Числовые множества объединение и пересечение числовых множеств. Нахождение пересечения и объединения числовых множеств

Лекция 13: Операции над множествами. Упорядоченное множество

1. Объединение множеств

Объединение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств X или Y, т.е. принадлежат X или принадлежат Y.

Объединение X и Y обозначается через X∪Y

Формально x∈X∪Y ⇔ x∈X или x∈Y

Пример 1. Если X={1,2,3,4,5} и Y={2,4,6,8}, то

X∪Y={1,2,3,4,5,6,7,8}

Пример 2. Если X={x:x — отл.гр.}, и Y={x:x — gib.}, то

X∪Y={x:x — или отл., или gib}.

Пример 3. Если X — множество точек левого круга и Y — множество точек правого круга, то

X∪Y — заштрихованная область, ограниченная обоими кругами.

Понятие объединения можно распространить и на большее число множеств, на систему множеств. Обозначим через М={X 1 ,X 2 , ...,X n } совокупность n множеств X 1 ,X 2 , ...,X n , называемую иногда системой множеств. Объединение этих множеств

∪X i =∪(X∈M), Х=X 1 ∪X 2 ∪...∪X n

представляет собой множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств данной системы М.

Для объединенных множеств справедливы:

  • X∪Y = Y∪X — коммутативный закон
  • (X∪Y)∪Z = X∪(Y∪Z) = X∪Y∪Z — ассоциативный закон,

справедливость которых вытекает из того, что левая и правая части равенств состоят из одних и тех же элементов.

Очевидно, что X∪∅ = X. Отсюда можно видеть, что ∅ играет роль нуля в алгебре множеств.

2. Пересечение множеств

Пересечение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству X, так и множеству Y.

Пересечение множеств обозначается X∩Y.

Формально x∈X∩Y ⇔ x∈X и x∈Y

Пример 4. X={1,2,3,4,5} Y={2,4,6,8} X∩Y = {2,4}

Пример 5. Если Х — множество точек левого круга, а Y — множество точек правого круга, то X∩Y представляет собой заштрихованную область, являющуюся общей частью обоих кругов.

Множества X и Y называются непересекающимися (дизъюнктными), если они не имеют общих элементов, то есть если X∩Y=∅.

Пример 7. {1,2,3} и {4,5,6}

В отличие от алгебры чисел, где могут быть три возможности: a

X=Y; X⊂Y; Y⊂X; X∩Y=∅ и X и Y находятся в общем положении.

Говорят, что множества X и Y находятся в общем положении, если выполняются три условия:

  1. существует элемент множества X, не принадлежащий Y;
  2. существует элемент множества Y, не принадлежащий X;
  3. существует элемент, принадлежащий как X, так и Y.

Аналогично объединению понятие пересечения можно распространить на систему множеств:

∩X=∩X i =X 1 ∩X 2 ∩...∩X n

Пересечение множеств представляет собой множество, элементы которого принадлежат каждому из множеств системы М.

Для пересечения множеств справедливы:

  • X∩Y=Y∩X — коммутативный закон
  • (X∩Y)∩Z = X∩(Y∩Z) = X∩Y∩Z — ассоциативный закон

Заметим также, что имеет место соотношение X∩∅=∅.

Пример 8. A={a,b}, B={b,c}, C={a,c}.

A∩B∩C=∅, хотя A∩B={b}, B∩C={c}

3. Разность множеств

Разность множеств определена только для двух множеств. Разностью множеств X и Y называется множество, состоящее из всех тех и только тех элементов, которые принадлежат X и не принадлежат Y.

Обозначается: X\Y.

Формально: x∈X\Y ⇔ x∈X и x∉Y

Пример 9. (см. Пример 1) X={1,2,3,4,5}, Y={2,4,6,8}, X\Y={1,3,5}, Y\X={6,8}

Разность множеств не обладает свойством коммутативности.

Если A\B=∅, то A⊂B — поставить? обратно

при A∩B≠∅

4. Универсальное множество

Роль нуля в алгебре множеств играет пустое множество. А нет ли такого множества, которое играет роль «1», т.е. удовлетворяет условию: X∪I = X, что означает, что пересечение или «общая часть» множества I и множества X для любого множества X совпадает с самим этим множеством. Это возможно лишь в том случае, если множество I содержит все элементы, из которых может состоять множество X, так что любое множество X полностью содержится в множестве I.

Множество I, удовлетворяющее этому условию, называется полным, или универсальным, или единичным.

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным и обозначать I.

Пример 12 (Пример 1). I — множество целых чисел

Пример 13 (Пример 2). I — множество студ. гр.

Пример 14 (Пример 3). I — лист бумаги, доска

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение X∪I = I.

5. Дополнение множества

Множество, определяемое из соотношения X¯ = I\X, называется дополнением множества X (до универсального множества I).

На диаграмме множество X¯ представляет собой незаштрихованную область.

Формально: X = {x: x∈I и x∉X}.

Из определения следует, что X и X¯ не имеют общих элементов. Х∩X¯=∅.

Кроме того, не имеется элементов I, которые не принадлежали бы ни X, ни X¯ (его дополнению), так как те элементы, которые не принадлежат X, принадлежат X¯ (его дополнению). Следовательно, Х∪X¯=I.

Из симметрии данной формулы относительно Х и X¯ следует не только то, что X¯ является дополнением Х, но и что Х является дополнением X¯. Но дополнение X¯ есть X¯ ¯. Таким образом, X¯ ¯=X¯.

С помощью операции дополнения представим разность множеств:

X\Y = {x: x∈X и x∉Y} ={ x: x∈X и x∈Y¯ }, т.е. X\Y= Х∩Y¯.

Порядок выполнения операций:

  1. дополнение;
  2. пересечение;
  3. объединение, разность.

Для изменения порядка используют скобки.

6. Разбиение множества

Одной из наиболее часто встречающихся операций над множествами является операция разбиения множества на систему подмножеств.

Так, система курсов данного факультета является разбиением множества студентов факультета; система групп данного курса является разбиением множества студентов курса.

Пример. Продукция предприятия: — высший сорт, I, II, брак.

Рассмотрим некоторое множество M и систему множеств

М = {X 1 , X 2 , ..., X n }

Система множеств M называется разбиением множества M, если она удовлетворяет следующим условиям:

    Любое множество X из M является подмножеством множества М

    ∀X∈M: X⊆M;

    Любые два множества X и Y из М являются непересекающимися

    ∀X∈М, ∀Y∈M: X≠Y → X∩Y=∅.

    Объединение всех множеств, входящих в разбиение, дает множество M

    X 1 ∪X 2 ∪...∪ X n =M.

7. Тождества алгебры множеств

С помощью операций объединения, пересечения и дополнения из множеств можно составлять различные алгебраические выражения.

Если алгебраические выражения V(X,Y,Z) и S(X,Y,Z) представляют собой одно и то же множество, то их можно приравнять друг другу, получая алгебраическое тождество вида V(X,Y,Z) = S(X,Y,Z)

  1. (X∪Y)∩Z = (X∩Z)∪(Y∩Z) (аналогичное дистрибутивному закону (a+b)c=(a+c)(b+c) в обычной алгебре).
  2. (X∩Y)∪Z = (X∪Z)∩(Y∪Z)
  3. Если Y⊆X, то X∩Y=Y, X∪Y=X. Действительно, все элементы множества Y являются в то же время и элементами множества X. Значит пересечение этих множеств, то есть общая множеств Х и Y совпадает с Y. В объединение множеств X и Y множество Y не внесет ни одного элемента, который уже не входил бы в него, будучи элементом множества Х. Следовательно, X∪Y совпадает с X.
  4. Пусть в примере 3 Y=X. Тогда, учитывая, что X⊆X, то X∩Х=Х, X∪Х=X. (идемпотентность).
  5. Докажем тождество (X∪Y)¯=X¯∩Y¯. Предположим, что х∈(X∪Y)¯, то есть х∉X∪Y. Это значит, что х∉X и х∉Y, то есть и x&isinX¯ и x&isinY¯;. Следовательно, x∈X¯∩Y¯. Предположим теперь, что y∈X¯∩Y¯, то есть y∈X¯ и y∈Y¯. Это значит, что y∉X и y∉Y, то есть что y∉X∪Y. Следовательно, y∈(X∪Y)¯.
  6. Тождество (X∩Y)¯=X¯∪Y¯. Обычно тождества 5) и 6) называются тождествами де-Моргана.
  7. (A\B)∩C=(A∩C)\B=(A∩C)\(B∩C)
  8. A\B=A\(A∩B)
  9. A=(A∩B)∪(A\B)

Дополнение к занятию «операции над множествами»

Множество элементов, принадлежащих или A, или B, называют симметричной разностью или дизьюнктивной суммой.

S = A⊕B = (A\B)∪(B\A) = (A∩B¯)∪(A¯∪B) = (A∪B)∩(A∩B)¯

Для симметрической разности выполняются следующие законы:

  1. 1) A⊕B = B ⊕A — коммутативность,
  2. 2) A⊕(B⊕С) = (A⊕B)⊕С — ассоциативность,
  3. 3) A⊕∅ = А=∅⊕A — существование нейтрального элемента,
  4. 4) A ⊕А = ∅
  5. 5) A∩(B⊕С) = (A∩B)⊕(А∩С) — дистрибутивность относительно пересечения.

Упорядоченное множество

Упорядоченным множеством (или кортежем) называется последовательность элементов, то есть совокупность элементов, в которой каждый элемент занимает определенное место. Сами элементы — компоненты кортежа.

Пример 1. Множество людей, стоящих в очереди, множество слов в фразе, алфавит. Во всех этих множествах место каждого элемента является вполне определенным и не может быть произвольно изменено.

Число элементов кортежа называется его длиной. Обозначают кортеж скобками «< >», иногда круглыми «()». А=. Кортежи длины 2 называются упорядоченными парами, 3 — тройками, n-ками.

Частный случай: кортеж длины 1 —

кортеж длины 0 — < > или ∧ — пустой кортеж.

Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы.

Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства (n-мерного).

Так, кортеж может рассматриваться как точка на плоскости или вектор, проведенный из начала координат в данную точку. Тогда компоненты a 1 , a 2 — проекции вектора на оси 1 и 2.

Пр 1 = a 1 , Пр 2 = a 2 , Пр i = a i , Пр 1 2 = — двухэлементный кортеж. Проекция кортежа на пустое множество осей — пустой кортеж.

Обобщая эти понятия, будем рассматривать упорядоченное n-элементное множество вещественных чисел (a 1 , ..., a n) как точку в воображаемом n–мерном пространстве (иногда называемом гиперпространством), или как n-мерный вектор. При этом компоненты n-элементного кортежа а будем рассматривать как проекции этого кортежа на соответствующие оси.

Пр i a = a i , i=1,2,...,n

Пр i,j,...,l a = , i=1,2,...,n

Два вектора равны, если они имеют одинаковую длину и соответствующие координаты их равны.

= ⇔ m = n и a 1 = b 1 , b 1 = b 2 , ...

Компонентами кортежа (вектора) могут быть также компоненты кортежи (векторы):

Пример. Слова в предложении,

A = < , , >

Прямое произведение множеств

Прямым (декартовым) произведением множеств X и Y называется множество, состоящее из всех тех и только тех упорядоченных пар, первая компонента которых принадлежит множеству X, а вторая принадлежит множеству Y.

Формально: X*Y = {: x∈X, y∈Y}

Пример 2. Пусть X=<1,2>, Y=<1,3,4>

Тогда X*Y={<1,1>,<1,3>,<1,4>,<2,1>,<2,3>,<2,4> } См. рис. а).

Пример 3. Пусть X и Y — отрезки вещественной оси. Прямое произведение X*Y изображается заштрихованным прямоугольником. См. рис. б).

Прямое произведение изменяется при изменении порядка сомножителей т.е.

Прямое произведение множеств X 1 , X 2 , ..., X n — это множество, обозначаемое X 1 *X 2 *...*X n и состоящее из всех тех и только тех кортежей длины n, правая компонента которых принадлежит X 1 , вторая — X 2 и т.д.

Очевидно X*Y = ∅ ⇔ X = ∅ или Y = ∅.

Аналогично X 1 *X 2 *...*X n = ∅ тогда и только тогда, когда хотя бы одно из множеств X 1 , X 2 , ..., X n является пустым.

Частным случаем прямого произведения является понятие степеней (декартовых) множества — прямое произведение одинаковых множеств

M s =M*M*...*M, M 1 =M, M 0 =∧.

Обычно R — множество вещественных чисел, тогда R 2 =R*R — вещественная плоскость и R 3 =R*R*R — трехмерное вещественное пространство.

Пример. A={a,b,c,d,e,f,g,h}, B={1,2,3, ...,8}

Тогда A*B ={a 1 , a 2 , a 3 , ..., h7, h8} — множество обозначающее все 64 клеток шахматной доски.

Пример. Пусть A — конечное множество, элементами которого являются символы (буквы, цифры, знаки препинания и т.д.). Такие множества обычно называют алфавитами. Элементы множества a n называются словами длины n в алфавите A. Множество всех символов в алфавите A — это множество A * = ∪A i = A 1 ∪A 2 ∪A 3 ... . При написании слов не принято пользоваться ни запятыми, ни скобками, ни разделителями.

СЛОВО ⇔ <С,Л,О,В,О>

Теорема. Пусть a 1 , a 2 , ..., a n — конечные множества и |a 1 | = m 1 , |a 2 |=m 2 , ..., |a n |=m n . Тогда мощность множества a 1 *a 2 *a 3 *...*a n равна произведению мощностей a 1 , a 2 , ..., a n

|a 1 *a 2 *...*a n |=|a 1 |*|a 2 |*|a 3 |*...*|a n |= m 1 *m 2 *...*m n

Следствие |a n |=|A| n

Проекция множества.

Операция программирования множества тесно связана с операцией проектирования кортежа и может применяться лишь к таким множествам, элементами которых являются кортежи одинаковой длины.

Пусть M — множество, состоящее из кортежей длины S. Тогда пролинией множества M будем называть множество пролиний всех кортежей из М

Пример. Пусть М={<1,2,3,4,5>,<2,1,3,5,5>,<3,3,3,3,3>,<3,2,3,4,3>}

тогда Пр 2 М={2,1,3}, Пр 3 M={3}, Пр 4 M={4,5,3}, Пр 24 M={<2,4>,<1,5>,<3,3>}, Пр 13 M={<1,3>,<2,3>,<3,3>}, Пр 15 M={<1,5>,<2,5>,<1,3>}, Пр 25 M={<2,5>,<1,5>,<3,3>,<2,3>}.

Очевидно что если М=Х*Y то Пр 1 М=Х, Пр 2 М=Y

и если Q⊆Х*Y то Пр 1 Q⊆Х и Пр 2 Q⊆Y

Пример. V={,,}

Пр 1 V={a,c,d}

Пр 1 2V={,,}

Пр 2 3V={,}

Пр 1 3V={,,}

Пусть V — множество векторов одинаковой длины S.

Пр i V ={Пр i v/v∈Y}, Пр i i ...i k v = { Пр i i ...i k v/v∈Y}.

Если V =A 1 *A 2 *...*A n , то Пр i i ...i k V=A i1 *A i2 *...*A ik .

В общем случае Пр i V — вовсе не обязательно прямое произведение: оно может быть подмножеством.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.


Это новый тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.
Круги - геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.
Метод Эйлера является незаменимым при решении некоторых задач, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие. Иногда с помощью арифметических действий решить задачу легче.

Решение

Чертим два множества таким образом:



6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств.
15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров».
11 – 6 = 5 – человек, которые смотрели только «Стиляги».
Получаем:



Ответ. 5 человек смотрели только «Стиляги».

Любимые мультфильмы

Решение

В этой задаче 3 множества, из условий задачи видно, что все они пересекаются между собой. Получаем такой чертеж:



Учитывая условие, что среди ребят, которые назвали мультфильм «Волк и теленок» пятеро выбрали сразу два мультфильма, получаем:



21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».
13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».
Получаем:



38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».
Делаем вывод, что «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек.
Ответ. 17 человек выбрали мультфильм «Губка Боб Квадратные Штаны».

«Мир музыки»

Решение

Изобразим эти множества на кругах Эйлера.



Теперь посчитаем: Всего внутри большого круга 35 покупателей, внутри двух меньших 35–10=25 покупателей. По условию задачи 20 покупателей купили новый диск певицы Максим, следовательно, 25 – 20 = 5 покупателей купили только диск Земфиры. А в задаче сказано, что 11 покупателей купили диск Земфиры, значит 11 – 5 = 6 покупателей купили диски и Максим, и Земфиры:



Ответ: 6 покупателей купили диски и Максим, и Земфиры.

Гарри Поттер, Рон и Гермиона

На полке стояло 26 волшебных книг по заклинаниям, все они были прочитаны. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал только Рон?

Решение

Учитывая условия задачи, чертеж будет таков:


Так как Гарри Поттер всего прочитал 11 книг, из них 4 книги читал Рон и 2 книги – Гермиона, то 11 – 4 – 2 = 5 – книг прочитал только Гарри. Следовательно,
26 – 7 – 2 – 5 – 4 = 8 – книг прочитал только Рон.
Ответ. 8 книг прочитал только Рон.

Пионерский лагерь

Решение

Изобразим множества следующим образом:


70 – (6 + 8 + 10 + 3 + 13 + 6 + 5) = 19 – ребят не поют, не увлекаются спортом, не занимаются в драмкружке. Только спортом заняты 5 человек.
Ответ. 5 человек заняты только спортом.

Экстрим

Решение


Всеми тремя спортивными снарядами владеют три человека, значит, в общей части кругов вписываем число 3. На скейтборде и на роликах умеют кататься 10 человек, а 3 из них катаются еще и на сноуборде. Следовательно, кататься только на скейтборде и на роликах умеют 10-3=7 ребят. Аналогично получаем, что только на скейтборде и на сноуборде умеют кататься 8-3=5 ребят, а только на сноуборде и на роликах 5-3=2 человека. Внесем эти данные в соответствующие части. Определим теперь, сколько человек умеют кататься только на одном спортивном снаряде. Кататься на сноуборде умеют 30 человек, но 5+3+2=10 из них владеют и другими снарядами, следовательно, только на сноуборде умеют кататься 20 ребят. Аналогично получаем, что только на скейтборде умеют кататься 13 ребят, а только на роликах – 30 ребят. По условию задачи всего 100 ребят. 20+13+30+5+7+2+3=80 – ребят умеют кататься хотя бы на одном спортивном снаряде. Следовательно, 20 человек не умеют кататься ни на одном спортивном снаряде.
Ответ. 20 человек не умеют кататься ни на одном спортивном снаряде.

"Обитаемый остров" и "Стиляги"

Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Любимые мультфильмы

Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

«Мир музыки»

В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры?

Пионерский лагерь

В пионерском лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок и хор. Сколько ребят не поют, не увлекаются спортом, не занимаются в драмкружке? Сколько ребят заняты только спортом?

Экстрим

Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

Операция над множествами - это правило, в результате выполнения которого из данных множеств однозначно получается некоторое новое множество.

Обозначим произвольную операцию знаком *. Множество, получаемое из данных множеств А и В, записывают в виде А*В. Полученное множество и саму операцию принято называть одним термином.

Замечание. Для основных числовых операций используют два термина: один обозначает саму операцию как действие, другой - число, получаемое после выполнения действия. Например, операция, обозначаемая +, называется сложением, а число, полученное в результате сложения, - суммой чисел. Аналогично - знак операции умножения, а результат а b - произведение чисел а и Ь. Тем нс менее часто эту разницу нс учитывают и говорят «Рассмотрим сумму чисел», имея в виду не конкретный результат, а саму операцию.

Операция пересечения. Пересечением множеств А и В АглВ , состоящее из всех объектов, каждый из которых принадлежит обоим множествам А и В одновременно.

Другими словами, АсВ - это множество всех.г, таких, что хеА и хеВ:

Операция объединения. Объединением множеств А и В называется множество, обозначаемое А"иВ, состоящее из всех объектов, каждый из которых принадлежит хотя бы одному множеству А или В.

Операцию объединения иногда обозначают знаком + и называют сложением множеств.

Операции разности. Разностью множеств А и В называется множество, обозначаемое АВ , состоящее из всех объектов, каждый из которых лежит в А, но не лежит В.

Выражение АпВ читают «А в пересечении с В », AkjB- «А в объединении с В», АВ - «А без В».

Пример 7.1.1. Пусть А = {1, 3,4, 5, 8,9}, В = {2,4, 6, 8}.

Тогда AkjB= {1,2, 3,4, 5, 6, 8, 9}, AcB={ 4,8}, АВ = {1,3, 5, 9}, ЯЛ = {2,6}.»

На основе указанных операций можно определить еще две важные операции.

Операция дополнения. Пусть AqS. Тогда разность SA называется дополнением множества А до S и обозначается A s .

Пусть любое рассматриваемое множество является подмножеством некоторого множества U. Дополнение до такого фиксированного (в контексте решения той или иной задачи) множества U обозначают просто А . Также используются обозначения СА, с А, А".

Пример 7.1.2. Дополнение множества {1, 3,4, 5, 8, 9} до множества всех десятичных цифр равно {0, 2, 6, 7}.

Дополнение множества Q до множества R есть множество 1.

Дополнение множества квадратов до множества прямоугольников есть множество всех прямоугольников, имеющих неравные смежные стороны.

Мы видим, что операции объединения, пересечения и дополнения множеств соответствуют логическим операциям дизъюнкции, конъюнкции и отрицания.

Операция симметрической разности. Симметрической разностью множеств А и В называется множество, обозначаемое А®В , состоящее из всех объектов, каждый из которых принадлежит в точности одному из множеств А и В:

Нетрудно видеть, что симметрическая разность есть объединение двух множеств АВ и ВА. Это же самое множество можно получить, если вначале объединить множества А и В, а затем убрать из множества общие элементы.

Пример 7.1.3. Пусть даны действительные числа а Тогда для соответствующих числовых промежутков имеем:


Заметим, что так как отрезок [а; Ь] содержит число с> а интервал (с; d) точку с не содержит, го число с лежит в разности [а; Ь] без [с; cf. А вот разность, например, (2;5), число 3 не содержит, так как оно лежит в отрезке . Имеем (2;5)=(2;3).

Пусть даны непересекающиеся множества А и В. Поскольку п - знак операции пересечения, то запись А(ЬВ некорректна. Неправильно также говорить, что у множеств нет пересечения. Пересечение есть всегда, оно определено для любых множеств. То, что множества не пересекаются, означает, что их пересечение пусто (то есть, выполнив указанную операцию, мы получаем пустое множество). Если же множества пересекаются, значит, их пересечение не пусто. Делаем вывод:

Обобщим операции объединения пересечения на случай, когда множеств более двух.

Пусть дана система К множеств. Пересечением множеств данной системы называется множество всех элементов, каждый из которых лежит во всех множествах их К.

Объединением множеств данной системы называется множество всех элементов, каждый из которых лежит хотя бы в одном множестве их К.

Пусть множества системы К занумерованы элементами какого-то семейства индексов /. Тогда любое множество из К можно обозначить А,-, где iel. Если совокупность конечная, то в качестве / используют множество первых натуральных чисел {1,2,...,и}. В общем случае / может быть бесконечным.

Тогда в общем случае объединение множеств А для всех iel обозначают (J А { , а пересечение - f]A i .

Пусть совокупность К конечная, тогда К= В этом случае

пишут AyjA 2 v...KjA„ и АГ4 2 (^---Г4п-

Пример 7.1.4. Рассмотрим промежутки числовой прямой Л| = [-оо;2], Л 2 =Н°; 3], Л 3 =}