Определение окружности вписанной в четырехугольник. Свойства вписанных и описанных четырёхугольников

Вписанный четырехугольник - четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник - такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке - вписанные и описанные четырехугольники и их свойства.

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

1. Два угла вписанного в окружность четырехугольника равны 82° и 58°. Найдите больший из оставшихся углов. Ответ дайте в градусах.

Сумма противоположных углов вписанного четырехугольника равна 180°. Пусть угол А равен 82°. Тогда напротив него лежит угол в 98 градусов. Если угол В равен 58°, то угол D равен 180° - 58° = 122°.

Ответ: 122.

2. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 1:2:3. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 32.

Пусть сторона АВ равна х, AD равна 2х, а DС - 3х. По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
х + 3х = ВС + 2х.
Получается, что ВС равна 2х. Тогда периметр четырехугольника равен 8х. Мы получаем, что х = 4, а большая сторона равна 12.

3. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны a и c, а боковые стороны - b и d. По свойству описанного четырехугольника,
a + c = b + d, и значит, периметр равен 2(a + c).
Получаем, что а + с = 20, а средняя линия равна 10.

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны180° .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны .

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Для треугольника всегда возможны и вписанная окружность и описанная окружность.

Для четырехугольника окружность можно вписать только в том случае, если суммы его противоположных сторон одинаковы. Из всех параллелограммов только в ромб и квадрат можно вписать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. Из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг трапеции возможно описать окружность или в трапецию можно вписать окружность если трапеция равнобокая.

Центр описанной окружности

Теорема. Центр описанной около треугольника окружности является точкой пересечениясерединных перпендикуляров к сторонам треугольника.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Центр Вписанная окружность

Определение . Вписанная в выпуклый многоугольник окружность - это окружность, которая касается всех сторон этого многоугольника (то есть каждая из сторон многоугольника является для окружностикасательной).

Центр вписанной окружности лежит внутри многоугольника.

Многоугольник, в который вписана окружность, называется описанным.

В выпуклый многоугольник можно вписать окружность, если биссектрисы всех его внутренних углов пересекаются в одной точке.

Центр вписанной в многоугольник окружности - точка пересечения его биссектрис.

Центр вписанной окружности равноудален от сторон многоугольника. Расстояние от центра до любой стороны равно радиусу вписанной окружности По свойству касательных, проведённых из одной точки, любая вершина описанного многоугольника равноудалена от точек касания, лежащих на сторонах, выходящих из этой вершины.

В любой треугольник можно вписать окружность. Центр вписанной в треугольник окружности называется инцентром.

В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. В частности, в трапецию можно вписать окружность, если сумма её оснований равна сумме боковых сторон.

В любой правильный многоугольник можно вписать окружность. Около любого правильного многоугольника можно также описать окружность. Центр вписанной и описанной окружностей лежат в центре правильного многоугольника.



Для любого описанного многоугольника радиус вписанной окружности может быть найден по формуле

Где S - площадь многоугольника, p - его полупериметр.

Правильный n-угольник - формулы

Формулы длины стороны правильного n-угольника

1. Формула стороны правильного n-угольника через радиус вписанной окружности:

2. Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

4. Формула радиуса описанной окружности правильного треугольника через длину стороны:

6. Формула площади правильного треугольника через радиус вписанной окружности: S = r 2 3√3

7. Формула площади правильного треугольника через радиус описанной окружности:

4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:

2. Формула стороны правильного шестиугольника через радиус описанной окружности: a = R

3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

6. Формула площади правильного шестиугольника через радиус вписанной окружности: S = r 2 2√3

7. Формула площади правильного шестиугольника через радиус описанной окружности:

S = R 2 3√3

8. Угол между сторонами правильного шестиугольника: α = 120°

Значение числа (произносится «пи» ) - математическая константа, равная отношению

длины окружности к длине её диаметра, оно выражается бесконечной десятичной дробью.

Обозначается буквой греческого алфавита «пи». Чему равно число пи? В простых случаях хватает знать первые 3 знака (3,14).

53. Найдем длину дуги окружности радиуса R, отвечающей центральному углу в n°

Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в 1 радиан.

Градусная мера угла в 1 радиан равна:

Так как дуга длиной π R (полуокружность), стягивает центральный угол в 180° , то дуга длиной R, стягивает угол в π раз меньший, т.е.

И наоборот

Так как π = 3,14, то 1 рад = 57,3°

Если угол содержит a радиан, то его градусная мера равна

И наоборот

Обычно при обозначении меры угла в радианах наименование «рад» опускают.

Например, 360° = 2π рад, пишут 360° = 2π

В таблице указаны наиболее часто встречающиеся углы в градусной и радианной мере.

Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

Площадь

S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали

С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

Согласно второй теореме Птолемея ,

p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство

p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

(p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

Если M и N являются средними точками диагоналей AC и BD , то

M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

где E и F - точки пересечения противоположных сторон.

Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

Формулы углов

a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

Для угла θ между диагоналями выполняется

tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

Формула Парамешвара

Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

Другие свойства

  • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
  • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

Четырёхугольники Брахмагупты

Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

Свойства ортодиагональных вписанных четырёхугольников

Площадь и радиус описанной окружности

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D -

или, через стороны четырёхугольника

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

Литература

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. .
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
  • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
  • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6

«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:

Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?

Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность . Есть очень важное условие:

На нашем рисунке:

.

Посмотри, углы и лежат друг напротив друга, значит, они противоположные. А что же тогда с углами и? Они вроде бы тоже противоположные? Можно ли вместо углов и взять углы и?

Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет. Оставшиеся два угла тогда сами собой тоже дадут в сумме. Не веришь? Давай убедимся. Смотри:

Пусть. Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, . То есть - всегда! . Но, → .

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна.

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».

Вот как-то не получается.

Теперь применим знание:

предположим, что нам как-то удалось посадить на параллелограмм окружность. Тогда непременно должно быть: , то есть.

А теперь вспомним о свойствах параллелограмма:

у всякого параллелограмма противоположные углы равны.

У нас получилось, что

А что же углы и? Ну, то же самое конечно.

Вписанный → →

Параллелограмм→ →

Потрясающе, правда?

Получилось, что если параллелограмм вписан в окружность, то все его углы равны, то есть это прямоугольник!

И ещё при этом - центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника . Это, так сказать, в качестве бонуса прилагается.

Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность - прямоугольник .

А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция . Почему?

Вот пусть трапеция вписана в окружность. Тогда опять, но из-за параллельности прямых и.

Значит, имеем: → → трапеция равнобокая.

Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо - пригодиться:

Давай ещё раз перечислим самые главные утверждения , касающиеся четырехугольника, вписанного в окружность:

  1. Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна
  2. Параллелограмм, вписанный в окружность - непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
  3. Трапеция, вписанная в окружность - равнобокая.

Вписанный четырехугольник. Средний уровень

Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность , а есть такая теорема:

Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна .

На нашем рисунке -

Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.

Расшифровываем:

  1. «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна.
  2. «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна, то такой четырехугольник можно вписать в окружность.

Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».

А теперь разбираемся, отчего же верно и 1, и 2?

Сначала 1.

Пусть четырехугольник вписан в окружность. Отметим её центр и проведём радиусы и. Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь - сейчас применим, а если не очень - загляни в тему «Окружность. Вписанный угол» .

Вписанный

Вписанный

Но посмотри: .

Получаем, что если - вписанный, то

Ну, и ясно, что и тоже в сумме составляет. (нужно так же рассмотреть и).

Теперь и «наоборот», то есть 2.

Пусть оказалось так, что у четырехугольника сумма каких - то двух противоположных углов равна. Скажем, пусть

Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.

Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.

Рассмотрим оба случая.

Пусть сначала точка - снаружи. Тогда отрезок пересекает окружность в какой-то точке. Соединим и. Получился вписанный (!) четырехугольник.

Про него уже знаем, что сумма его противоположных углов равна, то есть, а по условию у нас.

Получается, что должно бы быть так, что.

Но это никак не может быть поскольку - внешний угол для и значит, .

А внутри? Проделаем похожие действия. Пусть точка внутри.

Тогда продолжение отрезка пересекает окружность в точке. Снова - вписанный четырехугольник, а по условию должно выполняться, но - внешний угол для и значит, то есть опять никак не может быть так, что.

То есть точка не может оказаться ни снаружи, ни внутри окружности - значит, она на окружности!

Доказали всю-всю теорему!

Теперь посмотрим, какие же хорошие следствия даёт эта теорема.

Следствие 1

Параллелограмм, вписанный в окружность, может быть только прямоугольником.

Давай-ка поймём, почему так. Пусть параллелограмм вписан в окружность. Тогда должно выполняться.

Но из свойств параллелограмма мы знаем, что.

И то же самое, естественно, касательно углов и.

Вот и получился прямоугольник - все углы по.

Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.

Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр - прямой.

Диаметр,

Диаметр

а значит, - центр. Вот и всё.

Следствие 2

Трапеция, вписанная в окружность - равнобедренная.

Пусть трапеция вписана в окружность. Тогда.

И так же.

Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.

Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону из точек и, равны), то такой четырехугольник - вписанный.

Это очень важный рисунок - в задачах часто бывает легче найти равные углы, чем сумму углов и.

Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:

« - вписанный» - и всё будет отлично!

Не забывай этот важный признак - запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.

Вписанный четырехугольник. Краткое описание и основные формулы

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна.

Параллелограмм, вписанный в окружность - непременно прямоугольник , и центр окружности совпадает с точкой пересечения диагоналей.

Трапеция , вписанная в окружность - равнобокая .