Нахождение стороны треугольника описанной окружности. Как найти радиус окружности: в помощь школьникам

Как найти радиус окружности? Этот вопрос всегда актуален для школьников, изучающих планиметрию. Ниже мы рассмотрим несколько примеров того, как можно справиться с поставленной задачей.

В зависимости от условия задачи радиус окружности вы можете найти так.

Формула 1: R = Л / 2π, где Л - это а π - константа, равная 3,141…

Формула 2: R = √(S / π), где S - это величина площади круга.

Формула 1: R = В/2, где В - гипотенуза.

Формула 2: R = М*В, где В - гипотенуза, а М - медиана, проведенная к ней.

Как найти радиус окружности, если она описана вокруг правильного многоугольника

Формула: R = А / (2 * sin (360/(2*n))), где А - длина одной из сторон фигуры, а n - количество сторон в данной геометрической фигуре.

Как найти радиус вписанной окружности

Вписанной окружность называется тогда, когда она касается всех сторон многоугольника. Рассмотрим несколько примеров.

Формула 1: R = S / (Р/2), где - S и Р - площадь и периметр фигуры соответственно.

Формула 2: R = (Р/2 - А) * tg (а/2), где Р - периметр, А - длина одной из сторон, а - противолежащий этой стороне угол.

Как найти радиус окружности, если она вписана в прямоугольный треугольник

Формула 1:

Радиус окружности, которая вписана в ромб

Окружность можно вписать в любой ромб, как равносторонний, так и неравносторонний.

Формула 1: R = 2 * Н, где Н - это высота геометрической фигуры.

Формула 2: R = S / (А*2), где S - это а А - длина его стороны.

Формула 3: R = √((S * sin А)/4), где S - это площадь ромба, а sin А - синус острого угла данной геометрической фигуры.

Формула 4: R = В*Г/(√(В² + Г²), где В и Г - это длины диагоналей геометрической фигуры.

Формула 5: R = В*sin (А/2), где В - диагональ ромба, а А - это угол в вершинах, соединяющих диагональ.

Радиус окружности, которая вписана в треугольник

В том случае, если в условии задачи вам даны длины всех сторон фигуры, то сначала высчитайте (П), а затем полупериметр (п):

П = А+Б+В, где А, Б, В - длин сторон геометрической фигуры.

Формула 1: R = √((п-А)*(п-Б)*(п-В)/п).

А если, зная все те же три стороны, вам дана еще и то можете рассчитать искомый радиус следующим образом.

Формула 2: R = S * 2(А + Б + В)

Формула 3: R = S/п = S / (А+Б+В)/2), где - п - это полупериметр геометрической фигуры.

Формула 4: R = (п - А) * tg (А/2), где п - это полупериметр треугольника, А - одна из его сторон, а tg (А/2) - тангенс половины противолежащего этой стороне угла.

А ниже приведенная формула поможет отыскать радиус той окружности, которая вписана в

Формула 5: R =А * √3/6.

Радиус окружности, которая вписана в прямоугольный треугольник

Если в задаче даны длины катетов, а также гипотенуза, то радиус вписанной окружности узнается так.

Формула 1: R = (А+Б-С)/2, где А, Б - катеты, С - гипотенуза.

В том случае, если вам даны только два катета, самое время вспомнить теорему Пифагора, чтобы гипотенузу найти и воспользоваться вышеприведенной формулой.

С = √(А²+Б²).

Радиус окружности, которая вписана в квадрат

Окружность, которая вписана в квадрат, делит все его 4 стороны ровно пополам в точках касания.

Формула 1: R = А/2, где А - длина стороны квадрата.

Формула 2: R = S / (Р/2), где S и Р - площадь и периметр квадрата соответственно.

Определение 2

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Рисунок 1. Вписанная окружность

Теорема 1 (об окружности, вписанной в треугольник)

Теорема 1

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

    Не во всякий четырехугольник можно вписать окружность.

    В любом описанном четырехугольнике суммы противоположных сторон равны.

    Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Определение 3

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Определение 4

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Рисунок 3. Описанная окружность

Теорема 2 (об окружности, описанной около треугольника)

Теорема 2

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

Рисунок 4. Иллюстрация теоремы 2

Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

    Около четырехугольника не всегда можно описать окружность.

    В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

    Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

Пример задачи на понятия вписанной и описанной окружности

Пример 1

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Рисунок 5.

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

\[{(3-r)}^2=r^2+1\] \ \ \

Ответ: $\frac{4}{3}$.

Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы. Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.
Для каждого треугольника существует только одна описанная окружность. Это такая окружность, на которой лежат все три вершины треугольника с заданными параметрами. Найти ее радиус может понадобиться не только на уроке геометрии. С этим приходится постоянно сталкиваться проектировщикам, закройщикам, слесарям и представителям многих других профессий. Для того, чтобы найти ее радиус, необходимо знать параметры треугольника и его свойства. Центр описанной окружности находится в точке пересечения серединных перпендикуляров треугольника.
Предлагаю вашему вниманию все формулы нахождения радиуса описанной окружности и не только треугольника. Формулы для вписанной окружности можно посмотреть .

a, b. с - стороны треугольника,


α - угол, лежащий против стороны a,
S - площадь треугольника ,

p - полупериметр.

Тогда для нахождения радиуса (R ) описанной окружности используют формулы:

В свою очередь площадь треугольника можно вычислить по одной из следующих формул:

А вот еще несколько формул.

1. Радиус описанной окружности около правильного треугольника. Если a сторона треугольника, то

2. Радиус описанной окружности около равнобедренного треугольника. Пусть a, b - стороны треугольника, тогда

Очень часто при решении геометрических задач приходится совершать действия со вспомогательными фигурами. Например, находить радиус вписанной или описанной окружности и т.д. Данная статья покажет, как находить радиус окружности, описанной около треугольника. Или, иными словами, радиус окружности, в которую вписан треугольник.

Как найти радиус окружности, описанной около треугольника – общая формула

Общая формула выглядит следующим образом: R = abc/4√p(p – a)(p – b)(p – c), где R – радиус описанной окружности, p – периметр треугольника поделенный на 2 (полупериметр). a, b, c – стороны треугольника.

Найти радиус описанной окружности треугольника, если a = 3, b = 6, c = 7.

Таким образом, исходя из вышеприведенной формулы, вычисляем полупериметр:
p = (a + b + c)/2 = 3 + 6 + 7 = 16. => 16/2 = 8.

Подставляем значения в формулу и получаем:
R = 3 × 6 × 7/4√8(8 – 3)(8 – 6)(8 – 7) = 126/4√(8 × 5 × 2 × 1) = 126/4√80 = 126/16√5.

Ответ: R = 126/16√5

Как найти радиус окружности, описанной около равностороннего треугольника

Для нахождения радиуса окружности, описанной около равностороннего треугольника, существует довольно простая формула: R = a/√3, где a – величина его стороны.

Пример: Сторона равностороннего треугольника равна 5. Найти радиус описанной окружности.

Так как у равностороннего треугольника все стороны равны, для решения задачи нужно всего лишь вписать ее значение в формулу. Получим: R = 5/√3.

Ответ: R = 5/√3.


Как найти радиус окружности, описанной около прямоугольного треугольника

Формула выглядит следующим образом: R = 1/2 × √(a² + b²) = c/2, где a и b – катеты и c – гипотенуза. Если сложить квадраты катетов в прямоугольном треугольнике, то получим квадрат гипотенузы. Как видно из формулы, данное выражение находится под корнем. Вычислив корень из квадрата гипотенузы, мы получим саму длину. Умножение получившегося выражения на 1/2 в итоге приводит нас к выражению 1/2 × c = c/2.

Пример: Вычислить радиус описанной окружности, если катеты треугольника равны 3 и 4. Подставим значения в формулу. Получим: R = 1/2 × √(3² + 4²) = 1/2 × √25 = 1/2 × 5 = 2.5.

В данном выражение 5 – длина гипотенузы.

Ответ: R = 2.5.


Как найти радиус окружности, описанной около равнобедренного треугольника

Формула выглядит следующим образом: R = a²/√(4a² – b²), где a – длина бедра треугольника и b – длина основания.

Пример: Вычислить радиус окружности, если его бедро = 7, а основание = 8.

Решение: Подставляем в формулу данные значения и получаем: R = 7²/√(4 × 7² – 8²).

R = 49/√(196 – 64) = 49/√132. Ответ можно записать прямо так.

Ответ: R = 49/√132


Онлайн ресурсы для вычисления радиуса окружности

Можно очень легко запутаться во всех этих формулах. Поэтому при необходимости можно воспользоваться онлайн калькуляторами, которые помогут вам в решении задач на нахождение радиуса. Принцип работы таких мини-программ очень прост. Подставляете значение стороны в соответствующее поле и получаете готовый ответ. Можно выбрать несколько вариантов округления ответа: до десятичных, сотых, тысячных и т.д.