G постоянная величина равна. Гравитационная постоянная теряет вес

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

Гравитационная константа Ньютона измерена методами атомной интерферометрии. Новая методика свободна от недостатков чисто механических экспериментов и, возможно, позволит скоро изучать эффекты общей теории относительности в лаборатории.

Фундаментальные физические постоянные, такие как скорость света c , гравитационная постоянная G , постоянная тонкой структуры α, масса электрона и другие, играют чрезвычайно важную роль в современной физике. Заметная часть экспериментальной физики посвящена как можно более точному измерению их значений и проверке того, не изменяются ли они во времени и пространстве. Даже малейшие подозрения в непостоянности этих констант могут породить целый поток новых теоретических исследований и пересмотр общепринятых положений теоретической физики. (См. популярную статью Дж. Бэрроу и Дж. Веба Непостоянные постоянные // «В мире науки», сентябрь 2005 г., а также подборку научных статей , посвященных возможной непостоянности констант взаимодействия.)

Большинство фундаментальных констант известны сегодня с чрезвычайно высокой точностью. Так, масса электрона измерена с точностью 10 -7 (то есть стотысячная доля процента), а постоянная тонкой структуры α, характеризующая силу электромагнитного взаимодействия, — с точностью 7 × 10 -10 (см. заметку Уточнена постоянная тонкой структуры). В свете этого может показаться удивительным, что значение гравитационной постоянной, которая входит в закон всемирного тяготения , известно с точностью хуже, чем 10 -4 , то есть одна сотая доля процента.

Такое положение вещей отражает объективные трудности гравитационных экспериментов. Если пытаться определить G из движения планет и спутников, то необходимо с высокой точностью знать массы планет, а они-то как раз известны плохо. Если же поставить механический эксперимент в лаборатории, например измерить силу притяжения двух тел с точно известной массой, то такое измерение будет иметь большие погрешности из-за чрезвычайной слабости гравитационного взаимодействия.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "гравитационная постоянная"

Энциклопедический словарь, 1998 г.

гравитационная постоянная

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259+0,00085)·10-11 Н·м2/кг2.

Гравитационная постоянная

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F ≈ сила притяжения, М и m ≈ массы притягивающихся тел, r ≈ расстояние между телами. Другие обозначения Г. п.: g или f (реже k2). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц

G = (6,673 ╠ 0,003)×10-8дн×см2×г-2

или см3×г
--1×сек-2, в Международной системе единиц G = (6,673 ╠ 0,003)×10-11×н×м2×кг
--2

или м3×кг-1×сек-2. Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов.

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. ≈ произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ╠ 0,00003)×1014×м3×сек-2.

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. ≈ произведение Г. п. на массу Солнца:

GSs = 1,32718×1020× м3×сек-2.

Эти значения GE и GSs соответствуют системе фундаментальных астрономических постоянных, принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

Википедия

Гравитационная постоянная

Гравитацио́нная постоя́нная , постоянная Ньютона (обозначается обычно , иногда или) - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения между двумя материальными точками с массами и , находящимися на расстоянии , равна:

$F=G\frac{m_1 m_2}{r^2}.$

Коэффициент пропорциональности в этом уравнении называется гравитационной постоянной . Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

6,67428(67)·10 м·с·кг, или Н·м²·кг,

в 2010 году значение было исправлено на:

6,67384(80)·10 м·с·кг, или Н·м²·кг.

В 2014 году значение гравитационной постоянной, рекомендованное CODATA, стало равным:

6,67408(31)·10 м·с·кг, или Н·м²·кг.

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины , рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах. Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?

После изучения курса физики в головах у учащихся остаются всевозможные постоянные и их значения. Тема гравитации и механики не становится исключением. Чаще всего ответить на вопрос о том, какое значение имеет гравитационная постоянная, они не могут. Но всегда однозначно ответят, что она присутствует в законе всемирного тяготения.

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с 2 .

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • F т = G (m 1 *х m 2) : r 2 .

В ней введены такие обозначения:

Формула гравитационной постоянной вытекает из этого закона:

  • G = (F т Х r 2) : (m 1 х m 2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10 -11 Нˑм 2 /кг 2 . Прошло три года - и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10 -11 Нˑм 2 /кг 2 . Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10 -11 Нˑм 2 /кг 2 .

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r 2 .

Причем в ней используются такие обозначения:

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r 2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н) 2 , где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·10 23 кг, а радиус планеты 3,38·10 6 м.

Решение . Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10 -11 и 6,23 х 10 23 , которое потом нужно разделить на квадрат 3,38·10 6 . В числителе получается значение 41,55 х 10 12 . А в знаменателе будет 11,42 х 10 12 . Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ : 3,64 м/с 2 .

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение . Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ : отдалить их на расстояние, превышающее изначальное в 10 раз.