курсовая работа , добавлен 05.01.2013

    История производственного менеджмента. Функции, цели, производственная структура предприятия. Понятие жизненного цикла товара. Связь маркетинга и производства. Инновации и инновационный процесс. Конструкторская и технологическая подготовка производства.

    шпаргалка , добавлен 14.06.2010

    Основная концепция жизненного цикла предприятия. Методики для описания жизненного цикла предприятия. Оценка показателей экономической, финансовой, управленческой деятельности предприятия, особенности выбора стратегии его развития на соответствующем этапе.

    курсовая работа , добавлен 09.12.2009

    Концепция, основные стадии и виды жизненного цикла продукции. Особенности маркетинговых решений на разных этапах жизненного цикла. Анализ жизненного цикла продукции на примере компании "Сименс". Характеристика предприятия и выпускаемой продукции.

    курсовая работа , добавлен 26.10.2015

    Организация поточного производства и расчет основных параметров поточной линии. Расчет программы запуска изделий и трудоемкости по операциям техпроцесса. Определение хозрасчетного экономического эффекта от внедрения новой технологии производства изделия.

    курсовая работа , добавлен 05.01.2011

    Механизм управления организацией по стадиям ее жизненного цикла и направления его совершенствования. Один из вариантов деления жизненного цикла организации на соответствующие временные отрезки. Модель жизненного цикла Ларри Грейнера и Ицхака Адизеса.

    курсовая работа , добавлен 23.05.2015

    Организация основного производства. Понятие и классификация производственных процессов. Технологическая цепочка производства изделий. Расчет длительности производственного цикла простого процесса. Пути сокращения длительности производственных циклов.

    презентация , добавлен 06.11.2012

    Понятие и концепции моделей жизненного цикла организаций. Стратегии управления организацией на этапах жизненного цикла. Проблема формирования критериев определения стадии жизненного цикла. Возникновение, развитие, стагнация, возрождение организации.

ОСНОВЫ КОМПЬЮТЕРНО-ИНТЕГРИРОВАННЫХ
ТЕХНОЛОГИЙ МАШИНОСТРОЕНИЯ

1.1. Методологические основы КИТ

1.1.1 Современное состояние, тенденции
и перспективы развития КИТ

Начиная с 80-х годов XX века одним из направлений повышения эффективности производства стало широкое применение компьютерных и информационных технологий .

На современном этапе новые промышленные интегрированные на этапах ЖЦИ технологии включают роботов, станки с программным управ­лением, компьютерные программы для проектирования, инженерного ана­лиза, технологической подготовки производства, производства и осуществ­ления контроля над техникой. Эти современные КИТ получили свою реализацию в КИП (computer-integrated manufactu-ring/С1М) . Совре­менные КИТ, также называемые передо­выми технологиями производства, связывают вместе компоненты произ­водства, которые прежде были отделены друг от друга. Работа станков, роботов, конструкторско-технологических отделов и инженерного анализа координируется одним компьютером.

Ядро структуры полноценного КИП образует так называемая несопро­вождаемая производственная подсистема (LOM – Light Out Manufacturing), включающая ряд обязательных КИТ, которые делятся на три составляющие: компьютерное проектирование (computer-aided design/ CAD), компьютерное производство (computer-aided manufacturing/ САМ) и интегрированная информационная сеть (Integrated Information Network).

Машины с компьютерным управлением, применяемые при обработке мате­риалов, производстве деталей и сборке изделий, существенно повысили скорость изготовления единицы продукции. Компьютерные системы производства позволяют быстро переключать производственные линии с одного вида изделий на любой другой, меняя только инструкцию для станка или программу для компьютера. Эти системы также помогают быстро удовлетворять запросы потребителей, касающиеся перемен в конструкции или в ассортименте продукции.

Интегрированная информационная сеть (Integrated Information Network) связывает все стороны деятельности фирмы, включая бухгалтерский учет , закупки сырья, маркетинг, работу складов, проектирование, производство и т. д. Такие системы, основанные на общих данных и общей информационной базе, дают менеджерам возможность принимать решения и управлять производственным процессом, воспринимая его как единое целое.

Сочетание компьютерного проектирования, компьютерного произ­водства и интегрированных информационных систем представляет собой наивысший уровень КИТ машиностроения. Новый продукт может быть сконструирован на компьютере, и его опытный образец может быть изготовлен без участия человеческих рук. Идеальное компьютеризованное предприятие способно легко переключаться с одного вида продукции на другой, работает быстро и с высокой точностью, без бумажной докумен­тации, тормозящей производственный процесс.

Компьютерные системы проектирования и технологической подготовки производства снизили вероятность человеческих ошибок, и благодаря этому количество конструкторских исправлений и переделок неправильно спроек­тированных компонентов уменьшилось, по сравнению с предыдущими проектами, более чем на 50 %.

КИТ производства обеспечивают максимально возможный уровень качества, удовлетворение запросов потребителей и снижения себестоимости только тогда, когда все их компоненты используются в совокупности. Применение КИТ и гибких рабочих процессов изменило весь характер производства. Стало возможным массовое производство, ориентированное на потребителя (mass customizati0n), когда заводы могут в массовом порядке выпускать продукцию, приспособленную к конкретным нуждам покупателей.

Достоинства КИТ состоят в том, что изделия различного размера и типа, отвечающие различным потребительским запросам, могут свободно переме­шиваться друг с другом на одной сборочной линии. Штриховые коды, нанесенные на заготовки, позволяют машинам мгновенно вносить требуемые изменения, например вкрутить шуруп большего размера, не замедляя хода производственного процесса. С помощью одной такой линии производитель может выпускать бесконечное колчество видов продукции любыми партиями.

В традиционных промышленных системах технология мелкосерийного производства давала предприятию возможность быть гибким в выборе производимой продукции и выполнять индивидуальные заказы потреби­телей, но поскольку «работа мастера» имела большое значение при изготов­лении уникальных товаров, предназначенных для конкретного покупателя, партии неизбежно должны были быть маленькими. Массовое производство оперировало значительно более крупными партиями, но зато гибкость была ограниченной. Технология непрерывного процесса предназначалась для выпуска одного стандартного продукта в неограниченных количествах. Промышленные КИТ позволяют предприятиям вырваться из тисков этой диагонали и увеличивать в одно и то же время и гибкость, и размер партий продукции. В своем наивысшем развитии КИТ делают возможным массовое производство, ориентированное на потребителя (mass customization), когда каждый продукт уникален и произведен по запросам покупателя. Этот наивысший уровень использования КИТ получил название «компьютерного мастерства», потому что компьютеры индивидуально проектируют каждый продукт так, чтобы он удовлетворял вполне определенным нуждам конкретного потребителя. Очень важную роль в этом повороте массового производства к потребителю играет развитие Интернета, так как электронные средства коммуникации позволяют компаниям поддерживать тесную связь с каждым отдельным клиентом и к тому же облегчают и ускоряют координацию потребительских запросов и производственных возможностей предприятий.

Исследования показывают, что КИТ (рис.1.1) позволяет использовать технологи­ческое оборудование более эффективно, производительность труда возрас­тает, количество отходов уменьшается, а ассортимент продуктов и удовлетворенность покупателей увеличиваются.

Многие промышленные компании в США перестраивают свои заводы, внедряя КИТ и объединенные системы управления (associated management systems), чтобы повысить производительность.

В настоящее время для разработки разнообразной продукции промыш­ленные предприятия широко используют следующие компьютерные техно­логии – программные средства автоматизации: CAD-системы (Computer-Aided Design, CAD) – системы автоматизированного проектирования (САПР), которые, по мере развития CAD-технологий, прошли путь от простой электронной чертежной доски до систем двухмерного (2D), а затем и трехмерного (3D) параметрического моделирования; CAM-системы (Computer-Aided Manufacturing, CAM) – системы технологической подготов­ки производства, в первую очередь, станков с ЧПУ; CAE-системы (Computer-Aided Engineering, CAE) – системы автоматизации инженерных расчетов, составляющие основу технологий компьютерного инжиниринга – наиболее наукоемкой составляющей PLM-технологий, так как именно эти програм­мные системы предназначены для эффективного решения сложных нестацио­нарных нелинейных пространственных задач, описываемых системами нелинейных дифференциальных уравнений в частных производных, для решения которых применяются, как правило, разнообразные варианты метода конечных элементов (МКЭ), Finite Element Analysis, (FEA); PDM-системы (Product Data Management, PDM) – системы управления данными об изделии, иногда называемые системами для коллективной работы с инженер­ными данными (Collabo-rative PDM, СPDM). Среди всего многообразия CAD/CAM-систем, наиболее широко представленных на рынке, выделим: «тяжелые системы» (CATIA, Unigra-phics NX, PRO/Engineer), появившиеся в 1980-х гг. и обладающие широкими функциональными возможностями и высокой производительностью, несмотря на то, что «тяжелые» системы являются дорогостоящими программными системами, затраты на их приобретение окупаются, особенно, если речь идет о сложном производстве, например, о машиностроении, авиационной и аэрокосмической промы­шленности, судостроении, электро - и энергомашиностроении; «средние системы» (SolidWorks, SolidEdge, Inventor Mechanical Desktop, Power Solutions, Cimatron, think3 и др.), в которых, начиная с их возникновения в середине 1990-х гг., были объединены возможности 3D твердотельного моделирования, невысокая по сравнению с «тяжелыми» системами цена и ориентация на платформу Windows. Эти CAD-системы произвели настоящий переворот в мире САПР, позволив многим конструкторским и проектным организациям перейти с двумерного на трехмерное моделирование. Среди российских CAD/CAM-систем отметим, в первую очередь, КОМПАС, T-Flex, ADEM; «легкие системы», которые являются самыми распространенными продуктами автоматизации проектирования , среди множества которых, прежде всего, следует назвать AutoCAD.

Создание единого информационного пространства – проблема актуаль­ная для машиностроительных предприятий. Немного можно назвать приме­ров реализации единой информационной среды. Вслед за внедрением
CAD/ CAE/CAM, как правило, на машиностроительном предприятии стара­ются объединить систему управле-ния хозяйственной деятельностью ERP (Enterprise Resource Planning – организует систему электронного документо­оборота; включает ведение договоров, бухгалтерии и кадров; связывает напрямую заказы поставщику с конкретной передачей в производственную программу для формирования заказа производству не только состав изделия, но и технологию его изготовления, что позволяет точно планировать ресурсы, процесс производства, начиная с технических требований и закан­чивая поставкой готовых изделий, а также и программное обеспечение для управления инженерными данными. PDM (Product Data Management – является основой для производственного планирования и управления; обеспечивает функционирование единой информационной среды на базе электронного архива, организует обмен информацией между подразделе­ниями по проектированию и планированию, с одной стороны, и произ­водственными подразделениями – с другой стороны). Ядром PDM является нормативно-справочная база, отражающая структуру и специфику работы конкретного предприятия. Главная цель объединения ERP и PDM заклю­чается в создании системы, которая позволяет контролировать затраты, рассчитывать себестоимость продукции, планировать производство и форми­ровать ценовую политику. Главным препятствием на пути объединения является отсутствие модулей для взаимодействия программ от разных разработчиков. Для управления производством требуются номенклатурные базы данных , поэтому автоматизируются все справочники и нормативные данные, упорядочиваются исходные данные, вводится система кодирования для комплектующих и покупных изделий, наполняется база данных PDM. После этого становится возможным использовать необходимую для управления производством информацию – составы изделий, учет материалов и комплектующих, нормы расхода и др. В PDM также поступают данные по технологическим маршрутам, которые разрабатывают технологи. Здесь формируется электронный архив конструкторской и технологической документации. Соответственно, конструирование ведется в среде CAD.

В чем суть интеграции? Информация создается конструктором или технологом и попадает в PDM. Данные вводятся один раз, далее автома­тически осуществляется передача данных в одном направлении – из PDM в ERP. Отсутствие повторного ввода исключает разночтения и снижает риск появления в системе неточных сведений. Главным преимуществом сквозных технологий является прозрачность информации: все документы хранятся в единой электронной базе данных – закупочные цены , по каким счетам и от какого предприятия осуществляется поставка, прошла оплата или нет; здесь же информация о составе изделия, цифровые модели, конструкторская и технологическая документация.

Конструктор создает модель и помещает ее в PDM, технолог использует готовую цифровую модель при разработке техпроцесса, при этом распарал­леливание работ сокращает затраты времени на проектирование.


Рисунок 1.1 – Структура КИТ машиностроения

В чем суть технологий PLM – CALS? Вся информация об изделии, начиная с чертежей и заканчивая крепежом при сборке, до мельчайших подробностей вносится в электронную базу данных, где прослеживается ЖЦИ каждой детали: где и кто изготовил, из какого металла и каким способом штамповали, на каких станках фрезеровали и т. д. – все до мельчайших подробностей. Принципиальным свойством такой информа­ционной системы является возможность не только описать структуру выпускаемого изделия, но и технологии изготовления, и более того – накапливать на последующих этапах всю информацию об изготовлении каждой детали и узла, произведенных ремонтах и заменах и т. д. Информация в достаточной мере детализируется, чтобы при необходимости можно было восстановить полную историю каждой детали, выявить причины отказов и быстро внести необходимые изменения. Информационной базой пользуются не только конструкторские и технологические службы, но также службы технической подготовки и управления производством предприятия-изготовителя, поскольку формируется полная информационная модель изделия, начиная от конструкторской спецификации и заканчивая данными о фактическом изготовлении.

Ведущие игроки CAD:

36% Autodesk (AutoCad, Inventor)

19% Dassault Systemes (CATIA, SolidWorks, SIMULIA)

12% Siemens PLM Software (Unigraphics, NX)

Ведущие игроки САПР и PLM-CALS:

Autodesk (AutoCad, Inventor) Значительный вклад в увеличение оборота компании внесло поглощение других компаний, Autodesk приобрела
14 компаний. Выделяется тем, что поставляет программное обеспечение для наиболее широкого круга отраслей: машиностроительной, архитектурно-строительной, геопространственной, анимационно-графической. В последнее время Autodesk добилась серъезных успехов в переводе огромной армии пользователей с 2D - на 3D-приложения.

Dassault Systemes (CATIA, SolidWorks, SIMULIA) Охватывает практически все направления автоматизации проектирования на крупных предприятиях .

PTC (Pro/Engineer, Windchill) Успешно работает в двух сегментах рынка – «тяжелых» САПР и систем среднего класса.

Siemens PLM Software (Unigraphics, NX, TeamCenter, Tecnomatrix) Синергетический эффект от слияния UGS с огромной группой компаний Siemens инициирует интерес к управлению жизненным циклом изделия, что позволяет преодолеть разрыв между этапами проектирования и произ­водства, который пока еще существует на промышленных предприятиях .

1.1.2. Этапы развития автоматизации механической обработки

С позиции КИП развитие автоматизации производственных процессов механообработки представляет собой диалекти­ческую спираль развития .

Первый виток эволюционной спирали автоматизации механообработки характе­ризуется автоматизацией рабочего цикла машины и автоматизацией поточного производства, которые включают в себя: универсальные станки, универ­сальные автоматы и полуавтоматы, специальные и специализи­ро­ванные автоматы и полуавтоматы, агрегатные станки, автоматические линии из агрегат­ных станков, автоматические линии из универсальных автоматов, комплексные автоматические линии и автоматические заводы.

Развитие автоматизации средств производства в машиностроении – от универсальных станков, специализированных станков, станков автоматов, автома­ти­ческих линий и «жестких» заводов автоматов реализовался за более чем за двести лет: с 1712 года (первый токарно-копировальный станок
А. К. Нартова) до 1951 года (первый автоматический завод для изготовления автомобильных поршней в СССР).

Второй виток эволюционной спирали автоматизации основно­го произ­водственного процесса механообработки характеризуется появлением числового программного управления. Это, прежде всего появление станков с ЧПУ, автоматов с ЧПУ, специализированных станков с ЧПУ, обрабаты­вающих центров (ОЦ).

Во второй половине 60-х годов 20го века гибкие производственные системы механообработки стали этапом перевооружения машинострои­тельной промыш­ленности. Это открыло пути решения сложившегося противоречия между высокой производительностью и отсутствием мобиль­ности оборудования массового производства и высокой мобильностью и низкой производительностью универсальных станков единичного и серий­ного производства.

Решение задачи повышения мобильности при выпуске новой техники в единичном и серийном производстве привело к созданию универсальных станков с числовым программным управлением (ЧПУ).

Второй виток диалектической спирали развития автоматизации прои­звод­ственных процессов механообработки – повторил первый, но на новом принципе управления – электронно-программном, при этом с повышением производи­тельности каждого вида оборудования повысилась и его гибкость. На второй виток было затрачено немногим более 30 лет.

Третий виток эволюционной спирали автоматизации механообработки характеризуется наличием гибких производственных систем и гибких автома­тизированных производств. Сюда можно отнести появление станков с ЧПУ–СNС, ОЦ фрезерно-расточные с СNС, ОЦ – токарные с СNС, ГПС со специа­лизированными ОЦ массового производства, ГПС (ГАП) + САПР + АСТПП, автомати­зированный завод.

Развитие электроники и применения ЭВМ и микропроцессоров позво­лило создание универсальных машин и станков с ЧПУ, управляемых непо­средственно от ЭВМ в режиме разделения времени. Это дало начало третьему витку развития автоматизации производственных процессов в машиностроении и других отраслях промышленности.

Управление от одной ЭВМ несколькими рабочими машинами, станками с ЧПУ и вспомогательным оборудованием позволило связать станки управлением и единым автоматическим транспортом в группы, т. е. создать системы машины. Индивидуальные станки с ЧПУ типа CNC, станки типа обрабатывающий центр (ОЦ), фрезерно-расточные и токарные – основа гибких производственных систем . На базе ОЦ создаются гибкие производст­венные модули, участки, линии. На этом витке началось соединение в единую систему всех производственных функций: конструирования, технологической подготовки производства, обработки, сборки, испытаний, т. е. начали появляться гибкие автоматизированные производства (ГАП). Третий виток был пройден за 10-15 лет.

Четвертый виток эволюционной спирали автоматизации механо­обработки характеризуется появлением гибких автоматических производств и безлюдных заводов. Он начался созданием автоматизированного произ­водства полностью интегрированного на базе ЭВМ пятого поколения (про­мышленные персональные компьютеры, в частности модели KIM–Kontrol Intelligence Minicomputer, KIM 786LCD-mITX, KIM 886LCD-M/mITX. KIM986LCD-M/mITX), отличающихся высоким уровнем надежности, совме­стимостью с различными технологиями, а также хорошей расширяемостью конфигурации и длительным жизненным циклом.

Пятый виток эволюционной спирали автоматизации механообработки харак­теризуется появлением безотказных самовосста­навливающихся произ­вод­ственных систем.

Шестой виток эволюционной спирали автоматизации механообработки характеризуется появлением самообновляющиеся производственных систем и т. д.

Развитие информационных технологий позволяет автоматизировать всю производственную цепочку технологического оборудования – система распределенного управления непрерывными и периодическими процессами, в частности NMI/SCADA – программы. Дальнейшее развитие науки и техники, решение проблемы надежности и самодиагностики рабочих машин и интеллектуальности систем переведут развитие автоматизации средств производства на следующий виток, когда будут созданы безотказные самовосста­навливающиеся рабочие машины, системы, заводы.

Создание искусственного интеллекта будет залогом успешного решения этой задачи. Диалектическая спираль развития автоматизации механо­обработки может быть представлена в виде последовательности этапов :

1. Автоматизация рабочего цикла машины, автоматизация поточного производства.

2. Числовое программное управление.

3. Гибкие производственные системы, гибкие автоматизированные производства.

4. Гибкие автоматические производства, безлюдные заводы.

5. Безотказные самовосстанавливающиеся производственные системы.

6. Самообновляющиеся производственные системы и т. д.

Следует заметить, что автоматизация машиностроения харак­теризуется не только компьютерными технологиями, но и наличием новых физических свойств производственной системы.

1.1.3. Концепция компьютерно-интегрированного производства

Основой развития современного машиностроения в мире является ком­пьютеризация и интеграция всех производственных процессов и управления производством от начала разработки до поставки готовой продукции потребителю.

Интеграция в производственных системах или комплексах (в широком смысле, как это теперь понимается в рамках концепции международных стандартов ИСО серии 9000) независимо от категории и вида произво­дственной деятельности и отрасли народного хозяйства, а также уровня и масштаба интеграции (начиная с низшего уровня, интеграции операций на одном рабочем месте и кончая интеграцией на самом высоком, международном уровне) .

Если опираться на идеологию, соответствующую указанным между­народным стандартам, то следует в первую очередь говорить об интеграции с целью совершенствования деятельности по обеспечению всех этапов ЖЦИ (англ, life-cycle), на чем основывается современная теория управления качеством . В соответствии со стандартами ИСО серии 9004 принято выделять одиннадцать этапов жизненного цикла.

1. Маркетинг, поиски рынков, анализ состояния рынков, выработка рекомендаций по выпуску продукции.

2. Разработка технических требований, проектирование изделий.

3. Разработка технологических процессов, технологическая подготовка производства.

4. Материально-техническое обеспечение производства.

5. Процессы изготовления (производство в узком смысле).

6. Проведение контрольных, приемо-сдаточных и иных испытаний.

7. Упаковка, маркировка и хранение произведенных изделий.

8. Распределение, транспортирование и реализация изделий.

9. Монтаж и эксплуатация.

10. Техническая помощь в обслуживании.

11. Утилизация после окончания срока использования или эксплуатации.

Графически этот цикл принято представлять в виде окружности или любой замкнутой кривой с разметкой по этапам; когда происходит замыкание контура, это означает, что после утилизации цикл начинается сначала, уже для нового изделия.

Иногда этот цикл представляют в виде винтовой линии; при этом подра­зумевается, что для нового изделия (или новой модификации того же изделия) начинается следующий виток. В течение первых пяти этапов изделие еще не существует, на последнем – уже не существует. Однако следует иметь в виду, что представление о замыкании цикла или выходе на новый виток лишь по окончании предыдущего витка является абстрактной схемой и не соответствует опыту реальной деятельности. На самом деле в любой организации всегда идет параллельная работа над многими изделиями или над многими модификациями одного изделия, причем в любой момент времени эти изделия находятся на разных этапах.

Учитывая это, правильнее было бы представить общую картину в виде семейства наложенных друг на друга винтовых линий со смещенными друг относительно друга точками этапов.

Независимо от общественного строя и типа экономики интеграция по последовательным этапам ЖЦИ осуществляется проще всего в масштабах завода, комбината, компании или фирмы. Традиционно во всех странах интегрирование осуществлялось в пределах одной и той же организации лишь по части этапов.

В настоящее время центром тяжести в интеграции считается исполь­зование унифицированных компьютерных технологий и программного обеспечения разнообразной документации (проектной, технологической, рабочей (непосредственно относящейся к изготовлению), эксплуатационной и пр.) и соответствующего программного обеспечения. При этом интеграция осуществляется по этапам 2-3-4-5 ЖЦИ. В международной практике это однозначно связывается с внедрением стандартов ИСО 10303 и обычно все это именуется CALS-технологиями.

Технологии CALS (англ, computer acquision and life-cyclesupport) в переводе – обеспечение непрерывности поставок и поддержки жизненного цикла изделий. Вольный перевод: обеспечение неразрывной связи между производством и всеми остальными этапами ЖЦИ (за счет создания максимально полной информационной модели изделия), охватывающей все этапы ЖЦИ от маркетинга до утилизации, предлагающей единое информационно-программное обеспечение на основе системного подхода ко всей проблематике создания новых изделий.

Разработчики и комментаторы подчеркивают, что CALS – это не только конкретный программный продукт, не только набор правил и шаблонов, но преимущественно общая концепция создания единой информационной модели изделия. Однако рассмотрение интеграции только по этапам ЖЦИ раскрывает только один аспект интегрирования.

Исторически в различные периоды проблемы интеграции по существу (сам термин появился и приобрел права гражданства достаточно поздно) понимались то шире, то уже, на передний план выходили вполне определенные формы интеграции . Так, начиная с начала до середины прошлого века, интеграция понималась преимущественно как концентрация на одной заводской территории всего оборудования больших производственных комплексов, объединявших все производственные функции, необходимые для производства определенных изделий.

Ве гг. XX века понятие интегрированные производственные системы (англ, integrated manufacturing systems) применительно к машиност­роению неразрывно связывалось возможно более полной автоматизацией выполнения последовательностей технологических и вспомогательных операций, начиная со складирования, подачи заготовок и подготовки необходимого оборудования с инструментом, кончая контролем и отгрузкой готовых деталей и узлов.

Нет сомнения в том, что проблематика интеграции и дезинтеграции в производстве вечна, хотя, конечно, наибольшая актуальность приписывалась, и будет приписываться в разные времена, различным аспектам интеграции. Но нужно иметь в виду, что усиление акцента на одном аспекте проблемы не отменяет другие аспекты.

Во всех случаях интеграцию можно представить как установление и организацию функционирования теми или иными типовыми средствами связей между интегрируемыми объектами или частями. Эти связи могут иметь различную природу, они иногда могут быть прямыми, непосредст­венными, но чаще всего реализуются через цепочки промежуточных звеньев.

Полностью или частично КИП не приводит само по себе к гибкому производству, оно может иметь различную гибкость и обеспечивается гиб­костью различных элементов производства, интегрированных производст­венных систем. Степень необходимой гибкости производства основывается на базе технико-экономических показателей всего производства, завода в целом, а не на осно­вании эффективности отдельных его частей.

Применение ЭВМ в управлении КИП позволяет осуществлять комплексный подход к автоматизации всех видов работ и процессов – от проработки задания на производство нового изделия, конструкторско-расчетных работ, технологической подготовки производства, всего комплекса технологических процессов – от заготовки до упаковки и отправки изделия потребителю, а так же всего, что связано с содержанием, ремонтом, управлением, включая расчеты, технико-экономических показателей, эконо­ми­ческой эффективности, финансово-бухгалтерское и кадровое обеспечение.

Особое внимание в настоящее время уделяется вопросам разработки единого информационного, математического и программного обеспечения систем автоматизированного проектирования, конструирования, технологи­ческой подготовки, планирования и организации производства.

«Философия» КИП требует рассмотрения каждого отдельного действия или деятельности всего завода и всего, что с ней связано, как единого процесса, который обеспечивает своевременную и полную взаимоувязку каждого действия с целью организации выпуска как можно большего разнообразия изделий в пределах имеющихся возможностей по заранее определенному графику с минимальными затратами.

Это ведет к возможности интеграции всего производства в единый автоматизированный процесс, включая научно-исследовательские и опытно-конструк­торские работы (НИОКР). При этом значительная экономия и сокра­щение времени внедрения новой техники получают вследствие уменьшения имеющихся дублирования и разрыва опытно-конструкторских работ и производ­ства, а также уменьшения времени всего цикла создания и производства продукции.

Наиболее короткий цикл производства, меньшая себестоимость, высокое качество продукции, полный контроль за капиталовложениями и оборот­ными средствами при абсолютно полном контроле за деталями и изделиями, за их изготовлением по всему циклу, пока они находятся на заводе, при этом делается только то, что предписано, и не запускается ничего лишнего. Это еще одна черта, которая вкладывается в понимание полной интеграции производства и чему содействует концепция гибкого интегрированного производства.

Основной задачей КИП состоит в обеспечении в гибкости и интеграции производственных систем на базе КИТ, основными характеристиками которого являются:

1) уровень производительности;

2) величина себестоимости;

3) стабильность высокого качества продукции;

4) эффективность использования средств производства;

5) численность обслуживающего систему персонала и характеристики условий труда.

1.1.4. Системная формализация КИП

КИП представляет собой одновременно как систему, включающую в себя ряд элементов, а также как и подсистему, входящую в систему более высокого уровня, и может быть формализована с позиции теории систем
:

1) КИП как система S есть нечто целое от функции А

Это определение выражает факт существования и целостность. Двоичное суждение А (1,0) отображает наличие или отсутствие этих качеств.

2) КИП как система S есть организованное множество.

(1.2)

где орг – оператор организации;

М – множество.

3) КИП как система есть множество вещей, свойств и отношений.

(1.3)

где m – вещи,

n – свойства,

k – отношения.

4) КИП как система есть множество элементов, образующих структуру и обеспечивающих определенное поведение в условиях окружающей среды:

где L – элемент,

ST – структура,

BE – поведение,

Е – среда.

5) КИП как система есть множество входов, множество выходов, мно­жество состояний, характеризуемых оператором переходов и оператором выходов:

где Х – входы,

Y – выходы,

Z – состояния,

Н – оператор переходов,

G – оператор выходов.

6) Если определение (1.5) дополнить фактором времени и функциональ­ными связями, то получим определение системы уравнениями

где Т – время,

X – входы,

Y – выходы,

Z – состояния,

V – класс операторов на входе,

Vz – значения операторов на выходе,

F и f – функциональные связи в уравнениях.

7) Для организации системы КИП в определении системы учитывают следующее

где PL – цели и планы,

RO – внешние ресурсы,

RJ – внутренние ресурсы,

ЕХ – исполнители,

PR – процесс,

DT – помехи,

SV – контроль,

RD – управление,

EF – эффект.

Последовательность определений можно продолжить, в которых учитывалось бы такое количество элементов, связей и действий в реальной системе, которое необходимо для решаемой задачи, для достижения поставленной цели.

К числу задач, решаемых теорией систем, относятся: определение общей структуры системы; организация взаимодействия между подсистемами и элементами; учет влияния внешней среды; выбор оптимальных алгоритмов функционирования системы.

Проектирование КИП делится на две стадии: 1) макропроектирование (внешнее проектирование) в процессе которого решаются функционально-структурные вопросы системы в целом, и 2) микропроектирование (внутреннее проектирование) связанное с разработкой элементов системы как физических единиц оборудования и с получением технических решений по основным элементам (их конструкции и параметры, режим эксплуатации).

1.1.5. Функционально-целевые структуры механообработки

Организационно-технический и производственно-технический потен­циалы являются (рис.1.2) функциональными характеристиками ФЦС . Как инте­гральный показатель он должен отражать наиболее существенные характе­ристики КИП и в общей форме оценивать ее технический уровень. К таким характеристикам относятся, прежде всего, количественная мера подетальной специализации (уни­вер­сальность), выражаемая укрупненно числом техноло­гических групп или наименований обрабатываемых деталей. Номенклатура последних отражает способности системы экономически целесообразно выпускать различные детали по различной технологии.


Рисунок 1.2 – Функционально-целевые структуры КИП

ПТС представляет собой совокупность значений производительности системы и ее технологических возможностей . При вычислении произ­водительности обработки деталей всех наименований из установленных для системы технологических групп в стоимостном выражении производственно-технологический потенциал интегрируется парой

, (1.8)

где – объем продукции системы в стоимостном выражении (в единицу времени);

– множественное объединение технологических возможностей системы по обработке всех деталей;

САПР подразделяют на САПР изделия и САПР ТП. САПР изделия занимается проектированием моделей изделия при помощи средств плоского и объёмного проектирования.

САПР ТП занимается процессом изготовления. Кроме основных выделяют: автоматизированные системы ТПП, автом-ые системы научных исследований, позволяющие принимать нестандартные решения на уровне проектирования.

САПР ТП разрабатывает ТП, оформляя их в виде МК, ОК, КЭ, КК и тд. И разрабатывает программы для работы на станках с ЧПУ. Более конкретное описание процесса обработки на станках с ЧПУ вводится в автоматизированную систему управления производственным оборудованием. Техническими средствами, реализующими данную систему могут быть комп-ы, управляющие станочными системами. Также различают системы производственного планирования и управления (АСУП), позволяющие контролировать качество и ритмичность распределяемых работ по объектам. Для контроля качества используют системы АСУК. самостоятельное использование CAD, САМ, САЕ систем даёт экономический эффект на предприятии. Для повышения эффективности используют технические БД как общего назначения так и специального.

(11 )Рассмотрим систему интегрированного вида на примере единой БД. В ней хранится информация о структуре и геометрии изделия (как результат проектирования всистеме САО), о технологии изготовления (как результат работы системы САРР) и управляющие программы для оборудования с ЧПУ (как исходная информация для обработки в системе САМ на оборудовании с ЧПУ)

(12) Основные системы компьютерно - интегрированного производства (КИП) показаны на рис ниже

Этапы создания изделий могут перекрываться во времени, т.е. частично или полностью выполняться параллельно. Связи между жизненным циклом изделия (по этапам) с САПР являются важным компонентом при автоматизации. Поэтому стремятся переходить от частичных или одиночных САПР к полностью интегрированному производству (КИП).

Взаимосвязь жизненного цикла изделия со службами автоматизации.

Информационная структура компьютерно - интегрированного производства

В структуре компьютерно - интегрированного производства выделяются три основных иерархических уровня:

1- Верхний уровень (уровень планирования), включающий в себя подсистемы, выполняющие задачи планирования производства.

2. Средний уровень (уровень проектирования), включающий в себя подсистемы проектирования изделий, технологических процессов, разработки управляющих программ для станков с ЧПУ.

3. Нижний уровень (уровень управления) включает в себя подсистемы управления производственным оборудованием.

Построение компьютерно - интегрированного производства включает в себя решение следующих проблем:

информационного обеспечения (отход от принципа централизации и переход к координированной децентрализации на каждом из рассмотренных уровней как путем сбора и накопления информации внутри отдельных подсистем, так и в центральной базе данных);

Обработкиинформации (стыковка и адаптация программного обеспечения различных подсистем);

физической связи подсистем (создание интерфейсов, т.е. стыковка аппаратных средств ЭВМ, включая использование вычислительных систем).

Внедрение компьютерно - интегрированного производства значительно сокращает общее время прохождения заказов за счёт:

· уменьшения времени передачи заказов с одного участка на другой и уменьшения времени простоя при ожидании заказов;

Перехода от последовательной к параллельной обработке;

Устранения или существенного ограничения повторяемых ручных операций подготовки и передачиданых (например, машинное изображение геометрических данных можно использовать во всех отделах, связанных с конструированием изделий).

Технология машиностроения – это направление, на котором зиждется экономическая стабильность многих развитых и развивающихся государств, в т.ч. и России. Специалисты, занятые в этой сфере, изготавливают детали для машин, проектируют и создают оборудование, изучают способы сокращения производственных затрат при условии сохранения качества. Так кем же и в каких секторах могут работать люди, избирающие машиностроение делом своей жизни?

Историческая справка

Научные знания, являющиеся основой данной профессии, начали собираться человечеством с давних времен – так, сам термин «техника» впервые появился в Древней Греции («techne»), где он обозначал искусство, мастерство, умение. Несмотря на то, что начальные технические достижения быстро и прочно вошли в жизнь населения (например, в виде ремесел), уже в эпоху Средневековья здесь произошло резкое торможение, ведь против новых разработок выступала Святая Инквизиция.

Обществу понадобилось дождаться наступления 15-16 веков, когда в Европу, а затем и на другие территории пришло Возрождение с его бурным развитием техники и появлением оригинальных инструментов. Положительные сдвиги наметились в военном и особенно артиллерийском деле, гидротехнике, архитектуре и строительстве. Было пересмотрено само отношение к техническому опыту, созданию оборудования, строительству аппаратов – все это начало рассматриваться как благо, приносящее ощутимую пользу в «житейских делах».

Людям стало недостаточно простого ремесленного труда. Возникла необходимость в возведении крупных и, как правило, централизованных производств с разделением обязанностей. Так в итальянских городах были построены первые мануфактуры, проекты которых затем перекочевали к англичанам, голландцам, французам. Появление этих коллективных мастерских сделало возможным дальнейшее развитие машиностроения.

Профессия в современности

Фактически по специальности «технология машиностроения» подготавливаются инженеры-технологи различных профилей. Выбор того, кем можно работать, у них просто огромный: конструкторы в авиационной, железнодорожной, судостроительной и других типах промышленности, операторы станков и оборудования с числовым программным управлением (ЧПУ), механики на предприятиях машиностроительного, металлургического, ракетно-космического, оборонного комплексов и т.д.

В целом сама сфера подразделяется на 3 крупных блока – это машиностроение:

  1. Трудоемкое, где создаются приборы, техника, станки, сельскохозяйственные машины и аппараты, автомобили, самолеты, истребители и пр. Отличительная черта трудоемких производств – это зависимость от наличия квалифицированных и компетентных сотрудников, поэтому обычно такие комплексы располагаются в крупных городах с высокой концентрацией населения (в РФ это Москва, Казань, Самара).
  2. Металлоемкое, нуждающееся в больших запасах металлов и обслуживающее производства тяжелой промышленности (металлургические, энергетические, горно-шахтные и пр.). Здесь специалисты подготавливают инструменты для металлургов, горняков, кузнецов, нефтяников, а также разрабатывают сложные автоматические конструкции больших размеров: лифты, подъемные вышки, грузоподъемные краны, конвейеры, тяжелые экскаваторы.
  3. Наукоемкое, требующее опоры на достижения передовой науки. Инженеры наукоемких направлений стоят буквально на передовой, ведь в их задачи входит выпуск инновационной электрической, атомной и космической продукции. Большинство российских заводов, базирующихся на производстве ультрасовременных машин, располагаются вблизи Москвы, Санкт-Петербурга, Екатеринбурга, Новосибирска и т.н. подмосковных «наукоградов» – Жуковского, Зеленограда, Дубны, Королева, Обнинска.

Куда поступать

Чтобы понять, что представляет собой профессия «технология машиностроения», молодой человек может поступить на эту или смежную с ней техническую специальность как в среднее специальное, так и высшее учебное заведение. Средний срок обучения составляет 3 года 10 месяцев для СПО (согласно государственному образовательному стандарту номер 15.02.08) и 4 года для ВПО (согласно стандарту номер 15.07.00).

Наиболее перспективными вариантами считаются именно институты и университеты, а не техникумы и колледжи. Хотя последние и позволят выпускнику быстрее реализовать собственные амбиции в работе, все же эксперты советуют получить диплом бакалавра в одном из престижных ВУЗов.

Среди них можно выделить:

  1. МФТИ – Московский физико-технический институт.
  2. МГУ – Московский государственный им. М.В. Ломоносова.
  3. РГУ – Российский государственный университет нефти и газа им. И.М. Губкина.
  4. МИФИ – Национальный ядерный университет.
  5. ВШЭ – Национальный университет «Высшая школа экономики».

Учебный процесс по специальности «технология машиностроения» выстраивается точно так же, как и по всем другим техническим направлениям:

  1. На 1 курсе студенты изучают общеобразовательные предметы и получают начальные знания о профессии.
  2. На 2 курсе происходит углубление в профильные научные области. Так, к общей физике, высшей математике, информатике добавляется техническая механика, теория резания, менеджмент, металловедение или другие предметы, предусмотренные программой. В процессе обучения и прохождения практик у ребят складывается понимание того, кем они хотят и будут работать в будущем. Если практиканты хорошо проявят себя, предприятия могут взять их на дальнейшую стажировку или частичную занятость.
  3. На 3 и 4 курсах молодые люди изучают только узкоспециализированные предметы. Это может быть электротехника, основы технических процессов при изготовлении машин и деталей, теория и практика экономического анализа.

Обязанности и требования

Становится понятно, что такая профессия, как технология машиностроения, подойдет далеко не каждому. Человек должен обладать техническим и аналитическим складом ума, высоким уровнем внимания и концентрации, хорошей памятью, пространственным воображением. Успешно доводить до конца сложные процессы помогут дисциплинированность, усидчивость, аккуратность. В связи с тем, что инженерам-технологам часто приходится сталкиваться с большими объемами работ, им необходимо уметь грамотно организовывать собственное время, чтобы извлекать из него максимальную пользу.

В обязанности инженера-технолога входит:

  1. Разработка и внедрение новых технологических процессов в изготовление деталей машин.
  2. Взаимодействие с конструкторской, отчетной и иными видами документации (их использование, анализ, дополнение графиками выработки, оформление и пр.).
  3. Проектирование путей создания составных частей и блоков.
  4. Использование специализированного программного обеспечения для упрощения своей деятельности (например, компьютерных утилит «Компас» и «AutoCAD», которые позволяют моделировать любые приспособления в режиме 3D).
  5. Расчет производственных мощностей с целью получения данных о материальных затратах и экономической выгодности проекта.
  6. Организация и проведение патентных исследований.
  7. Выявление брака, установление причин его появления и принятие мер по устранению недочетов в выпускаемой продукции.
  8. Контроль над соблюдением стандартов и норм при использовании оборудования сотрудниками.
  9. Своевременное выявление систем и комплексов, нуждающихся в ремонте, и оповещение об этом своего непосредственного начальника.
  10. Обеспечение общей технологической безопасности предприятия.

Перспективы: трудоустройство, заработная плата, карьерный рост

Профессия технолог машиностроения является стабильной и хорошо оплачиваемой, ведь практически каждый цех или производство нуждается в универсальном квалифицированном специалисте подобного профиля. Средний уровень зарплаты составляет 30000-35000 рублей, причем у сотрудника есть все шансы увеличить данную цифру путем повышения собственного разряда. В будущем достаточный уровень квалификации обеспечит ему место начальника цеха или заведующего производством.

В учебных заведениях молодые люди получают такой большой багаж знаний, что впоследствии могут позволить себе устроиться на любую из следующих должностей:

  • заточник;
  • зуборезчик;
  • шлифовщик;
  • наладчик автоматических линий и станков;
  • слесарь;
  • токарь;
  • фрезеровщик;
  • станочник широкого профиля;
  • техник-ядерщик;
  • техник жилищно-коммунальных хозяйств и пр.

Вакансии для технологов машиностроения не иссякают, а лишь появляются снова и снова, причем их предлагают как отечественные, так и заграничные работодатели.

Острая нехватка представителей этой прикладной профессии в промышленных секторах экономики обеспечивает таким инженерам уверенность в завтрашнем дне, ведь без работы они точно не останутся.