Параллельных прямых или. Параллельные линии


Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || С E

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой .

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB . Опустим на AB из точки С перпендикуляр С D и затем проведем С E ^ С D , что возможно. Прямая CE параллельна AB .

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M . Тогда из точки M к прямой С D мы имели бы два различных перпендикуляра M D и , что невозможно. Значит, CE не может пересечься с AB , т.е. С E параллельна AB .

Следствие.

Два перпендикуляра (С E и DB ) к одной прямой (С D ) параллельны.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Так, если прямая С D , проведенная через точку С параллельна прямой AB , то всякая другая прямая С E , проведенная через ту же точку С , не может быть параллельна AB , т.е. она при продолжении пересечется с AB .

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (С E ) пересекается с одной из параллельных (СВ ), то она пересекается и с другой (AB ), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB , что невозможно.

2. Если каждая из двух прямых (A и B ) параллельны одной и той же третьей прямой (С ) , то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M , то тогда через эту точку проходили бы две различные прямые, параллельные С , что невозможно.

Теорема .

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной .

Пусть AB || С D и EF ^ AB .Требуется доказать, что EF ^ С D .

Перпендикуляр E F , пересекаясь с AB , непременно пересечет и С D . Пусть точка пересечения будет H .

Предположим теперь, что С D не перпендикулярна к EH . Тогда какая-нибудь другая прямая, например HK , будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB : одна С D , по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH .

Определение параллельных прямых . Параллельными называются две прямые линии, лежащие в одной плоскости и не пересекающиеся на всем своем протяжении.

Прямые AB и CD (черт. 57) будут параллельными. То обстоятельство, что они параллельны, выражают иногда письменно: AB || CD.

Теорема 34 . Две прямые, перпендикулярные к одной и той же третьей, параллельны .

Даны прямые CD и EF перпендикулярные к AB (черт. 58)

CD ⊥ AB и EF ⊥ AB.

Требуется доказать, что CD || EF.

Доказательство . Если бы прямые CD и EF не были параллельны, они пересеклись бы в какой нибудь точке M. В этом случае из точки M на прямую AB были бы опущены два перпендикуляра, что невозможно (теорема 11), следовательно прямая CD || EF (ЧТД).

Теорема 35 . Две прямые, из которых одна перпендикулярна, а другая наклонна к третьей, всегда пересекаются.

Даны две прямые EF и CG, из которых EF ⊥ AB, а CG наклонна к AB (черт. 59).

Требуется доказать, что CG встретится с линией EF или что CG не параллельна EF.

Доказательство . Из точки C восставим к линии AB перпендикуляр CD, тогда при точке C образуется угол DCG, который станем повторять столько раз, чтобы линия CK упала ниже линии AB. Положим, что мы для этого угол DCG повторим n раз, как что

Подобным же образом отложим на прямой AB прямую CE тоже n раз так что CN = nCE.

Из точек C, E, L, M, N восставим перпендикуляры LL", MM", NN". Пространство, содержащееся между двумя параллельными отрезками CD, NN" и отрезком CN, будет в n раз больше пространства, заключающегося между двумя перпендикулярами CD, EF и отрезком CE, так что DCNN" = nDCEF.

Пространство, заключающееся в угол DCK, содержит в себе пространство DCNN", следовательно,

DCK > CDNN" или
nDCG > nDCEF, откуда
DCG > DCEF.

Последнее неравенство может иметь место только тогда, когда прямая CG выйдет при своем продолжении из пределов пространства DCEF, т. е. когда прямая CG встретится с прямой EF, следовательно прямая CG не параллельна CF (ЧТД).

Теорема 36 . Прямая, перпендикулярная к одной из параллельных, перпендикулярна и к другой.

Даны две параллельные прямые AB и CD и прямая EF перпендикулярная к CD (черт. 60).

AB || CD, EF ⊥ CD

Требуется доказать, что EF ⊥ AB.

Доказательство . Если бы прямая AB была наклонна к EF, то две прямые CD и AB пересеклись бы, ибо CD ⊥ EF и AB наклонна к EF (теорема 35), и прямые AB и CD не были бы параллельны, что противоречило бы данному условию, следовательно, прямая EF перпендикулярна CD (ЧТД).

Углы, образуемые пересечением двух прямых третьей прямой . При пересечении двух прямых AB и CD третьей прямой EF (черт. 61) образуется восемь углов α, β, γ, δ, λ, μ, ν, ρ . Эти углы получают особые названия.

    Четыре угла α, β, ν и ρ называются внешними .

    Четыре угла γ, δ, λ, μ называются внутренними .

    Четыре угла β, γ, μ, ν и четыре угла α, δ, λ, ρ называются односторонними , ибо лежат по одну сторону прямой EF.

Кроме того, углы, будучи взяты попарно, получают следующие названия:

    Углы β и μ называются соответственными . Кроме этой пары такими же соответственными углами будут пары углов: γ и ν, α и λ, δ и ρ.

    П ары углов δ и μ , а также γ и λ называются внутренними накрест-лежащими .

    Пары углов β и ρ , а также α и ν называются внешними накрест-лежащими .

    Пары углов γ и μ , а также δ и λ называются внутренними односторонними .

    Пары углов β и ν , а также α и ρ называются внешними односторонними .

Условия параллельности двух прямых

Теорема 37 . Две прямые параллельны, если при пересечении их третьей у них равны: 1) соответственные углы, 2) внутренние накрест-лежащие, 3) внешние накрест-лежащие, и, наконец, если 4) сумма внутренних односторонних равна двум прямым, 5) сумма внешних односторонних равна двум прямым.

Докажем каждую из этих частей теоремы отдельно.

1-й случай . Соответственные углы равны (черт. 62).

Дано. Углы β и μ равны.

Доказательство . Если бы линии AB и CD пересекались в точке Q, то получился бы треугольник GQH, у которого внешний угол β равнялся бы внутреннему углу μ, что противоречило бы теореме 22, следовательно, прямые AB и CD не пересекаются или AB || CD (ЧТД).

2-й случай . Внутренние накрест-лежащие углы равны , то есть δ = μ.

Доказательство . δ = β как вертикальные, δ = μ по условию, следовательно, β = μ. То есть соответственные углы равны, а в этом случае линии параллельны (1-й случай).

3-й случай . Внешние накрест-лежащие углы равны , то есть β = ρ.

Доказательство . β = ρ по условию, μ = ρ как вертикальные, следовательно, β = μ, т. к. соответственные углы равны. Отсюда следует, что AB || CD (1-й случай).

4-й случай . Сумма внутренних односторонних равна двум прямым или γ + μ = 2d.

Доказательство . β + γ = 2d как сумма смежных, γ + μ = 2d по условию. Следовательно, β + γ = γ + μ, откуда β = μ. Соответственные углы равны, следовательно, AB || CD.

5-й случай . Сумма внешних односторонних равна двум прямым , то есть β + ν = 2d.

Доказательство . μ + ν = 2d как сумма смежных, β + ν = 2d по условию. Следовательно, μ + ν = β + ν, откуда μ = β. Соответственные углы равны, следовательно, AB || CD.

Таким образом, во всех случаях AB || CD (ЧТД).

Теорема 38 (обратная 37). Если две прямые параллельны, то при пересечении их третьей прямой будут равны: 1) внутренние накрест-лежащие углы, 2) внешние накрест-лежащие, 3) соответственные углы и равны двум прямым 4) сумма внутренних односторонних и 5) сумма внешних односторонних углов.

Даны две параллельные прямые AB и CD, то есть AB || CD (черт. 63).

Требуется доказать, что все вышеописанные условия выполняются.

1-й случай . Пересечем две параллельные прямые AB и CD третьей наклонной прямой EF. Обозначим через G и Н точки пересечения прямых AB и CD прямой EF. Из точки O середины прямой GH опустим перпендикуляр на прямую CD и продолжим его до пересечения с прямой AB в точке P. Прямая OQ перпендикулярная к CD перпендикулярна и к AB (теорема 36). Прямоугольные треугольника OPG и OHQ равны, ибо OG = OH по построению, HOQ = POG как вертикальные углы, следовательно, OP = OQ.


Отсюда следует, что δ = μ, т. е. внутренние накрест-лежащие углы равны .

2-й случай . Если AB || CD, то δ = μ, а так как δ = β, и μ = ρ, то β = ρ, т. е. внешние накрест-лежащие углы равны .

3-й случай . Если AB || CD, то δ = μ, а так как δ = β, то и β = μ, следовательно, соответственные углы равны .

4-й случай . Если AB || CD, то δ = μ, а так как δ + γ = 2d, то и μ + γ = 2d, т. е. сумма внутренних односторонних равна двум прямым .

5-й случай . Если AB || CD, то δ = μ.

Так как μ + ν = 2d, μ = δ = β, следовательно, ν + β = 2d, т. е. сумма внешних односторонних равна двум прямым .

Из этих теорем вытекает следствие . Через точку можно провести только одну прямую, параллельную другой прямой.

Теорема 39 . Две прямые, параллельные третьей, параллельны между собой.

Даны три прямые (черт. 64) AB, CD и EF, из которых AB || EF, CD || EF.

Требуется доказать, что AB || CD.

Доказательство . Пересечем эти прямые четвертой прямой GH.

Если AB || EF, то α = γ как соответственные. Если CD || EF, то β = γ также как соответственные. Следовательно, α = β .

Если же соответственные углы равны, то прямые параллельны, следовательно, AB || CD (ЧТД).

Теорема 40 . Одноименные углы с параллельными сторонами равны.

Даны одноименные (оба острые или оба тупые) углы ABC и DEF, их стороны параллельны, т. е. AB || DE, BC || EF (черт. 65).

Требуется доказать, что B = E.

Доказательство . Продолжим сторону DE до пересечения ее с прямой BC в точке G, тогда

∠ E = G как соответственные от пересечения сторон параллельных BC и EF третьей прямой DG.

∠ B = G как соответственные от пересечения параллельных сторон AB и DG прямой BC, следовательно,

∠ E = B (ЧТД).

Теорема 41 . Разноименные углы с параллельными сторонами дополняют друг друга до двух прямых.

Даны два разноименные угла ABC и DEF (черт. 66) с параллельными сторонами, следовательно, AB || DE и BC || EF.

Требуется доказать, что ABC + DEF = 2d.

Доказательство . Продолжим прямую DE до пересечения с прямой BC в точке G.

∠ B + ∠ DGB = 2d как сумма внутренних односторонних углов, образуемых пересечением параллельных AB и DG третьей прямой BC.

∠ DGB = ∠ DEF как соответственные, следовательно,

∠ B + ∠ DEF = 2d (ЧТД).

Теорема 42 . Одноименные углы с перпендикулярными сторонами равны и разноименные дополняют друг друга до двух прямых.

Рассмотрим два случая: когда А) углы одноименны и когда B) они разноименны.

1-й случай . Стороны двух одноименных углов DEF и ABC (черт. 67) перпендикулярны, т. е. DE ⊥ AB, EF ⊥ BC.

Требуется доказать, что ∠ DEF = ∠ ABC.

Доказательство . Проведем из точки B прямые BM и BN параллельно прямым DE и EF так, что

BM || DE, BN || EF.

Прямые эти также перпендикулярны к сторонам данного угла ABC, т. е.

BM ⊥ AB и BN ⊥ BC.

Так как ∠ NBC = d, ∠ MBA = d, то

∠ NBC = ∠ MBA (a)

Вычтя из обоих частей равенства (а) по углу NBA, находим

MBN = ∠ ABC

Так как углы MBN и DEF одноименны и с параллельными сторонами, то они равны (теорема 40).

MBN = ∠ DEF (b)

Из равенств (a) и (b) вытекает равенство

ABC = ∠ DEF (ЧТД).

2-й случай . Углы GED и ABC с перпендикулярными сторонами разноименны.

Требуется доказать, что ∠ GED + ∠ ABC = 2d (черт. 67).

Доказательство . Сумма углов GED и DEF равна двум прямым.

GED + DEF = 2d
DEF = ABC, следовательно,
GED + ABC = 2d (ЧТД).

Теорема 43 . Части параллельных прямых между другими параллельными равны.

Даны четыре прямые AB, BD, CD, AC (черт. 68), из которых AB || CD и BD || AC.

Требуется доказать, что AB = CD и BD = AC.

Доказательство . Соединив точку C с точкой B отрезком BC, получим два равных треугольника ABC и BCD, ибо

BC - сторона общая,

α = ∠ β (как внутренние накрест-лежащие от пересечения параллельных прямых AB и CD третьей прямой BC),

γ = ∠ δ (как внутренние накрест-лежащие от пересечения параллельных прямых BD и AC прямой BC).

Таким образом, треугольники имеют по равной стороне и по двум равным углам, лежащим на ней.

Против равных углов α и β лежат равные стороны AC и BD, и против равных углов γ и δ - равные стороны AB и CD, следовательно,

AC = BD, AB = CD (ЧТД).

Теорема 44 . Параллельные прямые на всем своем протяжении находятся на равном расстоянии друг от друга.

Расстояние точки от прямой определяется длиной перпендикуляра, опущенного из точки на прямую. Чтобы определить расстояние каких угодно двух точек A и B параллельной AB от CD, из точек A и B опустим перпендикуляры AC и BD.

Дана прямая AB параллельная CD, отрезки AC и BD перпендикулярны к прямой CD, т. е. AB || CD, AC ⊥ DC, BD ⊥ CD (черт. 69).

Требуется доказать, что AC = BD.

Доказательство . Прямые AC и BD, будучи обе перпендикулярными к CD, параллельны, а следовательно, AC и BD как части параллельных между параллельными, равны, т. е. AC = BD (ЧТД).

Теорема 45 (обратная 43). Если противоположные части четырех пересекающихся прямых равны, то эти части параллельны.

Даны четыре пересекающиеся прямые, противоположные части которых равны: AB = CD и BD = AC (черт. 68).

Требуется доказать, что AB || CD и BD || AC.

Доказательство . Соединим точки B и C прямой BC. Треугольники ABC и BDC равны, ибо

BC - общая сторона,
AB = CD и BD = AC по условию.

Отсюда

α = ∠ β , ∠ γ = ∠ δ

Следовательно,

AC || BD, AB || CD (ЧТД).

Теорема 46 . Сумма углов треугольника равна двум прямым.

Дан треугольник ABC (черт. 70).

Требуется доказать, что A + B + C = 2d.

Доказательство . Проведем из точки C прямую CF параллельную стороне AB. При точке C образуется три угла BCA, α и β . Сумма их равна двум прямым:

BCA + α + β = 2d

α = B (как внутренние накрест-лежащие углы при пересечении параллельных прямых AB и CF прямой BC);

β = A (как соответственные углы при пересечении прямых AB и CF прямой AD).

Заменяя углы α и β их величинами, получим:

BCA + A + B = 2d (ЧТД).

Из этой теоремы вытекают следующие следствия:

Следствие 1 . Внешний угол треугольника равен сумме внутренних не смежных с ним.

Доказательство . Действительно, из чертежа 70,

∠ BCD = ∠ α + ∠ β

Так как ∠ α = ∠ B, ∠ β = ∠ A, то

∠ BCD = ∠ A + ∠ B.

Следствие 2 . В прямоугольном треугольнике сумма острых углов равна прямому.

Действительно, в прямоугольном треугольнике (черт. 40)

A + B + C = 2d, A = d, следовательно,
B + C = d.

Следствие 3 . В треугольнике не может быть больше одного прямого или одного тупого угла.

Следствие 4 . В равностороннем треугольнике каждый угол равен 2/3 d .

Действительно, в равностороннем треугольнике

A + B + C = 2d.

Так как A = B = C, то

3A = 2d, A = 2/3 d.

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

прямые линии называются П., если ни они, ни их продолжения взаимно не пересекаются. Все точки одной из таких прямых находятся на одинаковом расстоянии от другой. Однако принято говорить: "две П. прямые пересекаются в бесконечности". Такой способ выражения остается логически верным, потому что он равносилен выражению: "две. П. прямые пересекаются в конце чего-то не имеющего конца", а это равносильно тому, что они не пересекаются. Между тем выражение: "пересекаются в бесконечности" вносит большое удобство: благодаря ему можно утверждать, например, что всякие две прямые на плоскости пересекаются и имеют только одну точку пересечения. Совершенно также поступают в анализе, говоря, что частное от деления единицы на бесконечность равно нулю. На самом деле не существует бесконечно большого числа; в анализе же бесконечностью называется величина, которая может быть сделана более всякой данной величины. Положение: "частное от деления единицы на бесконечность равно нулю" нужно понимать в том смысле, что частное от деления единицы на какое-нибудь число будет тем ближе к нулю, чем больше делитель. К теории П. линий относится и знаменитая XI-я аксиома Эвклида, значение которой выяснено трудами Лобачевского (см. Лобачевский). Если к какой-либо кривой будем проводить нормали (см.) и на них откладывать от кривой одинаковые отрезки, то геометрическое место концов этих отрезков называется линией, параллельной к данной кривой.

  • - См. гомологичные мутации...

    Молекулярная биология и генетика. Толковый словарь

  • - поперечно ориентированные костные пластинки в области ростовой зоны длинных костей. Формируются в периоды задержки ростовых процессов организма. Фиксация возможна при рентгенографии кости...

    Физическая Антропология. Иллюстрированный толковый словарь

  • Естествознание. Энциклопедический словарь

  • - М., приводящие к одинаковым изменениям фенотипа у родственных видов...

    Большой медицинский словарь

  • - в диатонич. системе мажора и минора пара тональностей противоположного наклонения, имеющих один и тот же состав осн. ступеней; тонич. трезвучия П. т. включают общую большую терцию...

    Музыкальная энциклопедия

  • - так называются те как бы добавочные классы, которые открываются в учебном заведении в случаях недостатка вакансий в соотвествующем классе...
  • - такие ряды поколений у некоторых тлей, которые происходят из яиц одних и тех же самок, напр., некоторых хермесов, а именно из яиц, отложенных бескрылыми самками, живущими на промежуточном растении, происходят...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в евклидовой геометрии, прямые, которые лежат в одной плоскости и не пересекаются. В абсолютной геометрии через точку, не лежащую на данной прямой, проходит хотя бы одна прямая, не пересекающая данную...
  • - совместно протекающие химические реакции, у которых по крайней мере одно исходное вещество является общим...

    Большая Советская энциклопедия

  • - непересекающиеся прямые, лежащие в одной плоскости...

    Современная энциклопедия

  • - непересекающиеся прямые, лежащие в одной плоскости...

    Большой энциклопедический словарь

  • - Имеющие одинаковое число знаков в ключе...
  • - школьные классы с совершенно одинаков. курсом, разделенн. только вследствие переполнения учениками...

    Словарь иностранных слов русского языка

  • - Круги, проводимые на глобусе параллельно экватору...

    Словарь иностранных слов русского языка

  • - линии, лежащие в одной плоскости и удаленные на всем своем протяжении на одинаковое расстояние одна от другой, следовательно при продолжении в ту или другую сторону не пересекающиеся...

    Словарь иностранных слов русского языка

  • - Места из сочинений разных писателей, имеющие одинаковый или сходный смысл...

    Словарь иностранных слов русского языка

"Параллельные линии" в книгах

IX ЛИНИИ ЖИЗНИ, ЛИНИИ СМЕРТИ 1984

Из книги Товарищ убийца. Ростовское дело: Андрей Чикатило и его жертвы автора Кривич Михаил Абрамович

IX ЛИНИИ ЖИЗНИ, ЛИНИИ СМЕРТИ 1984 Из всех вопросов самый сложный - почему.Когда он с леденящим душу спокойствием рассказывал следователям о замысленном и совершенном, когда вспоминал - легко или натужно - о происшедшем и содеянном год или десять лет назад, то называл более

Параллельные миры

Из книги История русского шансона автора Кравчинский Максим Эдуардович

Параллельные миры Появившиеся возможности для ротаций заставляли исполнителей меняться, перестраиваться, адаптировать тексты и подачу для массового слушателя. Но любое явление всегда имеет две стороны, и в то время когда большинство забросило «блатную тему» и кинулось

А параллельные миры?

Из книги Оно того стоило. Моя настоящая и невероятная история. Часть I. Две жизни автора Ардеева Беата

А параллельные миры? Уже осознанные сновидения и «сновиденные реальности» кажутся фантастикой, но дальше может быть и еще интереснее! Например, одна из соучениц К. Кастанеды Кэрол Тиггс рассказывала своим ученикам о существовании так называемых параллельных

5. Параллельные миры

Из книги Год быка--MMIX автора Романов Роман Романович

5. Параллельные миры Искать параллели и точки соприкосновения между Трилогией и Романом можно и нужно, для лучшего понимания обеих книг. Но при авторы двух книг остаются величинами несравнимыми, как несравнимы Везувий и капитолийский холм. И тот, и другой – вершины,

Параллельные миры

Из книги 100 великих тайн [с иллюстрациями] автора Непомнящий Николай Николаевич

Параллельные миры 1 февраля 1964 года калифорнийский адвокат Томас П. Механ закончил свой обычный рабочий день и сел в автомобиль, чтобы отправиться домой, в городок Эурека, до которого было полтора часа езды. Но дома его больше никто и никогда не увидел, и подлинные

Параллельные миры

Из книги Еще вчера. Часть первая. Я – инженер автора Мельниченко Николай Трофимович

Параллельные миры В нашем общежитии вечером идет совсем другая жизнь. Еще недавно Михаил и Иван с братом «пахали» в колхозе и на собственных так называемых «приусадебных» участках. Работа в колхозе – сама по себе тяжелая, на нее нужно время и силы. Тем более –

Параллельные тренинги

Из книги Инфобизнес на полную мощность [Удвоение продаж] автора Парабеллум Андрей Алексеевич

Параллельные тренинги Бывают случаи, когда параллельно продаются, например, два тренинга. Некоторые задаются вопросом: «Это не будет слишком много для базы?» Конечно, может быть и много, но тогда единственное, что вы можете сделать, – взять и объединить тренинги.Вы

Параллельные миры

Из книги Пришельцы из Будущего: Теория и практика путешествий во времени автора Голдберг Брюс

Параллельные миры Физик-теоретик Фред Алан Вулф совершенно согласен с концепцией параллельных миров и их способностью функционировать в качестве механизма, обеспечивающего наше сообщение с будущим. В своей книге «Параллельные миры» он утверждает: "Тот факт, что будущее

Глава 29 Параллельные

Из книги Прогулка по висячему мостику автора Трубицина Екатерина Аркадиевна

Глава 29 Параллельные Время понеслось дальше. Ира смирилась. Однако, как и ожидалось, облегчения это не принесло. Она панически боялась, что Рауль попытается как-то более определенно проявить свои чувства, но он не пытался, если не считать сводящего с ума пылкого взгляда, и

Глава 2 Начало исследования о наступательной операционной линии. - О единой операционной линии, обосновывающейся на одном субъекте и направляющейся в неприятельскую страну

Из книги Германская военная мысль автора Залесский Константин Александрович

Глава 2 Начало исследования о наступательной операционной линии. - О единой операционной линии, обосновывающейся на одном субъекте и направляющейся в неприятельскую страну 1. Операционные линии армии можно сравнить с мускулами человеческого тела, от которых зависит

Глава 5. Прорыв линии Маннергейма и бои на промежуточной линии обороны

Из книги Оболганная победа Сталина. Штурм Линии Маннергейма автора Иринчеев Баир

Глава 5. Прорыв линии Маннергейма и бои на промежуточной линии обороны 11 февраля началось крупномасштабное наступление 7-й и 13-й Армии на Карельском перешейке. Основное направление прорыва было в полосе от озера Муолаанярви до Каукярви. На остальных направлениях

Параллельные линии

Из книги Энциклопедический словарь (П) автора Брокгауз Ф. А.

Параллельные линии Параллельные линии – Прямые линии называются П., если ни они, ни их продолжения взаимно не пересекаются. Весточки одной из таких прямых находятся на одинаковом расстоянии от другой. Однако, принято говорить: «две П. прямые пересекаются в

автора Коваль Дмитрий

От линии диафрагмы до линии талии ДиафрагмаДиафрагма - самая большая мышца нашего тела, отделяющая грудь от брюшной полости. На стопе линия диафрагмы отделяет мягкую, мясистую часть стопы от ее костной основы. О функциях диафрагмы и необходимости работы с ее

От линии диафрагмы до линии талии

Из книги Целительные точки нашего тела. Практический атлас автора Коваль Дмитрий

От линии диафрагмы до линии талии Рефлекторные зоны этого участка отличаются от правой стопы по трем органам - желудку, поджелудочной железе и селезенке.ЖелудокЖелудок - это полый орган для начального переваривания пищи, частичного всасывания питательных веществ с

ГЛАВА 1 УХОД С СИЛОВОЙ ЛИНИИ (ЛИНИИ АТАКИ)

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

ГЛАВА 1 УХОД С СИЛОВОЙ ЛИНИИ (ЛИНИИ АТАКИ) Этот принцип выражен народной мудростью: «Не лезь на рожон». Рожон – это кол, на который глупец идет напрямую, то есть в лоб. Вообще в жизни лобовая атака, в прямом и переносном смысле, дело неблагодарное и дюже травматичное. При