Экстремум функции примеры. Возрастание и убывание функции на интервале, экстремумы

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось вдоль ровной стороны пилы, а ось - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Совершенно очевидно, что и в точке , и в точке значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке - наименьшим в сравнении с соседними точками. Точки называются точками экстремума функции (от латинского extremum - «крайний»), точки и - точками максимума, а точка - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция в точке имеет максимум, если найдется интервал, содержащий точку и принадлежащий области определения функции, такой, что для всех точек этого интервала оказывается . Соответственно функция в точке имеет минимум, если для всех точек некоторого интервала выполняется условие .

На рис. 2 и 3 приведены графики функций, имеющие в точке экстремум.

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое , то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка плоской площадки - отрезка является точкой нестрогого максимума.

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция в точке имеет экстремум. Если в этой точке существует производная , то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка будет точкой минимума. Напротив, точка будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию .

Найдем ее производную: .

Находим значения функции в точках экстремума: , . График функции показан на рис. 8.

Заметим, что возможны случаи, когда экстремум достигается в точке, в которой производная не существует. Таковы точки экстремума у профиля пилы, пример такой функции дан и на рис. 1.

Задачи на максимум и минимум имеют важнейшее значение в физике, механике, различных приложениях математики. Они были теми задачами, которые привели математику к созданию дифференциального исчисления, а дифференциальное исчисление дало мощный общий метод решения задач на экстремум с помощью производной.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ - точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином - точки экстремума.

Если $(x_0,y_0)$ - точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином - экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. Составить и решить систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac{\partial^2z}{\partial x^2}$, $\frac{\partial^2z}{\partial x\partial y}$, $\frac{\partial^2z}{\partial y^2}$ и вычислить значение $\Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} > 0$ (или $\frac{\partial^2z}{\partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} < 0$ (или $\frac{\partial^2z}{\partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
    3. Если $\Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
    4. Если $\Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показать\скрыть

Если $\Delta > 0$, то $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2 > 0$. А отсюда следует, что $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > \left(\frac{\partial^2z}{\partial x\partial y} \right)^2 ≥ 0$. Т.е. $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac{\partial^2z}{\partial x^2} > 0$, то и $\frac{\partial^2z}{\partial y^2} > 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac{\partial^2z}{\partial x^2}$ и $\frac{\partial^2z}{\partial y^2}$ совпадают.

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

$$ \frac{\partial z}{\partial x}=8x-6y-34; \frac{\partial z}{\partial y}=-6x+10y+42. $$

$$ \left \{ \begin{aligned} & 8x-6y-34=0;\\ & -6x+10y+42=0. \end{aligned} \right. $$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$ \left \{ \begin{aligned} & 4x-3y=17;\\ & -3x+5y=-21. \end{aligned} \right. $$

Мы получили систему линейных алгебраических уравнений . Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ \begin{aligned} & \Delta=\left| \begin{array} {cc} 4 & -3\\ -3 & 5 \end{array}\right|=4\cdot 5-(-3)\cdot (-3)=20-9=11;\\ & \Delta_x=\left| \begin{array} {cc} 17 & -3\\ -21 & 5 \end{array}\right|=17\cdot 5-(-3)\cdot (-21)=85-63=22;\\ & \Delta_y=\left| \begin{array} {cc} 4 & 17\\ -3 & -21 \end{array}\right|=4\cdot (-21)-17\cdot (-3)=-84+51=-33.\end{aligned} \\ x=\frac{\Delta_{x}}{\Delta}=\frac{22}{11}=2; \; y=\frac{\Delta_{y}}{\Delta}=\frac{-33}{11}=-3. $$

Значения $x=2$, $y=-3$ - это координаты стационарной точки $(2;-3)$.

$$ \frac{\partial^2 z}{\partial x^2}=8; \frac{\partial^2 z}{\partial y^2}=10; \frac{\partial^2 z}{\partial x \partial y}=-6. $$

Вычислим значение $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 8\cdot 10-(-6)^2=80-36=44. $$

Так как $\Delta > 0$ и $\frac{\partial^2 z}{\partial x^2} > 0$, то согласно точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$ z_{min}=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

Ответ : $(2;-3)$ - точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Будем следовать указанному выше . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=3x^2+3y^2-15; \frac{\partial z}{\partial y}=6xy-12. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 3x^2+3y^2-15=0;\\ & 6xy-12=0. \end{aligned} \right. $$

Сократим первое уравнение на 3, а второе - на 6.

$$ \left \{ \begin{aligned} & x^2+y^2-5=0;\\ & xy-2=0. \end{aligned} \right. $$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac{2}{x}$. Подставляя $y=\frac{2}{x}$ в первое уравнение, будем иметь:

$$ x^2+\left(\frac{2}{x} \right)^2-5=0;\\ x^2+\frac{4}{x^2}-5=0;\\ x^4-5x^2+4=0. $$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$ t^2-5t+4=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 1 \cdot 4=9;\\ & t_1=\frac{-(-5)-\sqrt{9}}{2}=\frac{5-3}{2}=1;\\ & t_2=\frac{-(-5)+\sqrt{9}}{2}=\frac{5+3}{2}=4.\end{aligned} $$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac{2}{x}$, получим:

\begin{aligned} & y_1=\frac{2}{x_1}=\frac{2}{1}=2;\\ & y_2=\frac{2}{x_2}=\frac{2}{-1}=-2;\\ & y_3=\frac{2}{x_3}=\frac{2}{2}=1;\\ & y_4=\frac{2}{x_4}=\frac{2}{-2}=-1. \end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=6x; \frac{\partial^2 z}{\partial y^2}=6x; \frac{\partial^2 z}{\partial x \partial y}=6y. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 6x\cdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем: $\Delta(M_1)=36(1^2-2^2)=-108$. Так как $\Delta(M_1) < 0$, то согласно в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем: $\Delta(M_2)=36((-1)^2-(-2)^2)=-108$. Так как $\Delta(M_2) < 0$, то согласно в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$ \Delta(M_3)=36(2^2-1^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=6\cdot 2=12. $$

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$ \Delta(M_4)=36((-2)^2-(-1)^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4}=6\cdot (-2)=-12. $$

Так как $\Delta(M_4) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4} < 0$, то согласно $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$ z_{max}=z(-2;-1)=(-2)^3+3\cdot (-2)\cdot (-1)^2-15\cdot (-2)-12\cdot (-1)+1=29. $$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ :

  • $(2;1)$ - точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ - точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $\Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $\Delta=36\cdot(2^2-1^2)$. Здесь очевидно, что $\Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, - там требуют довести вычисления до числа:)

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Будем следовать . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=4x^3-4x+4y; \frac{\partial z}{\partial y}=4y^3+4x-4y. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 4x^3-4x+4y=0;\\ & 4y^3+4x-4y=0. \end{aligned} \right. $$

Сократим оба уравнения на $4$:

$$ \left \{ \begin{aligned} & x^3-x+y=0;\\ & y^3+x-y=0. \end{aligned} \right. $$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$ y^3+x-y+(x^3-x+y)=0;\\ y^3+x^3=0; y^3=-x^3; y=-x. $$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$ x^3-x-x=0;\\ x^3-2x=0;\\ x(x^2-2)=0. $$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt{2}$ или $x=\sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt{2}$, $x_3=\sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt{2}$, $y_3=-x_3=-\sqrt{2}$.

Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt{2},\sqrt{2})$, $M_3(\sqrt{2},-\sqrt{2})$.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=12x^2-4; \frac{\partial^2 z}{\partial y^2}=12y^2-4; \frac{\partial^2 z}{\partial x \partial y}=4. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= (12x^2-4)(12y^2-4)-4^2=\\ =4(3x^2-1)\cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16\cdot((3x^2-1)(3y^2-1)-1). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем: $\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0$. Так как $\Delta(M_1) = 0$, то согласно требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-\sqrt{2},\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_2)=16\cdot((3\cdot (-\sqrt{2})^2-1)(3\cdot (\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2}=12\cdot (-\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_2) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2} > 0$, то согласно $M_2(-\sqrt{2},\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$ z_{min}=z(-\sqrt{2},\sqrt{2})=(-\sqrt{2})^4+(\sqrt{2})^4-2(-\sqrt{2})^2+4\cdot (-\sqrt{2})\sqrt{2}-2(\sqrt{2})^2+3=-5. $$

Аналогично предыдущему пункту исследуем точку $M_3(\sqrt{2},-\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_3)=16\cdot((3\cdot (\sqrt{2})^2-1)(3\cdot (-\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=12\cdot (\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(\sqrt{2},-\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(\sqrt{2},-\sqrt{2})=(\sqrt{2})^4+(-\sqrt{2})^4-2(\sqrt{2})^2+4\cdot \sqrt{2}(-\sqrt{2})-2(-\sqrt{2})^2+3=-5. $$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно требуется дополнительное исследование. Под этой уклончивой фразой подразумевается "делайте, что хотите" :). Общего способа разрешения таких ситуаций нет, - и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ - точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,0)=x^4+0^4-2x^2+4x\cdot 0-2\cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3. $$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ - точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ : $(-\sqrt{2},\sqrt{2})$, $(\sqrt{2},-\sqrt{2})$ - точки минимума функции $z$. В обеих точках $z_{min}=-5$.

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Урок на тему: "Нахождение точек экстремумов функций. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Введение.
2. Точки минимума и максимума.

4. Как вычислять экстремумы?
5. Примеры.

Введение в экстремумы функций

Ребята, давайте посмотрим на график некоторой функции:

Заметит, что поведение нашей функции y=f (x) во многом определяется двумя точками x1 и x2. Давайте внимательно посмотрим на график функции в этих точках и около них. До точки x2 функция возрастает, в точке x2 происходит перегиб, и сразу после этой точки функция убывает до точки x1. В точке x1 функция опять перегибается, и после этого - опять возрастает. Точки x1 и x2 пока так и будем называть точками перегиба. Давайте проведем касательные в этих точках:


Касательные в наших точках параллельны оси абсцисс, а значит, угловой коэффициент касательной равен нулю. Это значит, что и производная нашей функции в этих точках равна нулю.

Посмотрим на график вот такой функции:


Касательные в точках x2 и x1 провести невозможно. Значит, производной в этих точках не существует. Теперь посмотрим опять на наши точки на двух графиках. Точка x2 - это точка, в которой функция достигает наибольшего значения в некоторой области (рядом с точкой x2). Точка x1 - это точка, в которой функция достигает своего наименьшего значения в некоторой области (рядом с точкой x1).

Точки минимума и максимума

Определение: Точку x= x0 называют точкой минимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≥ f(x0).

Определение: Точку x=x0 называют точкой максимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≤ f(x0).

Ребята, а что такое окрестность?

Определение: Окрестность точки - множество точек, содержащее нашу точку, и близкие к ней.

Окрестность мы можем задавать сами. Например, для точки x=2, мы можем определить окрестность в виде точек 1 и 3.

Вернемся к нашим графикам, посмотрим на точку x2, она больше всех других точек из некоторой окрестности, тогда по определению - это точка максимума. Теперь посмотрим на точку x1, она меньше всех других точек из некоторой окрестности, тогда по определению - это точка минимума.

Ребята, давайте введем обозначения:

Y min - точка минимума,
y max - точка максимума.

Важно! Ребята, не путайте точки максимума и минимума с наименьшим и наибольшим значение функции. Наименьшее и наибольшее значения ищутся на всей области определения заданной функции, а точки минимума и максимума в некоторой окрестности.

Экстремумы функции

Для точек минимума и максимума есть общей термин – точки экстремума.

Экстремум (лат. extremum – крайний) – максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.

Соответственно, если достигается минимум – точка экстремума называется точкой минимума, а если максимум – точкой максимума.

Как же искать экстремумы функции?

Давайте вернемся к нашим графикам. В наших точках производная либо обращается в нуль (на первом графике), либо не существует (на втором графике).

Тогда можно сделать важное утверждение: Если функция y= f(x) имеет экстремум в точке x=x0, то в этой точке производная функции либо равна нулю, либо не существует.

Точки, в которых производная равна нулю называются стационарными.

Точки, в которых производной функции не существует, называются критическими.

Как вычислять экстремумы?

Ребята, давайте опять вернемся к первому графику функции:


Анализируя этот график, мы говорили: до точки x2 функция возрастает, в точке x2 происходит перегиб, и после этой точки функция убывает до точки x1. В точке x1 у функции опять перегибается, и после этого функция опять возрастает.

На основании таких рассуждений, можно сделать вывод, что функция в точках экстремума меняет характер монотонности, а значит и производная функция меняет знак. Вспомним: если функция убывает, то производная меньше либо равно нулю, а если функция возрастает, то производная больше либо равна нулю.

Обобщим полученные знания утверждением:

Теорема: Достаточное условие экстремума: пусть функция y=f(x) непрерывна на некотором промежутке Х и имеет внутри промежутка стационарную или критическую точку x= x0. Тогда:

  • Если у этой точки существует такая окрестность, в которой при x x0 выполняется f’(x)>0, то точка x0 – точка минимума функции y= f(x).
  • Если у этой точки существует такая окрестность, в которой при x 0, а при x> x0 выполняется f’(x) Если у этой точки существует такая окрестность, в которой и слева и справа от точки x0 знаки производной одинаковы, то в точке x0 экстремума нет.

Для решении задач запомните такие правила: Если знаки производных определены то:


Алгоритм исследования непрерывной функции y= f(x) на монотонность и экстремумы:

  • Найти производную y’.
  • Найти стационарные(производная равна нулю) и критические точки (производная не существует).
  • Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
  • По указанным выше утверждениям сделать вывод о характере точек экстремума.

Примеры нахождения точки экстремумов

1) Найти точки экстремума функции и определить их характер: y= 7+ 12*x - x 3

Решение: Наша функция непрерывна, тогда воспользуемся нашим алгоритмом:
а) y"= 12 - 3x 2 ,
б) y"= 0, при x= ±2,

Точка x= -2 - точка минимума функции, точка x= 2 - точка максимума функции.
Ответ: x= -2 - точка минимума функции, x= 2 - точка максимума функции.

2) Найти точки экстремума функции и определить их характер.

Решение: Наша функция непрерывна. Воспользуемся нашим алгоритмом:
а) б) в точке x= 2 производная не существует, т.к. на нуль делить нельзя, Область определения функции: , в этой точки экстремума нет, т.к. окрестность точки не определена. Найдем значения, в которой производная равна нулю: в) Отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= 3 - точка минимума функции.
Ответ: x= 3 - точка минимума функции.

3) Найти точки экстремума функции y= x - 2cos(x) и определить их характер, при -π ≤ x ≤ π.

Решение: Наша функция непрерывна, воспользуемся нашим алгоритмом:
а) y"= 1 + 2sin(x),
б) найдем значения в которой производная равна нулю: 1 + 2sin(x)= 0, sin(x)= -1/2,
т.к. -π ≤ x ≤ π, то: x= -π/6, -5π/6,
в) отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -5π/6 - точка максимума функции.
Точка x= -π/6 - точка минимума функции.
Ответ: x= -5π/6 - точка максимума функции, x= -π/6 - точка минимума функции.

4) Найти точки экстремума функции и определить их характер:

Решение: Наша функция имеет разрыв только в одной точке x= 0. Воспользуемся алгоритмом:
а)
б) найдем значения в которой производная равна нулю: y"= 0 при x= ±2,
в) отметим стационарные точки на числовой прямой и определим знаки производной:
г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -2 точка минимума функции.
Точка x= 2 - точка минимума функции.
В точке x= 0 функция не существует.
Ответ: x= ±2 - точки минимума функции.

Задачи для самостоятельного решения

а) Найти точки экстремума функции и определить их характер: y= 5x 3 - 15x - 5.
б) Найти точки экстремума функции и определить их характер:
в) Найти точки экстремума функции и определить их характер: y= 2sin(x) - x при π ≤ x ≤ 3π.
г) Найти точки экстремума функции и определить их характер:

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.