Кто придумал хромосомную теорию. Опорный конспект на тему "хромосомная теория наследственности томаса моргана"

В клетках каждого организма находится определенное число хромосом. Генов в них очень много. У человека 23 пары (46) хромосом, генов около 100 000. Гены находятся в хромосомах. В одной хромосоме локализовано много генов. Хромосома со всеми находящимися в ней генами образует группу сцепления. Число групп сцепления равно гаплоидному набору хромосом. У человека 23 группы сцепления. Гены, находящиеся в одной хромосо- ме, сцеплены не абсолютно. Во время мейоза при конъюгации хромосом гомологичные хромосомы обмениваются частями. Это явление называют кроссинговером, который может произойти в любом участке хромосомы. Чем дальше расположены друг от друга локусы в одной хромосоме, тем чаще между ними может происходить обмен участками (рис. 76).

У мухи дрозофилы гены длины крыльев (V - длинные и v - короткие) и окраска тела (В - серая и b - черная) находятся в одной паре гомологичных хромосом, т.е. относятся к одной группе сцепления. Если скрестить муху, имеющую серый цвет тела и длинные крылья, с мухой черного цвета с короткими крыльями, то в первом поколении все мухи будут иметь серый цвет тела и длинные крылья (рис. 77).

В результате скрещивания дигетерозиготного самца с гомозиготной рецессивной самкой мухи будут похожи на родителей. Это происходит потому, что гены, находящиеся в одной хромосоме, наследуются сцепленно. У самца мухи дрозофилы сцепление полное. Если скрестить дигетерозиготную самку с гомозиготным рецессивным самцом, то часть мух будет похожа на родителей, а у

Рис. 76. Кроссинговер.

1 - две гомологичные хромосомы; 2 - их перекрест во время конъюгации; 3 - две новые комбинации хромосом.

другой части произойдет перекомбинация признаков. Такое наследование имеет место для генов одной группы сцепления, между которыми может произойти кроссинговер. Это пример неполного сцепления генов.

Основные положения хромосомной теории наследственности

. Гены находятся в хромосомах.

. Гены в хромосоме расположены линейно.

Рис. 77. Сцепленное наследование генов окраски тела и состояния крыльев у плодовой мухи.

Ген серого цвета (В) доминирует над геном черного цвета тела (b), ген длинных крыльев (V) - над геном коротких крыльев (v). В и V находятся в одной хромосоме.

а - полное сцепление генов вследствие отсутствия перекреста хромосом у самцов дрозофилы: РР - самка серая с длинными крыльями (BBVV) скрещена с черным короткокрылым самцом (bbvv); F 1 - серый самец с длинными крыльями (BbVv) скрещен с черной короткокрылой самкой (bbvv); F 2 - поскольку у самца не происходит кроссинговера, появятся два вида потомков: 50% - черных короткокрылых и 50% - серых с нормальными крыльями; б - неполное (частичное) сцепление признаков вследствие перекреста хромосом у самок дрозофилы: РР - самка с длинными крыльями (BBVV) скрещена с черным короткокрылым самцом (bbvv); F 1 - серая самка с длинными крыльями (BbVv) скрещена с черным короткокрылым самцом (bbvv). F 2 - поскольку у самки происходит кроссинговер гомологичных хромосом, образуются четыре типа гамет и появятся четыре вида потомков: некроссоверы - серые с длинными крыльями (BbVv) и черные короткокрылые (bbvv), кроссоверы - черные с длинными крыльями (bbVv), серые короткокрылые (Bbvv).

. Каждый ген занимает определенное место - локус.

. Каждая хромосома представляет собой группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.

Между гомологичными хромосомами происходит обмен аллельными генами. Расстояние между генами пропорционально проценту кроссинговера между ними.

Вопросы для самоконтроля

1. Где находятся гены?

2. Что такое группа сцепления?

3. Чему равно число групп сцепления?

4. Как сцеплены гены в хромосомах?

5. Как наследуется признак длины крыльев и цвета тела у мухи дрозофилы?

6. Потомство с какими признаками проявится при скрещивании гомозиготной самки с длинными крыльями и серым цветом тела с гомозиготным черным самцом с короткими крыльями?

7. Потомство с какими признаками появится при скрещивании дигетерозиготного самца с гомозиготной рецессивной самкой?

8. Какое сцепление генов имеет место у самца дрозофилы?

9. Какое потомство будет при скрещивании дигетерозиготной самки с гомозиготным рецессивным самцом?

10. Какое сцепление генов имеет место у самки дрозофилы?

11. Каковы основные положения хромосомной теории наследственности?

Ключевые слова темы «Хромосомная теория наследственности»

гены

группа сцепления

длина

клетки

конъюгация

кроссинговер

крылья

линейно локус место муха

наследственность

обмен

окраска

организм пары

перекомбинация

поколение

положение

потомки

расстояние

результат

родители

самец

самка

скрещивание

тело

теория

участок

хромосомы

цвет

часть

человек

число

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Есть правила индивидуальности, постоянства, парности хромосом. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом (рис. 78).

22 пары хромосом одинаковы. Их называют аутосомами. 23-я пара хромосом - половые хромосомы. В женском кариотипе одина-

Рис. 78. Кариотипы разных организмов. 1 - человека; 2 - комара; 3 растения скерды.

ковые половые хромосомы ХХ. В мужском кариотипе половые хромосомы XY. Y-хромосома очень мала и содержит мало генов. Сочетание половых хромосом в зиготе определяет пол будущего организма.

При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы+Х-хромосома. Пол, образующий гаметы, одинаковые по половой хромосоме, называют гомогаметным полом. Половина сперматозоидов содержит - 22 аутосомы+Х-хромосома, а половина 22 аутосомы+Y. Пол, образующий гаметы, различные по половой хромосоме, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y-хромосому - мужской (рис. 79).

Рис. 79. Хромосомный механизм образования пола.

Вероятность рождения мальчика или девочки равна 1:1 или 50%:50%. Такое определение пола характерно для человека и мле- копитающих. У некоторых насекомых (кузнечики и тараканы) нет Y-хромосомы. Самцы имеют одну Х - хромосому (Х0), а самки - две (ХХ). У пчел самки имеют 2n набор хромосом (32 хромосомы), а самцы - n (16 хромосом). У женщин в соматических клетках две половые Х-хромосомы. Одна из них образует глыбку хроматина, которая бывает заметна в интерфазных ядрах при обработке реактивом. Эта глыбка - тельце Барра. У мужчин тельце Барра отсутствует, потому что у них всего одна Х-хромосома. Если при мейозе в яйцеклетку попадает сразу две ХХхромосомы и такая яйцеклетка будет оплодотворена сперматозоидом, то зигота будет иметь большее число хромосом.

Например, организм с набором хромосом ХХХ (трисомия по Х- хромосоме) по фенотипу - девочка. У нее недоразвиты половые железы. В ядрах соматических клеток выделяются два тельца Барра.

Организм с набором хромосом ХХY (синдром Клайнфельтера) по фенотипу - мальчик. У него недоразвиты семенники, отмечается физическая и умственная отсталость. Есть тельце Барра.

Хромосомы ХО (моносомия по Х-хромосоме) - определяют синдром Шерешевского-Тернера. Организм с таким набором - девочка. У нее недоразвиты половые железы, малый рост. Нет тельца Барра. Организм, не имеющий Х-хромосомы, а содержащий только Y- хромосому - нежизнеспособен.

Наследование признаков, гены которых находятся в Х- или Y- хромосомах, называют наследованием, сцепленным с полом. Если гены находятся в половых хромосомах, они наследуются сцепленно с полом.

У человека в Х-хромосомах есть ген, определяющий признак свертывания крови. Рецессивный ген вызывает развитие гемофилии. В Х-хромосоме есть ген (рецессивный), который отвечает за проявление дальтонизма. У женщин две Х-хромосомы. Рецессивный признак (гемофилия, дальтонизм) проявляется только в том случае, если гены, отвечающие за него, будут находиться в двух Х-хромосомах: X h X h ; X d X d . Если в одной Х-хромосоме будет доминантный ген Н или D, а в другой - рецессивный h или d, то гемофилии или дальтонизма не будет. У мужчин одна Х-хромосома. Если в ней есть ген H или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет этих генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.

Если гены находятся в Y-хромосоме (голандрическое наследование), то признаки, ими обусловленные, передаются от отца сыну. Например, через Y-хромосому наследуется волосатость ушей. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находятся в гемизиготном состоянии, т. е. не имеют аллельной пары.

Y-хромосома содержит некоторые гены, гомологичные генам Х-хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др. Эти гены наследуются как через Х-, так и через Y-хромосому.

Вопросы для самоконтроля

1. Какие правила хромосом имеются?

2. Что такое кариотип?

3. Сколько аутосом у человека?

4. Какие хромосомы у человека отвечают за развитие пола?

5. Какова вероятность рождения мальчика или девочки?

6. Как определяют пол у кузнечиков и тараканов?

7. Как определяют пол у пчел?

8. Как определяют пол у бабочек и птиц?

9. Что такое тельце Барра?

10. Как можно определить наличие тельца Барра?

11.Чем можно объяснить появление большего или меньшего числа хромосом в кариотипе?

12.Что такое сцепленное с полом наследование?

13. Какие гены у человека наследуются сцепленно с полом?

14. Как и почему проявляют свое действие рецессивные гены, сцепленные с полом у женщин?

15. Как и почему проявляют свое действие рецессивные гены, сцепленные с Х-хромосомой у мужчин?

Ключевые слова темы «Хромосомное определение пола»

аутосомы

бабочки

вероятность

волосатость ушей

гаметы

генотип

гены

гетерогаметный пол

глыбка хроматина

гомогаметный пол

дальтонизм

девочка

действие

женщина

зигота

индивидуальность

кариотип

кузнечики

мальчик

мейоз

млекопитающее

момент

моносомия

мужчина

набор

насекомые

наследование

носитель

обработка реактивом оплодотворение

организм

особь

парность

пары

пол

половые клетки

потомство

правила

признак

птицы

пчелы

развитие

различия

рождение

рост

свертывание крови семенники синдром Дауна

синдром Клайнфельтера

синдром Шершевского-Тернера

слепота

созревание

состояние

сочетание

сперматозоиды

сын

тараканы

тельце Барра

трисомия

Y-хромосома

фенотип

хромосома

Х-хромосома

человек

ядро

яйцеклетка

Закономерности, открытые школой Моргана, а затем подтвержденные на многочисленных объектах, известны под общим названием хромосомной теории наследственности. Основные положения хромосомной теории наследственности следующие:

1. Гены находятся в хромосомах. Каждая хромосома представляет собой

группу сцепления генов. Число групп сцепления у каждого вида равно гаплоидному числу хромосом.

2. Каждый ген в хромосоме занимает определенное место (локус).

Гены в хромосомах расположены линейно.

3. Между гомологичными хромосомами может происходить обмен

аллельными генами.

4. Расстояние между генами в хромосоме пропорционально проценту

кроссинговера между ними.

Действие законов теории наследственности распространяется и на человека.

Наследование признаков, сцепленных с полом

Хромосомный набор клеток конкретной особи (кариотип) состоит из двух типов хромосом: аутосом (одинаковые у обоих полов хромосомы) и половых хромосом (Х- и Y-хромосомы, по которым отличаются самцы и самки). Сочетание половых хромосом определяет пол конкретной особи. У большинства организмов (в частности, у человека) женскому полу соответствует набор ХХ хромосом (т.е. все образующиеся яйцеклетки в норме содержат по одной Х-хромосоме), а мужскому - ХY хромосом (при сперматогенезе у них образуется 50% сперматозоидов, содержащих Х-хромосому и 50% сперматозоидов, содержащих У-хромосому). Пол, имеющий две Х-хромосомы называют гомогаметным , а ХY – гетерогаметным

Однако в природе есть ряд исключений по этому вопросу. Так, например, у некоторых насекомых, земноводных, птиц и др. мужской организм будет иметь две Х-хромосомы, а женский – ХY; у прямокрылых женский пол гомогаметен (ХХ), а мужской – гетерогаметен (Х0), т.е. лишен У-хромосомы. Обычно в указанных случаях Х-хромосома обозначается через Z, а У-хромосома обозначается через W.

Признаки, гены которых локализованы в половых хромосомах, называются сцепленными с полом . Х- и Y-хромосомы имеют общие гомологичные участки. В них расположены гены, определяющие признаки, которые наследуются одинаково как у мужчин, так и у женщин.

Помимо гомологичных участков, Х- и Y-хромосомы имеют негомологичные участки, при этом, негомологичный участок Х-хромосомы содержит гены, имеющиеся только в Х-хромосоме, а негомологичный участок У-хромосомы содержит гены, имеющиеся только в У-хромосоме. Негомологичные участки Х-хромосомы содержат в своем составе целый ряд генов. Например, у человека через эти участки передаются такие заболевания как гемофилия, атрофия зрительного нерва, сахарный диабет, дальтонизм, а у мухи дрозофилы, например окраска тела и цвет глаз



Схема наследования гемофилии у человека:

Х Н - ген, обуславливающий нормальную свертываемость крови;

Х h - ген, обуславливающий несвертываемость крови (гемофилию).

Р Х Н Х h Ο  Х Н Y

носитель гена здоров

гемофилии

Г Х Н, Х h Х Н, Y

F 1 Х Н Х Н, Х Н Х h , Х Н Y, Х h Y

здоровая носитель- здоров болен

Ген, контролирующий свертываемость крови (H) доминантен, а его аллель-ген гемофилии (h) рецессивен, поэтому, если женщина гетерозиготна по этому гену (X Н X h) гемофилия у нее не проявится. У мужчин только одна X-хромосома и если она имеет ген гемофилии (h), то мужчина страдает гемофилией.

Девочка, страдающая гемофилией, может родиться лишь от брака женщины, гетерозиготной по гемофилии, с мужчиной, страдающим этим заболеванием, однако такие случаи редки.

У особей гетерогаметного пола (ХУ) ряд аллелей, локализованных в негомологичных участках, не образуют аллельных пар, т.е. несут только по одному аллелю пар. Такое состояние, когда данный участок хромосомы и локализованные в нем аллели представлены в единственном числе, называется гемизиготностью . Гемизиготнось имеется у небольшого числа алелей, локализованных в негомологичных участках У-хромосомы человека. Их передача идет исключительно по мужской линии, а сами признаки носят название голандрических. Так, например, наследуется развитие первичных и вторичных половых признаков мужского пола, оволосение ушной раковины (гипертрихоз) др.

Работы Моргана заложили основы хромосомной теории наследственности, они показали, что ограничения в свободной комбинаторике некоторых генов обусловлены расположением этих генов в одной хромосоме и их физическим сцеплением.

Морганом было установлено, что сцепление генов, расположенных в одной хромосоме, не является абсолютным. Во время мейоза хромосомы одной пары могут обмениваться гомологичными участками между собой с помощью процесса, который называется кроссинговером. Чем дальше друг от друга расположены гены в хромосоме, тем чаще они разделяются кроссинговером. На основе этого феномена была предложена мера силы сцепления генов - процент кроссинговера - и построены первые генетические карты хромосом для разных видов дрозофилы.

В качестве объекта генетического анализа была выбрана плодовая мушка дрозофила и Морган изучал наследование у нее разных признаков.

Скрестив гомозиготную самку с серыми телом и длинными крыльями (домин), с гомозиготным чернокрылым короткокрылым самцом, в F1 – однообразие (серое тело, длинные крылья)

Оказалось, что результаты будут разные в зависимости от пола гибрида.

Если гибридным был самец, то в потомстве получалось 2 фенотипических класса полностью повторяющих признаки родителей.

Если гибридной была самка, то получалось 4 фенотипических классов потомком в неравных пропорциях. Большую часть потомства (83%) составляют потомки с родительскими признаками, меньшую (17%) – особи с новыми комбинациями признаков.

Морган сделал вывод, что сцепление может быть неполным, где группа сцепления нарушается кроссинговером.

Необычность процентного соотношения у потомков объясняется тем, что кроссинговер происходит не всегда, частота кроссинговера зависит от расстояния между генами – чем больше расстояние, тем меньше силы сцепления между генами, тем чаще кроссинговер.

Гаметы, в которые попали хромосомы, не прошедшие кроссинговер, называются некроссоверные.

Если в гаметах хромосомы претерпевшие кроссинговер – кроссоверные.

6. Основные положения хромосомной теории наследственности

1. Гены расположены в хромосомах линейно в определенных участках – локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе или сцеплено. Число групп сцепления = числу хромосом в гаплоидном наборе.

3. Между гомологичными хромосомами возможен кроссинговер, нарушающий сцепление

4. процесс кроссинговера прямо пропорционален расстоянию между генами.

1% кроссинговера = 1 сантиморганида

7. Понятие о цитоплазматической наследственности

Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития.

Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений.

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ (греческий chroma цвет, окраска + soma тело) - основная теория современной генетики, согласно которой главными материальными носителями наследственности являются хромосомы и расположенные на них в определенной линейной последовательности гены.

Основы теории сформулированы и экспериментально подтверждены Т. Морганом и его сотрудниками Стертевантом (A. Sturtevant), Меллером (H. J. Muller) и Бриджизом (С. В. Bridges) в начале 20 века. Законы наследственности и изменчивости определяются по хромосомной теории наследственности поведением хромосом в митозе (см.), мейозе (см.) и при образовании зиготы (см. Менделя законы).

В 1865 году Г. Мендель, изучая численные соотношения качественных признаков в гибридном потомстве, полученном от скрещивания отличающихся друг от друга растений гороха, высказал предположение о наличии наследственных факторов (позже названных генами) и чистоты половых клеток - гамет (см. Гаметы , Ген). Согласно этой гипотезе, проявление каждого наследственного признака у организмов с половым размножением контролируется парой наследственных факторов или по современной терминологии парой аллелей (см. Аллели) одного гена, один из которых передается зародышу яйцеклеткой, а другой - спермием. В процессе роста и развития все пары аллелей различных генов передаются от клетки к клетке, репродуцируясь (см. Репродукция хромосом) в каждом клеточном цикле, и обусловливают проявление соответствующих наследственных признаков. При созревании половых клеток все пары аллелей распределяются таким образом, что зрелые гаметы содержат только по одному аллелю для каждого наследственного признака, то есть являются «чистыми» (негибридными). Распределение членов каждой пары аллелей между созревающими половыми клетками происходит независимо от распределения членов других пар. В процессе оплодотворения мужские и женские гаметы сливаются, а их одинарные наборы объединяются, образуя парный набор нового поколения. Эта гипотеза Г. Менделя предвосхитила открытие хромосом, механизмов деления клеток и цитологических основ оплодотворения. В последней четверти 19 века начале 20 века Страсбургер (E. Strasburger), Бовери (Th. Boveri) и Уилсон (Е. В. Wilson) и другие ученые открыли существование хромосом (см.) и доказали, что каждому биол. виду свойствен определенный, постоянный хромосомный набор (см.). Было обнаружено, что парность набора восстанавливается в процессе оплодотворения, хромосомы разных пар неидентичны, индивидуальны и для осуществления нормального онтогенеза требуется полный хромосомный набор. Впоследствии были изучены механизмы поведения хромосом в митозе и мейозе. Сеттон (W. Sutton) в 1902 году обобщил данные о строении и функционировании хромосом и указал на полный параллелизм хромосомных циклов с поведением менделевских наследственных факторов.

Несоответствие обычно малого числа хромосом всегда большому числу наследственных признаков, которые, по Менделю, должны независимо рекомбинировать (см. Рекомбинация), X. де Фрис объяснил тем, что каждая из хромосом содержит большое число наследственных факторов, а в мейозе гомологичные (структурно идентичные) хромосомы свободно обмениваются аллелями, это и обеспечивает независимое комбинирование разных пар аллелей, расположенных в одной и той же паре гомологичных хромосом. Бейтсон (W. Bateson), Сондерс (Е. В. Saunders) и Паннет (R. С. Punnet) показали, что закон независимого комбинирования не является универсальным: некоторые пары наследственных признаков рекомбинируют реже ожидаемого и сохраняются преимущественно в тех сочетаниях, в каких они присутствовали у исходных родительских форм. Это явление было названо ими сцеплением признаков (и соответствующих наследственных факторов, генов). При этом сцепление неаллельных генов не бывает абсолютным, а сила сцепления одной пары генов относительно постоянна и не зависит от того, в каком из возможных сочетаний данные гены присутствовали у исходных родительских форм. Обоснованием хромосомной теории наследственности явилось открытие хромосомных механизмов определения пола (см. Пол, Хромосомы).

Решающие доказательства хромосомной теории наследственности были получены Т. Морганом и его сотрудниками при изучении наследования признаков у плодовой мушки дрозофилы (см.), когда было показано, что совокупность наследственных признаков дрозофилы распадается на неперекрывающиеся группы наследуемых признаков (групп сцепления), причем в пределах группы все признаки наследуются сцепленно, а любой признак одной группы независимо рекомбинирует с любым признаком другой. Общее число групп сцепления - четыре - оказалось равным числу хромосом в гаплоидном наборе. Наследование признаков, принадлежащих к трем из четырех группа сцепления у дрозофилы, происходило независимо от пола. Признаки же четвертой группы наследовались сцепленно с полом. Принадлежность генов, наследуемых сцепленно с полом, к X-хромосоме была доказана Бриджизом в прямых экспериментах и одновременно им было открыто новое явление - не-расхождение хромосом, ведущее к анеуплоидии (см. Хромосомный набор). У человека анеуплоидия является этиологической основой хромосомных болезней (см.).

Важным экспериментальным подтверждением хромосомной теории наследственности явилось установление расположения генов на хромосомах - построение генетических карт хромосом (см. Хромосомная карта). Параллельный генетический и цитологический анализ гибридного потомства показал, что рекомбинация исследуемых сцепленных внешних наследственных признаков неизменно сопровождается рекомбинацией соответствующих маркерных хромосом.

Т. Морган и его сотрудники высказали предположение, что частота рекомбинации сцепленных генов пропорциональна расстоянию между ними на хромосоме. В сериях скрещиваний они определили частоту рекомбинации между всеми известными им неаллельными генами во всех четырех группах сцепления у дрозофилы. В результате гены каждой группы сцепления выстроились в единственно возможный неравномерный линейный ряд, получивший название генетической карты хромосом. Были сделаны выводы о том, что гены на хромосомах расположены в постоянной последовательности во вполне определенных точках (локусах) и что обмен между генами не затрагивает их целостности. Позже были открыты структурные перестройки хромосом (см. Мутация), в результате которых целые блоки хромосомного материала могут перемещаться как в пределах одной хромосомы - инверсии (см.), транспозиции, так и между хромосомами - транслокации (см.), что приводит соответственно к изменению локализации генов.

Установление полного параллелизма в последовательности генов на генетических и цитологических картах хромосом послужило окончательным обоснованием хромосомной теории наследственности. В настоящее время этот параллелизм обнаружен не только у дрозофилы, но и у всех генетически изученных видов растений, микроорганизмов и животных, в том числе и у человека. Открытие цитоплазматической наследственности не противоречит хромосомной теории, так как по этому механизму наследуется менее 1 % всех признаков (см. Наследственность цитоплазматическая). Хромосомная теория наследственности объясняет все известные закономерности взаимодействия генов. Хромосомная теория наследственности служит не только для теоретического обоснования механизмов наследственности и изменчивости, но и имеет большое практическое значение для точного установления этиологических факторов генетически обусловленной патологии у человека.

Библиогр.: Бочков Н. П., Захаре в А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Гершензон С. М. Основы современной генетики, Киев, 1983; Морган Т. Г. Структурные основы наследственности, пер. с англ., М. - Пг., 1924; М о r g a n Т. Н. а. о. The mechanism of mendelian heredity, N. Y., 1915; Sturt evantA.H. A history of genetics, N. Y., 1965; Wilson E. B.The cell in development and heredity, N. Y., 1934.

Открыта Г.Т. Морганом и его учениками в 1911-1926 г. Они доказали, что III закон Менделя требует дополнений: наследственные задатки не всегда наследуются независимо, иногда они передаются целыми группами - сцеплены друг с другом. Установленные закономерности расположения генов в хромосомах способствовали выяснению цитологических механизмов законов Грегора Менделя и разработке генетических основ теории естественного отбора. Такие группы могут перемещаться в другую гомологичную хромосому при конъюгации во время профазы 1 мейоза.

Положения хромосомной теории:

  • 1)Передача наследственной информации связана с хромосомами, в которых линейно, в определенных локусах лежат гены.
  • 2)Каждому гену одной гомологичной хромосомы соответствует аллельный ген другой гомологичной хромосомы.
  • 3)Аллельные гены могут быть одинаковыми у гомозигот и разными у гетерозигот.
  • 4)Каждая особь в популяции содержит только 2 аллели, а гаметы - одну аллель.
  • 5)В фенотипе признак проявляется при наличии 2-х аллельных генов.
  • 6)Степень доминирования у множественных аллелей возрастает от крайнего рецессивного до крайнего доминантного. Например, у кролика окраска шерсти зависит от рецессивного гена «с» - ген альбинизма. Доминантным по отношению к «с» будет ген «сh"» - гималайской (горностаевой) окраски - белое тело, разовые глаза, темные кончики носа, ушей, хвоста и конечностей. Доминантный по отношению к «сh» будет ген «сhс» - шиншилловый - светло-серый. Еще более доминантным будет ген «са» - агути, темной окраски. Самым доминантным будет ген С - черной окраски, он доминирует над всеми аллелями - С, са, сhс, сh, с.
  • 7)Доминантность и рецессивность аллелей не абсолютны, а относительны. Один и тот же признак может наследоваться по доминантному ИЛИ рецессивному типу. Например, наследование эпикантуса у негроидов - доминантно, у монголоидов - рецессивно, у европеоидов - отсутствует эта аллель. Заново возникающие аллели рецессивны. Старые - доминантны.
  • 8)Каждая пара хромосом характерна определенным набором генов, которые составляют группы сцепления, часто наследуются совместно.
  • 9)Число групп сцепления равно числу хромосом в гаплоидном наборе.
  • 10)Перемещение генов из одной гомологичной хромосомы в другую в про фазе 1 мейоза происходит с определенной частотой, которая обратно пропорциональна расстоянию между генами - чем меньше расстояние между генами, тем больше сила сцепления между ними, и наоборот.
  • 11)Единицей расстояния между генами является морганида, которая равна 1 % кроссинговерного потомства. Например, ген резус-фактора и ген овалоцитоза расположены друг от друга на 3 морганиды, а ген дальтонизма и гемофилии - на 10 морганид.

Положения хромосомной теории были доказаны цитологически и экспериментально Морганом на плодовой мушке дрозофиле.

Наследование признаков, гены которых находятся в Х и У - половых хромосомах, называется наследованием, сцепленным с полом. Например, у человека в Х-половой хромосоме находятся рецессивныe гены дальтонизма и гемофилии. Рассмотрим наследование гемофилии у человека:

h - ген гемофилии (кровоточивости);

Н - ген нормальной свертываемости крови.

Рецессивный признак проявляется у мальчиков, у девочек он подавляется аллельным доминантным Н-геном.

Наследование признака происходит перекрестно - от пола к полу, от матери - сыновьям, от отца - дочерям.

Внешнее проявление признака - фенотип - зависит от нескольких условий:

  • 1)наличия 2-х наследственных задатков от обоих родителей;
  • 2)от способа взаимодействия между аллельными генами (доминантный, рецессивный, кодоминирование);
  • 3)от условий взаимодействия между неаллельными генами (комплементарное, эпистатическое взаимодействие, полимерия, плейотропия);
  • 4)от места расположения гена (в аутосоме или половой хромосоме);
  • 5)от условий внешней среды.