Распространение радиоволн в свободном пространстве. Модели распространения радиоволн в системах сотовой связи

Источник: Донбас-2020: перспективи розвитку очима молодих вчених: Матеріали VI науково-практичної конференції, м. Донецьк, 24-26 квітня 2012 р. — Донецьк, ДонНТУ, 2012. — C. 565-568.


Для ефективного радіочастотного планування у мережах стільникового зв’язку необхідно використовувати найбільш точні методи та моделі розрахунку згасання радіохвиль, що в умовах міста ускладнюється специфікою рельєфу. У статті наводиться стислий опис найбільш поширених моделей, їх переваги та недоліки.

Сложность проблемы заключается в том, что системы сотовой связи (ССС) эксплуатируются в основном в городах, которые для радиоволн представляют протяженную неоднородную структуру. В свободном пространстве затухание радиоволн описывается следующей зависимостью:

где — потери распространения, дБ;

r — расстояние от передатчика, км;

f — частота радиосигнала, МГц.

В городских условиях имеют место такие эффекты как экранирование и дифракция, отражения от объектов, преломление в зависимости от плотности среды прохождения, рассеивание на препятствиях.

В настоящее время выделяют три группы моделей (методов) расчета зоны покрытия радиосети:

Статистические модели

Детерминированные модели

Квазидетерминированные модели

Статистические модели базируются на результатах экспериментальных исследований напряженности поля, поэтому часто называются экспериментальными моделями. Точность расчета зависит от тщательного подбора эмпирических коэффициентов, основанного на анализе карт местности. Достоинство - сравнительно небольшое время расчета.

К статистическим относят модели Окамура,Окамура-Хата, COST-Хата, Ли и др.

Исторически первой такой моделью была модель Окамура , полученная в итоге многолетних измерений поля в Токио. На основании построенных графиков зависимости медианных потерь L от расстояния между передающей и приемной антеннами было предложено аппроксимирующее соотношение следующего вида:

— потери при распространении в свободном пространстве;

— отношение медианной величины потерь в городе с квазигладкой поверхностью земли к потерям в свободном пространстве для эффективных высот антенн соответственно базовой станции (БС) h БС = 200 м и абонентской станции (АС) h АС = 3 м;

И — соответственно корректирующие коэффициенты, используемые если эффективные высоты антенн отличаются от указанных;

r — длина трассы.

В формуле (2) величина L 0 рассчитывается, а все остальные определяются по графикам, построенным на основании эксперимента. Формула пригодна для частот f = (150÷1500) МГц, диапазона расстояний r = (1÷100) км и эффективной высоты антенны базовой станции h БС = (30÷100) м.

Достоинством модели Окамура является ее простота и универсальность, откуда следует и ее основной недостаток - отсутствие учета резких перепадов высот местности. Тем не менее модель Окамура служит наиболее часто применяемой моделью расчета для ССС.

Ее модификация была развита в модели Хата, называемой также моделью Окамура-Хата .

Суть этой модели заключается в аппроксимации графиков Окамура специально подобранными формулами для различных территориальных зон, которые условно классифицируются на большой город, средний и малый города, пригород, сельскую местность, открытую местность. Формулы расчета потерь для указанных зон с подробными пояснениями приводятся в .

Основной недостаток этой модели — ограничение применения по частоте. Поэтому появление новых ССС, работающих в диапазоне частот около 2 ГГц, дало толчок дальнейшим исследованиям, что привело к расширению модели Окамура-Хата на частотный диапазон от 1,5 до 2 ГГц. Эта модификация, получившая название COST 231-Хата, справедлива для эффективных высот антенн БС и АС соответственно 10÷200м и 1÷10м и расстояний между ними 1÷20км. Расчетные соотношения для этой модели также даны в . Отметим, что эту модель нельзя использовать при расстояниях менее 1 км и при оценке уровня сигнала на улице с высокими строениями.

Другая модель, модель Ли, была разработана на основе измерений, проведенных в США на частоте 900 МГц. Потери при распространении в этой модели определяются из выражения:

где n 0 и k 0 - параметры, зависящие от частоты и типа территории.

Общую суть статистических моделей можно отобразить следующей зависимостью:

которая означает, что потери являются логарифмической функцией расстояния с коэффициентом наклона n и параметром сдвига K, причем каждая модель имеет собственный набор значений параметров n и K и свои условия применения.

Статистические модели дают возможность определить медианные значения потерь и, следовательно, напряженность поля для трасс больше 1 км, однако все они были получены для конкретных территорий, поэтому для улучшения качества прогноза величины поля необходимо выполнить калибровку параметров n и K для предполагаемого района развертывания ССС. Процедура калибровки заключается в проведении предварительных измерений напряженности поля в ряде типичных точек выбранного района и в сопоставлении результатов измерений с данными расчета по выбранной модели.

Сопоставление экспериментальных результатов с данными расчетов ряда статистических моделей показало, что наиболее хорошее совпадение дает модель Окамура-Хата.

Несмотря на широкое применение на практике статистических моделей, их недостатки, о которых было сказано выше, привели к разработке детерминированных моделей . В этих моделях учитываются особенности территории и ее застройки, информация о которых хранится в специальной базе данных - цифровой карте местности. Используемые в настоящее время детерминированные модели учитывают дифракцию на зданиях, вносящую основной вклад в ослабление радиоволн при работе пико и микросотовых систем, в связи с чем они иногда называются дифракционными моделями.

К детерминированным моделям относят следующие: модель Икегами, модель Ксиа-Бертони, модель Уолфиша-Икегами, рекомендации МСЭ-Р P.12138-3. Данные методы являются высокоточными, но требуют значительных временных затрат на расчет. Такие модели, как правило, берутся за основу при создании программного обеспечения по радиочастотному планированию.

Особенности квазидетерминированных методов - это применение многолучевой модели распространения радиоволн. При этом преломление заменяется ослаблением, также существует возможность учета диаграммы направленности антенн. Такие методы являются более точными, чем статистические и расчет занимает меньше времени, чем при детерминированных методах.

В заключение можно сказать, что на сегодняшний день не существует универсальных моделей распространения радиоволн. Все они хороши в своей области применения. Уровень радиосигнала в конкретной точке пространства может быть получен достоверно лишь с помощью натурных измерений. Однако, для приблизительных расчетов зоны покрытия макросот по своей простоте и незначительным временным затратам наиболее оптимален метод Окамура-Хата, а для микро- и пикосот хорошие результаты получаются при использовании детерминированных моделей с обязательным привлечением цифровых карт местности.

Список использованной литературы

  1. Y.Okumura et al. Field strength and its variability in VHF and UHF land-mobile radio service // Review of the Electr. Commun. Lab. —1968. — vol. 6. — р. 825-873.
  2. Милютин Е.Р., Василенко Г.О., Сиверс М.А. и др. Методы расчета поля в системах связи дециметрового диапазона. — СПб.: Триада. — 2003. —159 с.
  3. ITU-R Recommendations. 2001. P. 1546
  4. Hata M. Empirical formula for propagation loss in land mobile radio services // IEEE Trans. Vehicular Technology. — 1980. — V.29.
  5. Попов В.А., Воропаева В.Я., Верховский Я.М. Алгоритм оптимальной кластеризации для сетей сотовой связи. — Наукові праці Донецького національного технічного університету. Серія: Обчислювальна техніка та автоматизація. Випуск 13 (121). — Донецьк —2007. — с. 53-58.

Министерство образования Российской Федерации

Уральский государственный технический университет

РАСПРОСТРАНЕНИЕ РАДИОВОЛН

В МОБИЛЬНОЙ СВЯЗИ

Методические указания по курсу

“Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”

для студентов всех форм обучения

радиотехнических специальностей

Екатеринбург 2000

Составители,

Научный редактор доц., канд. техн. наук

РАСПРОСТРАНЕНИЕ РАДИОВОЛН В МОБИЛЬНОЙ СВЯЗИ: Методические указания по курсу “Распространение радиоволн и антенно-фидерные устройства в системах мобильной связи”/ , . Екатеринбург: УГТУ, 20с.

Методические указания содержат краткое описание расчета радиолиний связи с подвижными объектами на открытой местности и в сложных условиях городской и промышленной застройки. Приведены выражения для расчета ослабления сигнала в свободном пространстве, а также с учетом влияния земной поверхности и затеняющих препятствий. Рассмотрены эффекты отражения, дифракции и рассеяния радиоволн. В каждом разделе приведены практические упражнения.

Библиогр.: 6 назв. Рис.14. Табл.1.Прил.1.

Подготовлено кафедрой «Высокочастотные средства

радиосвязи и телевидения».

радиосвязи и телевидения”.

Ó Уральский государственный

технический университет, 2000

Целью данных методических указаний является научить студентов рассчитывать радиоканал связи между передающей и приемной антеннами в свободном пространстве и реальных условиях и связывать принятую мощность с напряжением в приемнике и амплитудой электрического поля, изучить технику анализа отражения, рассеяния и дифракции радиоволн, научиться учитывать влияние земной поверхности с помощью двухлучевой модели распространения радиоволн, уметь проводить оценку напряженности электромагнитного поля в условиях города.

ВВЕДЕНИЕ

Путь радиоволны от передатчика к приемнику в системах мобильной связи крайне разнообразен: от их прямой видимости до сильно закрытого препятствиями, домами, деревьями пути. В отличие от проводной связи, где параметры постоянны, в беспроводной связи радиоканалы имеют существенно случайные параметры, часто сложно анализируемые. Моделирование радиолинии - наиболее сложная задача проектирования радиосистем. Оно в основном выполняется статистически с использованием данных экспериментов, выполненных порой именно для такой же или аналогичной системы.

Механизм распространения радиоволн в системах связи различен, но в основном может быть представлен отражением, дифракцией и рассеянием. Большинство сотовых систем работают в городах, где нет прямой видимости антенн передатчика и приемника, а наличие высоких зданий вызывает большие дифракционные потери. Благодаря многократным переотражениям от различных объектов, радиоволны проходят различный путь. Интерференция этих волн вызывает сильное изменение уровня сигнала от положения абонента.

Моделирование распространения радиоволн основано на предсказании среднего уровня принимаемого сигнала на заданном расстоянии от излучателя, а также в определении разброса его значений в зависимости от конкретной ситуации на трассе. Расчет радиолинии позволяет определить зону обслуживания передатчика. Моделирование среднего уровня сигнала в зависимости от расстояния между передатчиком и приемником называется крупномасштабным моделированием, поскольку позволяет определить сигнал на большом удалении (несколько сотен и тысяч метров). С другой стороны, модели характеризуют быстроменяющиеся значения уровня принимаемого сигнала на малых смещениях (несколько длин волн) или за короткое время (секунды) - они называются мелкомасштабными моделями.

При перемещении мобильного приемника на малые расстояния принимаемый сигнал может меняться очень сильно. Это происходит из-за того, что принимаемый сигнал представляет собой сумму многих волн, приходящих с различных направлений, проходящих разное расстояние и имеющих различную амплитуду и фазу. Суммарный сигнал подчиняется закону Релея. В зависимости от трассы радиоканала мелкомасштабная девиация может меняться на 3-4 порядка, т. е. уровень сигнала может меняться на 30-40 дБ (рис.1). Если мобильный приемник будет достаточно далеко, средний уровень сигнала убывает. Ниже будет рассматриваться крупномасштабная зависимость сигнала на входе приемника.

Рис.1. Изменение напряженности поля в зависимости от расстояния до передающей антенны с учетом влияния случайных факторов на частоте 1800 МГц

2. РАСПРОСТРАНЕНИЕ ВОЛН В СВОБОДНОМ ПРОСТРАНСТВЕ

Модель распространения волн в свободном пространстве используется для расчета принятого сигнала в условиях, когда передающая и приемная антенны находятся на открытой незатененной препятствиями радиолинии. Эта модель применяется для анализа радиоканалов связи через спутники и для наземных радиолиний, работающих в диапазоне сверхвысоких частот. Мощность, принятая приемной антенной с усилением Gr, которая излучается антенной передатчика мощностью Pt c коэффициентом усиления Gt на длине волны l на расстоянии d на открытом неограниченном пространстве, рассчитывается по формуле

. (1)

Коэффициент усиления антенны определяется следующим образом:

, (2)

где Аэ - эффективная площадь поверхности антенны, м2.

Длина волны связана с несущей частотой соотношением

где с - скорость света.

Принимаемая антенной мощность в соответствии с (1) убывает с ростом расстояния d со скоростью 20 дБ на декаду, т. е. пропорционально множителю .

Потери передачи в радиоканале (отношение принятой и излученной мощностей)

, дБ. (4)

Для изотропных антенн (коэффициент усиления каждой из них G=1)

, дБ. (5)

Предыдущие выражения верны только для дальней зоны (или зоны Фраунгофера). Граница дальней зоны определяется условием:

где D - наибольший размер антенны.

Дополнительным условием дальней зоны должно быть выполнение соотношений:

На больших расстояниях при расчете напряженности поля в точке приема иногда используют значение принимаемой мощности на некотором фиксированном расстоянии d0 - Pr (d0). Тогда на ином расстоянии d:

, . (7)

Т. к. изменение уровня принимаемой мощности от расстояния очень велико, используют отсчет мощности в дБмВт (дБ по отношению к 1 милливатту) и дБВт (дБ по отношению к 1 ватту):

, , (8)

где Pr (d 0) подставляется в Вт.


Опорное расстояние d0 обычно выбирается равным 100 м или 1 км для связи вне зданий. Для радиоканалов внутри зданий типичное значение опорного расстояния d 0 = 1 м.

Иногда в расчетах используется параметр - эффективная излучаемая мощность (), который показывает, во сколько раз плотность потока мощности в точке расположения приемной антенны при излучении мощности Pt будет больше при использовании антенны с коэффициентом усиления Gt по сравнению с изотропной антенной. Выражение

(9)

показывает максимальную излучаемую мощность в направлении максимального излучения.

Плотность потока мощности на расстоянии d от передающей антенны:

где 377 Ом - характеристическое сопротивление свободного пространства,

Е - амплитуда электрического поля на расстоянии d, В/м.

Принимаемая мощность (мощность, перехватываемая приемной антенной из падающей плоской волны)

где AЭ - эффективная площадь поверхности приемной антенны, м2.

Эквивалентная схема приемной антенны, включенной на вход приемника, показана на рис.2. При условии согласования входного сопротивления антенны и приемника () напряжение на входе последнего будет равно половине ЭДС антенны. Действующее напряжение U связано с принятой мощностью выражением

. (12)

Рис.2. Эквивалентная схема приемной антенны, включенной на вход приемника

Напряжение на входе приемника определяется по формуле

, В. (13)


3. ТРИ ОСНОВНЫХ СПОСОБА РАСПРОСТРАНЕНИЯ РАДИОВОЛН

1. Отражение - имеет место при падении волны на объекты с размерами много больше длины волны. Наблюдаются, например, отражения от земли, стен зданий и т. п.

2. Дифракция - явление возникновения вторичных волн при падении радиоволны на препятствие с острыми кромками. Дифракцией обусловлено наличие поля за препятствиями в зоне геометрической тени. На высоких частотах дифракция, как и отражение, существенно зависит от геометрии объекта, а также амплитуды, фазы и поляризации поля.

3. Рассеяние - имеет место при распространении волны в среде с мелкими объектами (меньше длины волны).

3.1. Отражение радиоволн

3.1.1. Отражение радиоволн от плоской границы раздела двух сред

Если волна падает на границу раздела сред с разными параметрами, наблюдается частичное прохождение волны во вторую среду.

Амплитуды поля падающей Ei и отраженной Er волн связаны через коэффициенты отражения Френеля Г, а прошедшая Et волна - через коэффициент прохождения Т:

Рис.3. Отражение и преломление волн на границе раздела сред

Падающая волна произвольной поляризации раскладывается на две: с вертикальной и горизонтальной поляризацией.

В диэлектрике с потерями диэлектрическая проницаемость имеет комплексный характер:

, (14)

где er - относительная диэлектрическая проницаемость cреды, s - проводимость среды, Cм/м. В хороших проводниках, когда выполняется условие f < s/e0er, вещественной частью в (14) можно пренебречь.

Коэффициент отражения для поля вертикальной поляризации

. (15)

Коэффициент отражения для поля горизонтальной поляризации

, (16)

где Zi - характеристическое сопротивление 1-й или 2-й среды.

.

Граничные условия требуют выполнения соотношений:

E r = Г. E i, (18а)

E t = (1 + Г) . E i. (18б)

Если первая среда - свободное пространство (e1=1), а вторая среда не обладает магнитными свойствами (m1 = m0), то выражения (15), (16) упрощаются:

, (19)

. (20)

Для углов падения, близких к скользящим , коэффициенты отражения .


Для некоторого угла коэффициент отражения для волны вертикальной поляризации . Этот угол называется углом Брюстера qБР (угол, для которого нет отраженной волны вертикальной поляризации):

. (21)

Если первая среда - воздух, а диэлектрическая проницаемость второй среды er, то

. (22)

Рис.4. Зависимость коэффициента отражения волны вертикальной

и горизонтальной поляризации от угла падения ,

падающей на поверхность сухой земли (er = 4)


Угол Брюстера имеет место только для вертикальной поляризации поля.

3.1.2. Отражение от поверхности идеального проводника

В случае падения плоской волны на поверхность идеального проводника происходит полное отражение.

Если вектор лежит в плоскости падения (вертикальная поляризация), то

Для случая, когда вектор перпендикулярен плоскости падения (горизонтальная поляризация),

Из (следует, что для углов падения, близких к скользящим, коэффициенты отражения и .

3.1.3. Отражение от поверхности земли (2- лучевая модель)

В задачах мобильной связи прямое распространение радиоволн между передающей и приемной антеннами встречается достаточно редко, поэтому модель распространения волн в свободном пространстве имеет ограниченное применение. Полезная для практики двухлучевая модель распространения волн (рис.5) основана на законах геометрической оптики.

Рис.5. Прямой и отраженный лучи в точке приема радиоволн

Суммарное поле в точке приема обусловлено влиянием прямого и отраженного от земной поверхности лучей:

.

Из рис.6 видно, что разность хода прямого луча и луча с отражением от земли

Рис.6. Мнимый излучатель поля

Если расстояние , то (27) может быть упрощено с помощью разложения Тейлора:

, м. (28)

Тогда разность фаз прямого и отраженного лучей

. (29)

Суммарное электрическое поле в точке приема прямого и отраженного лучей при сделанных допущениях вычисляется по формуле

, , (30)

где Е0 - напряженность поля, создаваемая излучающей антенной на некотором опорном расстоянии d0 в свободном пространстве (без учета отражения), .

На больших удалениях, когда выполняется соотношение ,

. (31)

Суммарное поле в этом случае может быть аппроксимировано выражением

, , (32)

где К - константа, связанная с амплитудой поля Е0 , высотами подвеса антенн и длиной волны. Мощность, принятая приемной антенной, пропорциональна квадрату напряженность поля:

. (33)

Из формулы (33) видно, что на больших расстояниях принятая мощность убывает обратно пропорционально d4 или 40 дБ на декаду. Это существенно быстрее, чем в свободном пространстве.

Для двухлучевой модели в соответствии с (33) потери мощности в радиоканале определяются выражением


3.2. Дифракция радиоволн

Явление дифракции позволяет радиоволнам распространяться вокруг сферической земной поверхности за горизонт и за различные препятствия. Несмотря на перекрытие прямой видимости и существенное уменьшение уровня сигнала, он все таки остается достаточным для приема.

Феномен дифракции объясняется принципом Гюйгенса - вторичного переизлучения точек фронта волны с различной фазой (зон Френеля). Напряженность поля определяется векторной суммой вклада вторичных излучателей.

3.2.1. Геометрия зон Френеля

Пусть между излучателем и приемником расположено препятствие - экран высотой h бесконечных размеров в поперечном сечении. Расстояние от экрана до излучателя - d1 , до приемника - d2 .

Рис.7. Дифракция радиоволн на клиновидном препятствии

Ясно, что путь через кромку препятствия больше прямого. Полагая, что h<>l, разность хода прямого и через кромку лучей будет:

. (35)

Соответствующая ему разность фаз

, (36)

где используется приближение для малого аргумента tg x » x, а угол a аппроксимирован выражением

.

Выражение (36) может быть аппроксимировано с использованием безразмерного дифракционного параметра Френеля - Кирхгофа:

, (37)

где a подставляется в радианах, все остальные параметры в метрах. Таким образом, разность фаз Ф может быть вычислена из выражения

Из выражения (38) следует, что сдвиг фазы между прямым и дифракционным лучами является функцией высоты h и взаимного расположения препятствия, излучателя и приемника.

Дифракционные потери мощности в радиоканале могут быть объяснены с помощью зон Френеля. Зоны Френеля представляют собой области, разность хода через которые от излучателя до приемника составляет nl/2 по сравнению с прямым лучом (l - длина волны, n - целое число).

В мобильной связи обычно наблюдается затенение части зон (источников вторичных волн) и, следовательно, уменьшение доли принятой мощности. В зависимости от геометрии препятствия принятая энергия определяется через векторное суммирование вторичных волн.

Рис.8. Формирование зон Френеля

Если препятствие не затеняет первую зону Френеля, то дифракционные потери минимальны и ими пренебрегают. Используют следующее свойство: если открыто не менее 55% первой зоны Френеля, то дальнейшее открытие первой зоны Френеля не уменьшает дифракционные потери.

3.2.2. Модель дифракции радиоволн на одиночном клине

Определение степени ослабления поля холмами и зданиями является достаточно сложной задачей при расчете зон обслуживания. Обычно точный расчет ослабления невозможен, поэтому используют методы расчета поля с необходимыми экспериментальными поправками.

Препятствие в виде одиночного холма или горы может быть обсчитано с использованием модели клина. Это простейшая модель препятствия, и быстрый расчет ослабления возможен с использованием классического решения Френеля для дифракции поля на полуплоскости.

Рис.9. Варианты перекрытия видимости антенн препятствием

Напряженность поля в точке расположения приемной антенны определяется векторной суммой вторичных источников, лежащих в плоскости, расположенной над препятствием. Напряженность поля при дифракции на клине определяется выражением

, (39)

где Е0 - напряженность поля в точке расположения приемной антенны при отсутствии препятствия и земли, а F(n) - комплексный интеграл Френеля. Значение интеграла F(n) определяется из графиков и таблиц.

Коэффициент дифракционного усиления с препятствием (обычно он меньше 1) по сравнению со свободным пространством

, дБ. (40)

График этой функции показан на рис.10.

Рис.10. Зависимость коэффициента дифракционного усиления

от значения параметра дифракции n

(41д)


2.2.3. Дифракция на нескольких клиньях

Если на пути между излучателем и приемником имеется несколько препятствий, то все они аппроксимируются одним эквивалентным препятствием (рис.11).

Рис.11. Эквивалентное клиновидное препятствие в задаче связи

с двумя препятствиями

Эта модель хорошо работает для двух препятствий, для нескольких - возникают определенные математические трудности.

2.3. РАССЕЯНИЕ РАДИОВОЛН

Потери от рассеяния радиоволн на препятствиях обычно много меньше потерь отражения и дифракции. Это объясняется тем, что рассеяние волн происходит во всех направлениях (на таких объектах, как мачты, лампы, деревья и т. д.).

Плоские поверхности с размерами много больше длины волны могут моделироваться как отражающие поверхности. Однако наличие неровностей изменяет отражение. Неровность поверхности определяется критерием Релея, который определяет критическую высоту hc неровностей при падении волны под углом qi:

. (42)

Поверхность считается гладкой, если разброс минимальных и максимальных высот меньше hc. Для неровных поверхностей коэффициент отражения Г умножается на коэффициент потерь рассеяния ps.

Полагая, что высота неровностей h распределена случайным образом с гауссовым законом распределения, коэффициент потерь рассеяния

, (43)

где sh - стандартная девиация высоты поверхности вокруг среднего значения высоты. После некоторых уточнений коэффициент потерь рассеяния с хорошим совпадением с практикой определяется выражением

где I0 - функция Бесселя первого рода нулевого порядка. Коэффициент отражения электромагнитного поля для неровностей h>hc определяется выражением

. (45)

Степень рассеяния радиоволн от препятствий больших размеров, например, крупных домов, может характеризоваться поперечником рассеяния. Поперечник рассеяния объекта (RCS) определяется как отношение плотности потока мощности рассеянного поля в направлении приемника к плотности потока мощности, падающей на рассеивающий объект, и имеет размерность м2. Анализ основан на геометрической теории дифракции и физической оптике и может быть использован для задач расчета поля, рассеянного большими зданиями. Для городских условий используется бистатическое уравнение излучения, описывающее распространение волны в свободном пространстве и поле, рассеянное между объектами и затем переизлученное в направлении приемника.

где dt и dr - расстояние от рассеивающего объекта до излучателя и приемника. Это уравнение корректно для дальней зоны излучателя и приемника.

3. ПРАКТИЧЕСКИЕ МОДЕЛИ, ИСПОЛЬЗУЕМЫЕ ДЛЯ РАСЧЕТА ОСЛАБЛЕНИЯ СИГНАЛА В РАДИОКАНАЛАХ

Большинство моделей, используемых при решении задач распространения радиоволн, учитывают одновременно аналитические и экспериментальные данные. Экспериментальный подход основан на использовании графиков и аналитических выражений, описывающих данные предварительных измерений. Преимущество этого подхода состоит в учете большинства факторов, влияющих на распространение радиоволн. Иногда в задачах мобильной связи используются классические модели радиолиний, которые позволяют моделировать в крупном масштабе линии связи. Например, двухлучевая модель позволила предсказать работоспособность сотовых систем до их появления. Ниже представлены некоторые модели радиолиний.

3.1. Потери передачи в удаленных линиях

Как теоретические, так и экспериментальные исследования подтвердили, что принимаемая мощность изменяется по логарифмическому закону. Этот закон выполняется как для радиолиний вне зданий, так и внутри их. Средние крупномасштабные потери при произвольном расстоянии излучатель - приемник описываются выражением

(47)

или в логарифмическом масштабе

, дБ, (48)

где n - показатель степени, который показывает, с какой скоростью возрастают потери передачи от расстояния; d0 - расстояние от излучателя до границы отсчета, d - расстояние между излучателем и приемником. Черта в (47), (48) означает среднее из возможных значений потерь для данного расстояния d. На диаграмме в логарифмическом масштабе график ослабления описывается наклонной прямой с коэффициентом наклона 10.n дБ на декаду. Показатель n зависит от конкретных параметров среды распространения.

Показатель n ослабления поля для различных условий распространения радиоволн

Важно правильно выбрать подходящее расстояние d0 для исследования условий распространения. В сотовой связи с большими зонами действия обычно используется расстояние 1 км, в микросотовых системах много меньше - 100 м. Это расстояние должно соответствовать дальней зоне антенны для исключения эффектов ближнего поля. Эталонное значение ослабления рассчитывается с помощью формулы распространения в свободном пространстве (4) или через поля, измеренные на расстоянии d0 .

Уравнение (48) не учитывает того, что параметры среды могут быстро изменяться между измерениями. Измерения показали, что величина ослабления мощности в радиоканале описывается нормально-логарифмическим (равномерным в дБ) законом:

где xs - случайная величина c нормально-логарифмическим законом распределения со стандартной девиацией s, дБ.

Данные формулы могут быть использованы для расчета поля в реальных системах связи при наличии случайных ослабляющих сигнал факторов. На практике величины n и s обычно определяются из экспериментальных исследований (рис. 12).

Поскольку значение PL(d) - случайная величина с нормальным распределением по шкале дБ от расстояния d, также случайно распределена и функция Pr(d). Для определения вероятности того, что принятый сигнал будет выше (или ниже) особого уровня, может быть использована функция Q:

, (50а)

где выполняется условие . (50б)

Вероятность того, что принятый сигнал будет выше некоторой заданной величины g, может быть вычислена из накопительной функции плотности как

. (51)

Аналогично вероятность того, что принятая мощность будет меньше g:

(52)


Рис.12. Экспериментальные данные, иллюстрирующие ослабление радиоволн в условиях города (приведены данные измерений ослабления мощности радиоканалов для 6 городов Германии, из этих экспериментальных данных определены параметры n=2.7, s=11.8 дБ)

3.2. Модели радиолиний вне зданий

Радиолинии в мобильной связи часто проходят по неровным местностям. В этом случае следует учитывать реальный профиль трассы. Трасса может изменяться от гладкой до сильно пересеченной местности. Также следует учесть наличие зданий, деревьев и других препятствий при связи в условиях города. Негладкие трассы рассчитываются разными методами. Существующие методы расчета поля в реальных условиях связи сильно отличаются по подходу, сложности и точности. Большинство основано на использовании экспериментальных данных для обслуживаемого района. Ниже описаны некоторые методы.

3.2.1. Метод Okumura

Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 01.01.01 м.

Okumura предложил сетку кривых для расчета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот МГц как функция дальности от 1 до 100 км.

Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Ama(f, d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:

где L50 - средняя величина потерь,

LF - потери в свободном пространстве,

Ama - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,

G(hte) - эффективное усиление передающей антенны,

G(hre) - эффективное усиление приемной антенны,

GAREA - поправочный коэффициент из графика на рис.14.

Рис.13. Частотная зависимость усредненного ослабления

сигнала по отношению к свободному пространству

для квазигладкого профиля трассы

Рис.14. Поправочный коэффициент, обусловленный профилем радиотрассы

Кроме того, Okumura нашел, что величина G(hte) изменяется по закону 20 дБ/декада, а G(hre) для высот менее 3 м - 10 дБ/декада:

, 1000 м > h te> 10 м; (54а)

, hre < 3 м; (54б)

, 10 м > hre >3 м. (54в)

Модель Okumura полностью построена на экспериментальных данных. Графики, полученные Okumura, можно экстраполировать. Модель Okumura наиболее простая и достаточно точная для расчета потерь в сотовых системах связи и мобильной связи. Она является стандартом при расчете сот для мобильной связи в Японии.

Главный недостаток модели - работа с графиками и невозможность полноценно учесть быстроизменяющиеся условия в профиле трассы.

В основном рассмотренный метод используется для расчета радиолиний в урбанизированных и сверхурбанизированных районах. Разница расчетных и экспериментально измеренных напряженностей поля обычно не превышает 10-13 дБ.


3.2.2. Модель Hata

Hata обработал экспериментальные данные Okumura для частот МГц и предложил рассчитывать потери распространения в условиях города по стандартной формуле с учетом корректирующих уравнений для иных условий. Стандартная формула для расчета средних потерь мощности в условиях города:

где fc - частота от 150 до 1500 МГц,

hte - эффективная высота базовой антенны (от 30 до 200 м),

hre - эффективная высота мобильной антенны (от 1 до 10 м),

d - расстояние от передатчика до приемника, км,

a(hre) - корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для небольших и среднего размера населенных пунктов:

Для крупных городов:

Для fc<300 МГц; (57a)

Для fc>300 МГц. (57б)

В сверхурбанизированных районах стандартная (основная) формула Hata (55) модифицируется следующим образом:

, дБ, (58)

а для открытых районов:

Хотя формулы Hata не позволяют учесть все специфические поправки, которые доступны в методе Okumura, они имеют существенное практическое значение. Расчеты по формулам Hata хорошо совпадают с данными модели Okumura для дальностей, больших 1 км.

3.2.3. Уточнение метода Hata

Европейская ассоциация EVRO-COST предложила новую версию метода Hata, верную для частот до 2 ГГц. Стандартная формула для расчета средних потерь мощности в условиях города записывается следующим образом:

где a(hre) определяется формулами (56) и (57),

Gm = 0 дБ для городов средних и крупных размеров,

Gm = 3 дБ для столиц.

Допустимые границы параметров в (60): fc 1500...2000 МГц,

hte 30...200 м,

Использование вышезаписанных выражений позволяет рассчитывать широкий класс радиоканалов связи с учетом конкретных условий распространения волн. Выбор конкретной модели, описывающей распространение радиоволн, существенно зависит от частоты несущей, высоты подвеса передающей и приемной антенн, окружающего пространства. Адекватность расчетов и экспериментальных данных определяется корректностью используемых методов, а также сильно зависит от практического опыта специалиста.

КУРСОВОЙ ПРОЕКТ

По профессиональному модулю ПМ01

Междисциплинарный курс: МДК 01.01. Технология монтажа систем мобильной связи

Тема: «Проектирование сети сотовой связи с равномерным распределением абонентов в заданной зоне»

Специальность: 210705 Средства связи с подвижными объектами

Выполнил студент(ка) группы 3ССПО9-5(у): ___________

Проверил преподаватель: Ручко В.М. ___________

Москва 2015 г.

ГБПОУ КОЛЛЕДЖ СВЯЗИ №54

Согласовано

Председатель модульной

комиссии

Н.Г.Лобанова

«____»_______2015 г

На курсовое проектирование по профессиональному модулю ПМ 01

Междисциплинарный курс : МДК 01.01 Технология монтажа систем мобильной связи

Специальность: 210705, Средства связи с подвижными объектами

Студенту гр. 3ССПО9-5(у): __________________________

Тема: «Проектирование сети сотовой связи с равномерным распределением абонентов в заданной зоне»

Вариант:_____

Спроектировать сети сотовой связи с равномерным распределением абонентов в заданной зоне при следующих исходных данных:

1.Тип территории в зоне обслуживания__________________________

2.Испрользуемый стандарт сотовой связи________________________

3.Число абонентов зоне обслуживания (М сети, тыс. чел.)____________

4.Плошадь зоны обслуживания (S сети, км 2)________________________

5.Вероятность отказа абоненту в предоставлении канала в час наибольшей нагрузки(ЧНН) p от к.=0.02

6.Допустимый трафик в соте в соответствие с числом каналов A сот____

7.Средний трафик одного абонента в ЧНН, А 1 =0,015-0,025Эрл.

При выполнении курсовой работы:

1.Произвести оптимальный выбор частотных каналов

3.Найти максимальное удаление в соте абонентской станции от базовой станции

4.Определить мощность передатчика базовой станции

8.Нарисовать трассу прохождения сигнала от БС к АС

9.Нарисовать конфигурацию сети (по вариантам)

Преподаватель Ручко В.М.

Введение………………………………………………………… 4

1.Выбор частотных каналов…………………………………..

2.Расчет числа сот в сети………………………………………

3.Расчет удаления АС от БС………………………………….

4.Расчет баланса мощностей………………………………….

5.Расчет потерь на трассе…………………………………….

6.Расчет электропитания базовой станции………………….

7.Рассчет надежности сети сотовой связи…………………..

8.Литература……………………………………………………

Приложение 1…………………………………………………..

Трасса прохождения сигнала от БС к АС

Приложение 2………………………………………………….

Модель Эрланга В (система с отказами)

Приложение 3…………………………………………………..

Конфигурация сети

Введение

Проектирование – один из наиболее сложных и ответственных этапов развертывания систем сотовой связи (ССС), поскольку он должен обеспечить возможно более близкое к оптимальному построение сети по критерию эффективность-стоимость. При проектировании необходимо определить места установки БС и распределить имеющиеся частотные каналы между ячейками (составить территориально-частотный план в соответствии с принципом повторного использования частот) таким образом, чтобы обеспечить обслуживание сотовой связью заданной территории с требуемым качеством при минимальном числе БС, т.е. при минимальной стоимости инфраструктуры сети. Фактически эта задача очень сложна. С одной стороны чрезмерно частая расстановка БС невыгодна. Так как влечет за собой неоправданные затраты. С другой стороны, слишком редкое расположение БС может привести к появлению необслуживаемых участков территории, что недоступно. Задача дополнительно осложняется трудностью аналитической оценки характеристики расположения сигналов и расчета напряженности поля, а также необходимостью учета неравномерности трафика в пределах обслуживаемой территории.

В проектируемой сети обязательно производиться экспериментальные измерения характеристик электромагнитного поля, и по результатам измерений схема сети также корректируется. Необходимый объем экспериментальных измерений, и частота их повторения определяется на основании опыта проектировщиков. Окончательно качество проекта оценивается уже на этапе эксплуатации сети, где также неизбежны его корректировка и доработка, особенно в самом начале работы, когда производятся настройка и оптимизация сети. Этот этап работы фактически оказывается наиболее трудоемким. Доработки проекта требуются по мере развития и совершенствования сети, для повышения ее качества.

Качество услуг, предоставляемых ССС, во многом определяется характеристиками ее подсистемы БС. В процессе планирования сети БС решаются следующие задачи: обеспечения радиопокрытия территории, на которой должны предоставляться услуги связи; построение сети, емкости которой будет достаточно для обслуживания создаваемого абонентами трафика с допустимым уровнем перегрузок; оптимизация решения указанных выше задач (с использованием минимального числа сетевых подсистем и элементов) на протяжении всего цикла сети.

Без решения перечисленных задач нельзя обеспечить высокое качество предоставляемых услуг. Согласно определению Международного союза электросвязи (МСЭ), под качеством обслуживания понимают – совокупный эффект от предоставления услуг, который определяет степень удовлетворения ими абонента. Кроме технических аспектов качества работы сети в это определение включены и аспекты, связанные с предоставлением дополнительных услуг (например, таких, как передача коротких сообщений), стоимостью обслуживания, ценой и качеством работы мобильных терминалов и т.д.

На протяжении всего жизненного цикла сети число ее абонентов, объем трафика и его распределение по обслуживаемой территории постоянно изменяются. Кроме того, существуют сезонные (периодические) изменения объема трафика и его территориального распределения. Конфигурация сети БС должна адаптироваться к происходящим изменениям, поэтому ее планирование – это непрерывный процесс. В нем можно выделить несколько этапов: планирования радиопокрытия; планирование емкости; частотное планирование; анализ работы и оптимизация сети.

Такое поэтапное деление в значительной степени условно, так как все этапы тесно взаимосвязаны между собой. Последовательность этапов планирования сети БС показана на рисунке 4.1.

Рисунок 4.1. Этапы планирования сети БС

На этапе планирования радиопокрытия определяется минимально необходимое число БС (сот), их оптимальное расположение на местности и радиотехнические параметры для обеспечения радиопокрытия заданной территории с требуемым уровнем мощности радиосигнала, принимаемым мобильным терминалом.

Модели распространения радиоволн

Условия распространения радиоволн включают 5 моделей:

  • статическая модель (STATIC);
  • для сельской местности (Rax);
  • для холмистой местности (НТх);
  • для типичной городской застройки (Tux);
  • для плотной городской застройки (Bux).

В моделях с динамическими (Rax, HTx, Tux, Вuх) оговорены два варианта изменения пара­метров, которые соответствуют условиям движения автомобиля в городе со скоростью 50 км/ч и в сельской местности - 200 км/ч. Например, изменение радиосигнала на входе приемника авто­мобильной радиостанции, движущийся со скоростью 200 км/ч в условиях холмистой местности, описывается моделью НТ200.

Дополнительно предусмотрена модель для тестирования эквалайзера (Eqx).

Статическая модель характеризуется отсутствием амплитудных и фазовых искажений сигнала.

Модель распространения сигнала в сельской местности описывает флуктуации сигнала рас­пределением Райса и имитирует постоянный доплеровский сдвиг частоты.

Условия распространения сигнала над холмистой местностью предполагают отсутствие пря­мой радиовидимости между приемником и передатчиком, а также наличие достаточно удаленных переотражающих объектов. Такие условия описываются двулучевой моделью со средним соотношением уровня лучей минус 8,6 дБ и средней задержкой сигнала во втором луче на четверть символа. Флуктуации сигнала на входе приемника описываются законом Релея.

Модели распространения сигнала в городских условиях предполагают отсутствие прямой ра­диовидимости между приемником и передатчиком, и наличие большого количества переотра­жающих объектов. Данный случай также описывается двулучевой моделью, но с другими амплитудными и временными соотношениями. Например, задержка между лучами составляет при­близительно 1/10 символа, то есть сигнал на входе приемника практически не испытывает меж­символьных искажений.

Модель для тестирования эквалайзера применяется только для тестирования аппаратуры класса Е. В данной модели флуктуации сигнала на входе приемника имитируются релеевскими замираниями по четырем лучам с задержкой сигнала в лучах до двух символов.

3.2.1. Основные свойства радиоволн

Радиоволны представляют собой переменные связанные электрические и магнитные поля. Электромагнитное поле описывается уравнениями Максвелла, который обосновал гипотезу о том, что переменное электрическое поле возбуждает в окружающем пространстве переменное магнитное поле и наоборот. Основные свойства электромагнитного поля:

1. В однородном пространстве радиоволны распространяются прямолинейно, скорость распространения волн в воздушном пространстве равна 300.000 км\с.

2. Распространение волн в проводящей среде (земле, воде, ионизированном газе) сопровождается поглощением энергии.

3. Если волны от одного и того же источника приходят в точку приема разными путями, происходит сложение этих волн - интерференция.

4. При встрече с препятствиями волны способны огибать их - это явление называется дифракцией. Дифракция уменьшается с уменьшением длины волны.

Вблизи земной поверхности радиоволны распространяются не так, как в свободном пространстве, так как среда (земная поверхность - атмосфера) является неоднородной.

Верхняя область атмосферы, содержащая свободные носители электрических зарядов, возникающие за счет влияния солнца, называется ионосферой. Электрические свойства ионосферы характеризуются концентрацией свободных зарядов - числом ионов и электронов в единице объема (1 куб.метре). Концентрация зарядов зависит от времени года (летом больше, чем зимой) и времени суток (днем больше, чем ночью). При возрастании солнечной активности и космического излучения возникают резкие изменения ионизации (магнитные бури).

Концентрация ионов и электронов в ионосфере на разных высотах различна, можно выделить несколько слоев с повышенной концентрацией ионов:

нижний слой D на высоте 60...90 км с концентрацией до 10 9 3 . Слой D образуется в дневное время, ночью слой D исчезает;

слой Е на высоте 120…150 км с концентрацией до 10 11 3 днеми до 10 10 / м 3 ночью;

слой F на высоте 180...400 км с концентрацией до10 12 3 днем и до 10 11 3 ночью.

При распространении радиоволн между земной поверхностью и ионосферой происходит потеря их энергии из-за взаимодействия электромагнитного поля со свободными носителями зарядов. Потери энергии радиоволны зависят от длины волны (частоты).

При распространении радиоволн необходимо отдельно рассматривать радиоволны, распространяющиеся вдоль земной поверхности (поверхностные или земные) и радиоволны, попадающие в ионосферу и отражающиеся от нее (пространственные или ионосферные).

Потери земных волн за счет частичного проникновения в землю тем больше, чем меньше длина волны, т.е. чем больше частота.


Потери пространственных волн тем больше, чем больше длина волны, т.е. чем меньше частота.

При попадании в слои ионосферы радиоволны отражаются от них или преломляются, причем возможность отражения зависит от степени ионизации ионосферы, частоты и угла падения волны. Максимальная частота, которая может отразиться от ионизированного слоя при вертикальном падении на его границу, называется критической частотой и определяется выражением fкр =9ÖN, где N - концентрация свободных зарядов.

3.2.2. Особенности распространения радиоволн различных диапазонов

В зависимости от условий распространения радиоволны делятся на диапазоны:

__________________________________________________________________

диапазон длина волны частота

________________________________________________________________________________

сверхдлинные (СДВ) >10000 м <30 кГц ОНЧ (VLF)

длинные (ДВ) 10000...1000 м 30...300 кГц НЧ (LF)

средние (СВ) 1000...100 м 300...3000 кГц СЧ (MF)

короткие (КВ) 100...10 м 3...30 МГц ВЧ (HF)

ультракороткие (УКВ) <10 м >30 МГц

метровые 10...1 м 30...300 МГц ОВЧ (VHF)

дециметровые 100...10 см 300...3000 МГц УВЧ (UHF)

сантиметровые 10...1 см 3...30 ГГц СВЧ (SHF)

миллиметровые 10...1 мм 30...300 ГГц КВЧ (EHF)


Распространение радиоволн

Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой ДН обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более, в сантиметровом диапазоне, в то время как остронаправленная антенна для длин волн порядка 10 км имела бы совершенно неприемлемые габариты.

Всякая система передачи сигналов состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена - соединяющей линии. Для радиосистем промежуточным звеном является среда - пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т.е. в условиях, когда средой служат земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.

Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов с не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой - применять широкополосные системы модуляции, например, частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.

При распространении радиоволн в среде происходит изменение амплитуды поля волны (обычно - уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:

  • рассчитать энергетические параметры линии радиосвязи (определить мощность передающего устройства или мощность сигнала на входе приемного устройства);
  • определить оптимальные рабочие волны при заданных условиях распространения;
  • определить истинную скорость и направление прихода сигналов;
  • учесть возможные искажения передаваемого сигнала и определить меры по их устранению.

Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.

Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.

Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны), называют земными радиоволнами (1 на рис. 6.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь, с относительной диэлектрической проницаемостью е , равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.

В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.

Тропосферой называется приземной слой атмосферы, простирающийся до тропопаузы (переходного слоя между тропосферой и стратосферой), лежащей над экватором на высоте 16-18 км, в умеренных широтах - на 10-12 км и в полярных областях - на 7-10 км. В тропосфере происходит искривление траектории земных радиоволн, называемое рефракцией. Распространение тропосферных радиоволн (2 на рис. 6.1) возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазона в тропосфере поглощаются.

Рис. 6.1.

Стратосфера простирается от тропопаузы до высот 50-60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30-35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.

Ионосферой называется область атмосферы на высотах 60-10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т.е. имеется большое число свободных электронов (примерно 10 3 ... 10 6 электронов в 1 см 3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами (3 на рис. 6.1). На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Условия распространения радиоволн (4 , 5 на рис. 6.1) при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны 4 основное влияние оказывает атмосфера Земли.